

CUG 1995 Fall

 Proceedings

107

Integrated Visual Computing

Krzysztof S. Nowinski

, Warsaw University, ICM

In our analysis, we will be mainly interested in the compo-
nents of the modeling process involving visualization of data
coming both from experiment and model based computations
and the interactions between these components and the rest of
the modeling system. Basically, the existing data visualization
systems have their interactive capabilities restricted to the
choice of data presentation methods and parameters, and setting
presentation parameters like object lighting, camera view etc.
Usually, there is no feedback from the level of visual interaction

to the level of numeric data - there is no method of visual input
of formulas or parameters from the graphic display to the
system.

The broken lines, in particular the lines indicating a feedback
leading to validation and refinement of the model, symbolize
therefore some rather informal reasoning based on visual obser-
vation and resulting in some textual input to the model. Exam-
ples of such processes include modifications of coordinate
systems or functional bases used in the model to obtain better fit

108

CUG 1995 Fall

 Proceedings

with the experimental data, selection of the type of approxi-
mating function based on a visual analysis of the shape of a data
plot etc.

The software used for mathematical modeling includes
usually algorithms and procedures for adaptive parameter
refinement based on nonlinear optimization methods. Such algo-
rithms require, however, initial values for the optimization that
are usually supplied "by hand".

Summarizing, we can regard the standard modeling process
as a sort of one way road from an abstract model to visual images
with no feedback closing the loop inside the system.

One can note that in several fields of applications there exist
modeling systems allowing such visual feedback and indeed
based on it. The examples include:

• Geometric design and modeling systems creating models
consisting of curves and surfaces given by complicated para-
metric formulas. The user builds such objects by simple
interactive graphic input even with no immediate access to
the mathematical form of the resulting formulas.

• Chemical design systems where again simple interactive out-
lining of a molecular structure builds an extremely compli-
cated mathematical structure of energy functions and other
chemical variables that can be computed from the topologi-
cal and geometric data created by the user. Again, many
parameters (like cartesian atom coordinates) are completely
transparent to the user until explicitly requested.

• Kinematics modeling, where formulas describing dynamic
properties of a mechanical system are built using an interac-
tive graphic interface.

All these examples are built within some narrowly defined
frameworks with highly specialized set of objects, formulas and
computational methods. However, it seems possible to create a
toolkit that will facilitate such a process of creation, verification
and refinement of more general mathematical and computational
models based on the paradigm of partial differential equations
with the help of currently accessible interactive visualization
systems.

System framework and components

The

dataflow oriented systems

 like AVS, Iris Explorer or
IBM Data Explorer provide a convenient framework for design
and prototyping of integrated visual modeling systems. They are
highly modular with well defined programming interface for the
modules - both standard and user written, very flexible and
easily extensible.

The AVS (Application Visualization System) has an addi-
tional advantage of very high portability and a very robust
implementation of distributed processing by the so called

remote
module execution

. It allows to single out the compute intensive
part of the data processing and visualization process and to relo-
cate it to a remote supercomputer while keeping interactive part
on a local workstation equipped with suitable graphic hardware.
Currently, the version 5 of the AVS system has rather limited

possibilities of creation of specialized data types other than

fields

 representing regular data arrays suitable for finite differ-
ence type objects and

unstructured cell data

 oriented toward
finite element computations. These limitations no longer exist in
the new AVS/EXPRESS product that on the other hand lacks
remote execution capability. In this situation the AVS 5 system
has been selected as the basic framework for the proposed
modeling toolkit with the port to AVS/EXPRESS scheduled as
early as the remote execution facility become available.

The proposed toolkit consists of:

• A general data type allowing for integration of symbolic and
numeric data.

• A module capable of edition of symbolic formulas and their
interpretation as of computational programs -

Formula Edi-
tor and Interpreter

.

• A module providing interactive selection of various types of
mathematical objects (functions, functional bases, coordi-
nate systems etc.) and determining their parameters on a
basis of interactive graphical input -

Visual Math Designer

.

• A module providing interface to symbolic mathematical sys-
tems like Mathematica or Maple at the level of formulas -

Math Interface

.

• A clipboard type interface facilitating data interchange
between processing modules.

The AVS system contains an extensive library of data modi-
fication and visualization modules together with elaborated
rendering routines, the visualization needs of the particular prob-
lems will be met with the existing tools. Therefore, a modeling
environment targeted e.g. at the modeling of three-dimensional
multiscalar data will involve standard isosurface or slice gener-
ators from AVS together with the specialized modules described
above.

In the standard conditions of networked computational
systems the only components running on a high performance
computer will be

Formula Editor and Interpreter

 and computa-
tionally intensive data visualization routines. The final
rendering, graphic interactive tasks and symbolic math
processing are best suited for a local workstation.

System data structure

The general data structure used by the system contains of:

• a list of

formulas

,

• a list of

variables

 occurring in formulas,

• a

comment

 string.

Formulas

 are basically strings conforming to the rules of
mathematical expressions grammar in the C-like syntax.

The formulas can be either interpreted by the

Formula Editor
and Interpreter

 module or passed to and from the

Math Interface

module for symbolic processing.

• a

variable

 object consists of:

• a

variable name

 string,

CUG 1995 Fall

 Proceedings

109

• a pointer to a

defining formula

,

• a pointer to an AVS field structure containing

numerical
data

,

• a

comment

 string,

• a

status flag

 marking a variable as

fixed

,

tentative

 or

unknown

.

The variables can be created and modified with the help of

Formula Editor and Interpreter, Visual Math Designer

 and

Math Interface

 modules and their numerical content can be sent
to the visualization and rendering part of the processing network.

