AVS for the CRAY T3D

Mitchell Roth, Dmitrii ZagorodngvandKaren Woys Department of
Mathematical Sciences, University of Alaska, Fairbanks, AK

ABSTRACT: AVS s a widely used package for scientific visualization which runs on
platforms ranging from workstations to Cray Research parallel vector supercomputers.
AVS employs a dataflow network architecture in which modules from several extensive
libraries are interconnected to perform the desired visualization functions. This paper
discusses the adaptation of AVS modules to the CRAY T3D for parallel execution. The
implementation issues discussed in the paper are: (1) T3D I/0 and control, (2) module
generation and (3) parallel computational algorithms for the modules using MPI. Ezam-
ples of AVS modules from the supported library as well as user-generated models which

execute on the T3D are described.

1 Introduction

A well recognized advantage of high performance com-
puting environments is the ability to fully utilize advanced
visualization techniques. Employing scalable parallel pro-
cessing is no exception. Visualization techniques enhance
the understanding of physical phenomena through the
viewing of important relationships of information not nor-
mally seen by the scientist or engineer. Further, this
information can more easily be communicated to oth-
ers involved in the exploration process or who use the
information to make important decisions, including the
consumer who will decide whether to buy a product or
not. However, many of the visualization processing steps
are computationally expensive or require long production
lead times.

In this project, we extend visualization capabilities to
the CRAY T3D to take full advantage of parallel process-
ing. In so doing, processing runtimes will be significantly
reduced, opening new interactive avenues for the scientist
and engineer to more completely explore and understand
his data. To accomplish this, we will leverage the exist-
ing base of visualization software capabilities. This effort
focuses primarily around the Application Visualization

System (AVS) distributed by AVS, Inc.

2 T3D Architecture

The CRAY T3D is a parallel computer built around
DEC Alpha RISC processors. The T3D is available in
sizes ranging from 32 to 2048 processors (PEs). The
memory architecture is physically distributed and log-
ically shared (globally addressable). The name of the
machine 18 derived from the the processor interconnect
network, which is a three-dimensional torus [3].

The T3D requires a frontend host computer system
to provide support for applications running on the T3D.
All applications written for the T3D are compiled on the
host system in MPP Fortran, Fortran 90, C or C4++4. The
host system also provides job scheduling and I/O control
for the T3D. Host systems include the CRAY Y-MP and
CRAY C90 series computers. The Arctic Region Super-
computing Center (ARSC) operates a T3D with 128 PEs
running at 150 Mhz and providing a peak speed of 19.2
GFLOPS. Each PE contains 8 MW (64 MB) of local mem-
ory, which provides 1 GW (8 GB) of globally addressable
physical memory. The host machine for the ARSC T3D
is a CRAY Y-MP M98 with 8 CPUS and 1 GW (8 GB)
of memory.

The T3D processors are dynamically divided into par-
titions which appear to the user as logically separate dedi-
cated machines, allowing multiple users to share the T3D.
The number of processors allocated in a partition must
be a power of 2. T3D jobs are initiated on the host sys-
tem and may be run interactively or using batch queues.
To run a T3D job, the host runs a process called mppezec
which spawns an agent process on the host for each PE in
the partition and then loads the T3D executables. These
agents provide the control and I/0 interface for the T3D
through the frontend host.

3 AVS Overview

In order to understand how AVS can be adapted to
run on the T3D, it is necessary to review the basic struc-
ture of AVS. AVS employs a distributed dataflow architec-
ture which allows simulation models to be incorporated
into visualization applications. The network paradigm
employed by AVS lends itself extremely well to hetero-
geneous computations where, for example, a simulation

CUG 1995 FallProceedings 111

model might be executed on a supercomputer while the
visualization and control of the model parameters and vi-
sualization of the model output is performed either locally
or remotely on a workstation.

The AVS structure embodies the principles of modular-
ization, abstraction, and information hiding. The package
1s composed of modules written in C and FORTRAN] each
of which performs a specific function. Using these build-
ing blocks, AVS users can interactively construct their
own visualization applications by combining modules into
executable dataflow networks. The modules in the net-
work may be executed locally on the same machine which
is hosting the AVS application, or they may be executed
remotely on a different machine.

AVS includes several hundred supported modules or-
ganized into module libraries. The system is extensible
and users may generate new modules using the Module
Generator. The International AVS Center (TAC) main-
tains an archive of contributed modules which may be
downloaded to augment the standard libraries.

We propose to extend the scalability and applicabil-
ity of AVS by producing an environment for the creation
and execution of AVS modules on the CRAY T3D paral-
lel supercomputer. This environment will allow users to
create AVS modules for the T3D which can then be in-
corporated in standard AVS module libraries for general
usage. For the user of these libraries, access and use of the
T3D is nearly transparent. The appropriate T3D module
icon from the module library is simply connected into the
AVS dataflow network. If the AVS application is hosted
on the T3D frontend, typically a Y-MP, the module will
be a local module, otherwise it will execute remotely on
the T3D frontend. In either case, the AVS module will
provide the user interface and execution control for the
T3D code.

This requires the porting of key AVS modules that can
fully utilize the computational power of the T3D. For ex-
ample, volume rendering of large 3D data sets, such as
environmental or MRI data can consume hours of CPU
time. Using the parallel processing power of the T3D, it
is possible to render large volumetric data sets interac-
tively in seconds or less. Such a renderer opens the pos-
sibility of creating powerful new learning and diagnosis
tools using high performance computing and networking.
Other examples are image processing, and iso-surface gen-
eration. Many computationally important AVS modules
have been identified and will be ported to the T3D and
be made available to the public through the TAC.

3.1 AVS Kernel

The AVS kernel is a proprietary product of AVS, Inc.
The kernel controls the execution and communication of
AVS modules. The machine which hosts the kernel for
an AVS application is the local host and all modules in a
AVS network running on that machine are local modules.

112 CUG 1995 FallProceedings

Modules in an AVS network which execute on a machine
other than the one where the kernel resides are remote
modules.

The kernel also provides the user interface to sev-
eral AVS subsystems,; including the Image Viewer, Graph
Viewer, and Geometry Viewer. These subsystems are
used to display bit-mapped images, plots and contours,
and three-dimensional geometries, respectively. In addi-
tion, the kernel provides the interface for the Network
FEditor, which is used to construct AVS networks. Like
the AVS modules, the AVS kernel has been ported to
many workstations and mainframes, including the CRAY
Y-MP.

3.2 AVS Modules

Modules are the computational units in an AVS
dataflow network. AVS applications are created by con-
necting modules from several extensive libraries to per-
form the desired visualization functions [4]. There are
four types of modules in AVS: (1) input, (2) filters, (3)
mappers and (4) output. A module may have one or more
ports, through which it is connected to other modules in
the network. The ports have data types associated with
them and connections between ports represent the flow of
data in the network.

Most modules also have control panels which allow pa-
rameters to be set for each instance of a module. The pa-
rameters on a module control panel can be assigned values
interactively, through command line scripts, or by assign-
ing them to ports which are connected to other modules
in an AVS network.

Another convenient feature of AVS is that it supports
the execution of modules on remote AVS hosts of het-
erogeneous hardware types. Multiple hardware types are
possible because the network communication and data
transfer mechanism between the AVS kernel (see be-
low) and the remote module are based on standard Unix
TCP/IP network protocols and the data representation is
based on Sun’s External Data Representation (XDR) [5].

Remote module execution involves three aspects: re-
mote system requirements; the local hosts file that AVS
uses to locate remote modules; and the AVS Network Ed-
ttor user interface to remote modules. Remote modules
cannot be part of the AVS kernel and must be compiled
and linked on the remote machine. On the local system
the AVS kernel refers to the hosts file to locate remote
module host names and directories. The Network Editor
1s used to access remote modules from the local machine
by selecting the desired remote host and modules from
the Module Tools menu. The module icon for a remote
AVS module is identified in an AVS network by coloring
the module control button pink.

AVS INCLUDE FILES
MODULE INCLUDE FILES
MODULE GLOBAL VARIABLES

MODULE DESCRIPTION FUNCTION()
PORT DEFINITIONS
PARAMETER SPECIFICATIONS
ADDITIONAL MODULE SPECIFICATIONS

COMPUTE FUNCTION()

MODULE COMPUTATIONAL CODE

MODULE INITIALIZATION FUNCTION()

MODULE INITIALIZATION CODE

Figure 1: AVS Module Template

3.3 Module Generator

One of the most powerful tools in AVS is the Module
Generator, which allows an AVS user to create new AVS
modules through a point and click GUI. The Module Gen-
erator creates a wrapper for user code and supplies the
data structures, communications and control required for
modules to function in an AVS network. Presently there
are variations of the Module Generator which allow mod-
ules to be created in FORTRAN, C, and C++ [6][7].