Due to limitations of the AVS data structure the formulas and
variable are actually represented as byte arrays (AVS field byte)
interpreted within the modules. It causes some inconvenience as
the dataflow of the numerical data must be manually designed in
conformance with the formulas and variables flow but it seems
inevitable at the present stage of the AVS system. In the future
when the AVS system will allow for both free data structure
creation and remote module execution the computational data
structure will resemble the logical structure more closely.

Formula Editor and Interpreter

This module is a basic component integrating symbolic and
numerical processing parts of the modeling systems with clip-
board type interfaces for both

Math Interface

 and

Visual Math
Designer

. Basically, it is an interpreter of a language oriented
toward array data and operations. By admitting numerical (finite
difference) differentiation, data shift and array convolution oper-
ations it is a quite powerful tool for the finite difference type of
computations.

It contains also some algorithms for linear approximation (to
be completed in the future by nonlinear approximation methods)
that give a capability of developing formulas (approximating
polynomials, trigonometric polynomials etc.) from numerical
data.

This feature allows the module to serve as an integration
point between numerical and symbolic level of data presenta-
tion: a formula approximating experimental data can be obtained
together with RMS optimized coefficients and passed for
symbolic processing as e.g. initial conditions for a PDE with the
solution of a PDE passed for numeric presentation.

Some details of an early version of the module are described
in

AVSFOOL - A Very Simple Field Operation Oriented
Language

 in the proceedings of the AVS '94 conference.
While based on the interpreting principle, the module is

computationally effective because it operates mainly on arrays.
Therefore for each formula analysis and interpreting operation
there is a sequence of numeric operations on array elements
implemented in highly vectorizable and parallelizable form.
This makes the module or its interpreter part very suitable for
remote execution on a PVP or MPP machine (in the second case
some manual optimization will be necessary only for the differ-
ence differential, shift and convolution operations).

Visual Math Designer

The basic idea of the

Visual Math Designer

 is to provide an
interactive graphic interface to the construction of mathematical
objects such as functions, function bases and coordinate systems
similar to the interface used in graphic modeling systems. It can
be best described with the help of an example.

Suppose a two-dimensional array of experimental data
exhibits some approximate periodicity that can be visually esti-
mated from a contour map. It is reasonable to expect that a good
approximating formula for this dataset could be obtained from a
trigonometric polynomial of the form

with

u

 and

v

 being data point coordinates in some affine coordi-
nate system.

The proposed

Designer

 allows the user to select a

Trigono-
metric Basis

 from the Function Bases menu and displays a reper
(that is, a pair of unit versors in a coordinate system) in the
window containing the dataset contour map. By a series of inter-
active geometric manipulation the user can modify the reper to
the pair of vectors describing the data periodicity. It remains
then to fix the number of terms in the polynomial to obtain a list
containing

• a formula for the polynomial,

• formulas for the coordinates u and v expressed in terms of
original coordinates

x

 and

y

,

• ready to be pasted into the program area of the

Formula
Interpreter

 for actual RMS best fit. The nonlinear fit process
can actually modify the coefficients used in

u

 and

v

, but the
initial values for minimization were obtained from a simple
point-and-click action.

The basic construction of the

Designer

 is clear from this
example. Its principal components are:

• An extensible library menu of functions, coordinate systems
and functional bases;

• A set of widgets corresponding to the objects from the
library (e.g. an ellipsoid for positively defined quadratic
form or a Gaussian function, a reper or a rectilinear grid for
trigonometric polynomials);

• An interface to the geometric renderer for manipulations on
widgets;

• A generator of formulas corresponding to the selected
objects.

The resulting formulas could be either added immediately to
the global data structures or passed to the

Formula Interpreter

 to
be used for further refinement.

It seems that the use of the tool like

Designer

 in conjunction
with the data visualization capabilities offered by the AVS
system could greatly increase the data analysis capabilities by

(cos() cos() cos()sin()

sin() cos() sin()sin())

, .

, ,

a ku lv b du lv

c ku lv d ku lv

k l k l

k l k l

+

+ +
∑

110

CUG 1995 Fall

 Proceedings

integration of immediate visual integration with the numerical
analysis.

Math Interface and the Clipboard

The

Formula Interpreter

 integrating the system uses a nota-
tion acceptable with minor lexical modifications by the standard
symbolic math systems. Some of these systems, e.g. Mathe-
matica provide system level interfaces to other programs, for
others, like Maple such an interface can be developed with the
standard UNIX tools.

While it would not be reasonable to expect that the whole

Formula Interpreter

 programs could be passed to and from
symbolic systems, it is evident that single expressions or substi-
tution instructions can be freely passed between the systems. It
seems that the most flexible mechanism for such exchange could
be designed as a clipboard type string buffer with three way
communication open to all three basic modules of the system.
The selected formulas could be regarded as functional parts of

the data structure while remaining parts of the symbolic math
output could be added to comment areas.

Final Remarks

The above described system is designed as open to extensions
conforming to the standard data structure. It can be enhanced by
numeric PDE solvers, finite element algorithms, data mesh
modifications and elements of image and signal processing.

Currently, the

Formula Interpreter

 is fully functional and
vectorized with some work on the parallelization on the T3D
emulator underway. The

Designer

 and

Math Interface

 are in the
stage of development and we expect them to be functional in the
next year. The development is done mainly in the Sun / CRAY
Y-MP environment.

We are intended to port the computational part of the system
to the T3E architecture as soon as it become available in the
Warsaw University.