Figure 1 shows the template for a module created by
the Module Generator. Modules may be edited, compiled
and debugged using the Module Generator environment,
or a template may be generated and modified as desired
using standard compilation procedures. The template in-
cludes three functions which are used to define a module.
These are: (1) the description function, (2) the compute
function, and (3) the initialization function. These func-
tions contain the actual code which is executed by the
AVS executive when a module is connected and executed
in an AVS network.

The description function contains calls to AVS kernel
routines which define the name and type of the module,
the specifications for the ports and control panel parame-
ter widgets for the module and the names of the compute
and 1initialization functions for the module. The initial-
ization function contains code which is executed when an
instance of a module is first loaded into a network. The
compute function contains the actual executable code for
a module. The arguments to the function consist of the
module parameters, whose values are read from the con-

trol panel, and pointers to the data structures correspond-
ing to the ports on the module. The compute function
is called whenever the AVS executive “fires” the module
during the execution of a network.

4 T3D Modules

In order to create modules for T3D execution, we first
create a Y-MP module in the format shown in Figure 1
using the Module Generator. This module will provide
the AVS interface to the T3D though a process running
on the Y-MP frontend. The compute function of this
Y-MP module will spawn a T3D process to perform the
actual computations. The Y-MP compute function will
also communicate parameter values and data as required
to and from the T3D process. The Y-MP module may be
created in any of the Y-MP programming environments
supported by the Module Generator, including C, C++
or Fortran.

The T3D process, on the other hand, must be imple-
mented in the programming environments available on
the T3D. These environments include MPP Fortran, For-
tran 90, C, and C++. Figure 2 summarizes the relation-
ships between the processes which run cooperatively on

the Y-MP and the T3D.

5 T3D/Y-MP Communication

A variety of techniques may be used to exchange in-
formation between the T3D and the frontend host. The
best technique to use depends on the amount and type
of data to be exchanged. Both machines employ 64 bit
processors, but they use different floating point formats.
Thus, format conversion becomess a concern when ex-
changing floating point data. The available methods by
which the T3D can communicate to the frontend are: (1)
files, (2) Parallel Virtual Machine (PVM) messages, (3)
process memory tables, and (4) Unicos signals. The ap-
plicability of each of these techniques is discussed below
and is summarized in Figure 3.

Files are the easiest interface to implement, but also
the slowest. All data types can be exchanged between
any of the programming environments using ASCII files.
But the transfer rate using formatted I/O between the
T3D and the Y-MP frontend was only about 25 KB/s in
tests we conducted by sending a file of image data from
the T3D to the Y-MP. If performance is important (as
it usually is) then file I/O can only be considered when
exchanging very small amounts of data.

PVM messages are much faster than file I/O and al-
low all data types to be exchanged. The price for the
speed of PVM is the additional programming required to
implement the PVM message encoding, decoding and ex-
change of the messages. Since PVM has become one of
the defacto standards in parallel processing, this type of
communication 1s quite portable and even allows the T3D

CUG 1995 FallProceedings 113

CONTROL PROCESS ON Y-MP

COMPUTE PROCESS ON T3D

PROVIDES AVS INTERFACE

CONTROLS T3D PROCESS

SENDS PARAMETERS & DATA TO T3D

RECEIVES T3D OUTPUT
CREATED BY MODULE GENERATOR

WRITTEN IN C OR FORTRAN 77

PERFORMS COMPUTATIONS

CONTROLLEDE?&—MP PROCESS
RECEIVES DATA & PZRiAiMETERS FROM Y-MP
SENDS OU?I;;T TO Y-MP
T3D DEVELOPMEE ENVIRONMENT

WRITTEN IN C OR MPP FORTRAN

Figure 2: Comparison of Y-MP and T3D AVS processes.

FILES

e FEasy

e All Data Types

¢ Slow (25KB/SEC)

PVM MESSAGES

e Portable

e All Data Types

o Moderate Speed (2MB/SEC)

PROCESS MEMORY FILES
o Integer Data Only
e Fast (50MB/SEC)

UNICOS SIGNALS
e Semaphores

e Fast (0.01 SEC)

Figure 3: T3D/Y-MP communication techniques.

114 CUG 1995 FallProceedings

to exchange messages directly with hosts other than the
frontend (although the messages still pass through the
frontend agent). Using PVM we have obtained I/O rates
between the T3D and Y-MP frontend of approximately 2
MB/s.

The fastest way to exchange data between the T3D and
the Y-MP is through the use of the process memory file
system, which gives users access to the address space of a
running process. This file system consists of files named
/proc/nnnnn, where nnnnn is a process ID formatted in
decimal. Each file contains the address space of the pro-
cess it represents. Process files may be read and written
using the C system I/O routines open, lseek, read, and
write. Reads and writes to a process file perform reads
and writes on the address space of the process involved.
By exchanging pointers to their data areas, processes on
the the T3D and Y-MP are able to read and write di-
rectly into each other’s memory. No data translation is
performed, but library routines are available for convert-
ing between the floating point formats. In our tests in-
volving the exchange of integer data, the transfer rate
was about 50 MB/s. This is clearly the method of choice
when megabytes of data must be rapidly exchanged.

The final form of communication between the T3D
and the frontend host is Unicos signals. Signals are
semaphores which allow a single bit of data to be ex-
changed and are primarily useful for synchronization of
processes on the T3D and the frontend. The execution
time for a signal between the T3D and the Y-MP is on
the order of 10 milliseconds.

6 Mandel Module

As an example of a T3D AVS parallel module, we de-
veloped a module which calculates the image of a man-
delbrot set. The image is based on the iteration

_ 2
Zit1 = z; + ¢,

Figure 4: T3D mandel module in AVS network.

where z and ¢ are complex and zg = 0. The values of ¢
in the complex plane for which z, is bounded as n — oo
form the interior of the set. The limit can be determined
computationally because it is known that if |z,| > 2, then
Zn — 00. An image of the mandelbrot set is created by
assigning the pixels in the image to a region in the com-
plex plane. Each pixel corresponds to a particular value
for ¢ for which the iteration is performed until |z,| > 2
or an iteration limit is reached. Exterior points which are
distant from the set boundary diverge most rapidly, while
points in the interior reach the iteration limit. Complex
and colorful images of the set are obtained by using the
iteration count for each pixel as an index into a color map
for the pixel.

6.1 AVS Interface

The mandel module we developed has one output port
which returns the computed mandelbrot set as an AVS
byte image. The module can be connected into an AVS
network as shown in Figure 4. The generate colormap
and colorizer modules are used to assign a colormap to
the image generated by mandel and displayed using the
display image module.

The control panel for the mandel module is shown in
Figure 5. The slider widgets set the value of ¢ in the center
of the image where ¢ = # 4 ty. The size of the image in
the complex plane is controlled by the zoom widget. The
zoom factor causes the mandelbrot set to be magnified by
2M where M is the zoom factor. For M = 0, each side
of the image is 2 units in the complex plane.

An image of the mandelbrot set produced by the man-
del module is shown in Figure 6. This 512x512 pixel im-
age requires that the iteration be performed on each of

Figure 5: Control panel for T3D mandel module.

Figure 6: Image from mandel module on T3D.

CUG 1995 FallProceedings 115

the 256K pixels in the image for a total operations count
of slightly more than 1 billion floating point operations.

Figure 7 shows the execution output from the man-
del module using 8PEs. The output shows the input
parameters that are passed to each PE, followed by the
completion messages from each PE including the number
of floating point operations (FLOPS) performed by each
PE, the execution time and the resulting MFLOPS per
second. For this run, the mandelbrot computation re-
quired 3.9 seconds, which gives 265 MFLOPS per second,
or 33 MFLOPS per second per PE.

Note that the processor loads in Figure 7 are balanced
almost perfectly through the use of MPP Fortran data
and work sharing in this implementation. Since there is
essentially no interprocessor communication, the run time
scales linearly with the number of PEs. Using 32 PEs, the
execution time can be reduced to less than one second,
which equates to a speed of just over 1 GFLOPS per sec-
ond. The details of the mandel module implementation
are discussed in the following two sections.

6.2 T3D Process

The T3D process for the mandel module is imple-
mented in MPP Fortran [1] using the data sharing and
work sharing models. These models automatically dis-
tribute data and loop computations among the available
processors and eliminate the need for explicit message
passing.

The T3D process receives its input parameters X, Y,
and ZOOM, from a file written by the Y-MP process prior
to calling the T3D process. Since this file consists of only
one short line containing the three parameters, the 1/0O
time required is negligible.

The declarations and computational loop for the T3D
process are shown in Figure 8. The 512 x 512 shared array
PIX is used to store the iteration counts for each pixel in
the image. The SHARED directive for this array tells the
compiler to distribute the array over the PEs such that
successive elements are stored in successive PEs, modulo
N, where N is the number of PEs.

The DO SHARED directive preceding the iteration loop
tells the compiler to assign the iterations of the nested
loops with indices J and K to the PEs where PIX(J,K)
is stored. This guarantees that the mandelbrot iteration
for PIX(J,K) will be performed on the same PE where
PIX(J,K) is stored. FLOPS is also a shared array and is
used to keep track of the operation counts performed by
each PE. The intrinsic function MY_PE() is used to obtain
the PE number, which is stored in the private variable ME
for indexing the FLOPS array.

Since the mandelbrot iteration diverges rapidly for ex-
ternal points away from the boundary of the set and not
at all for internal points, the amount of computation to
be performed varies greatly according to the position of
a pixel in the image. Since the iteration for each pixel is

116 CUG 1995 FallProceedings

PROGRAM MANDEL

PARAMETER (IX=512)

PARAMETER (IY=512)

PARAMETER (MAXPE=128)

COMPLEX Z, C

REAL TIME, X, Y, ZFACX, ZFACY, ZSQR
INTEGER ME, I, J, K, COUNT, ZOOM
INTEGER PIX(IX,IY),FLOPS(MAXPE)
COMMON /SHARED/PIX,FLOPS

CDIR$ SHARED PIX(:BLOCK(1),:BLOCK(1))
CDIR$ FLOPS(:BLOCK(1))

INTRINSIC MY_PE

C Initialize PE# and FLOPS counter
ME = MY_PE()

FLOPS(ME+1) = 0

CDIR$ DOSHARED (J,K) ON PIX(J,K)
DO 200 J = 1, IX
DO 100 K = 1, IY
COUNT = 0
Z = (0.0,0.0)
C CMPLX (X + (J-1-IX/2)*ZFACX,
Y + (K-1-IY/2)*ZFACY)
C Mandelbrot iteration
DOI =1, 1023
Z =2Z*xZ + C
ZSQR = REAL(Z)**2 + AIMAG(Z)*%2
COUNT = COUNT + 1
IF (ZSQR .GT. 4.0) GO TO 10

END DO
10 PIX(J,K) = COUNT/4
FLOPS(ME+1) = FLOPS(ME+1) + COUNT#10 + 4

100 CONTINUE
200 CONTINUE

Figure 8: MPP Fortran code for mandel module

mandel_compute: (cx,cy) = (-0.509259, 0.000000), zoom = O

T3D: (CX,CY) = (-0.50925900000000002,0.), ZOOM =0

T3D: (CX,CY) = (-0.50925900000000002,0.), ZOOM =0

T3D: (CX,CY) = (-0.50925900000000002,0.), ZOOM =0

T3D: (CX,CY) = (-0.50925900000000002,0.), ZOOM =0

T3D: (CX,CY) = (-0.50925900000000002,0.), ZOOM =0

T3D: (CX,CY) = (-0.50925900000000002,0.), ZOOM =0

T3D: (CX,CY) = (-0.50925900000000002,0.), ZOOM =0

T3D: (CX,CY) = (-0.50925900000000002,0.), ZOOM =

PE 0 done: 129114612 FLOPS, 3.87 sec, 33.363 MFLOPS/SEC
PE 4 done: 129224232 FLOPS, 3.87 sec, 33.366 MFLOPS/SEC
PE 2 done: 129111942 FLOPS, 3.87 sec, 33.354 MFLOPS/SEC
PE 6 done: 129111942 FLOPS, 3.87 sec, 33.354 MFLOPS/SEC
PE 3 done: 129083902 FLOPS, 3.87 sec, 33.354 MFLOPS/SEC
PE 7 done: 129083902 FLOPS, 3.87 sec, 33.354 MFLOPS/SEC
PE 1 done: 129189202 FLOPS, 3.87 sec, 33.365 MFLOPS/SEC
PE 5 done: 129251952 FLOPS, 3.87 sec, 33.366 MFLOPS/SEC
TOTALS: 1033.172 MFLOPS in 3.89 sec = 265.447 MFLOPS/SEC
mandel_compute: xsize = 512, ysize = 512, maxpix = 255

Figure 7: Execution output from T3D mandel module using 8 PEs.

performed on the PE where the pixel is stored, the dis-
tribution of the pixel array controls the PE assignments
and hence the load distribution for the PEs. By assigning
successive elements of the array to succesive PEs, every
PE processes a subset of the pixels which is uniformly
distributed over the entire image. This accounts for the
nearly perfect load balancing observed in Figure 7.

When the computation loops on all PEs have finished,
PE 0 writes the entire pixel array into the Y-MP process
memory table using the MPP Fortran callable versions of
the C language I/O functions open, seek, and wrile.

6.3 Y-MP Process

The Y-MP process for the mandel module was de-
veloped in C using the standard AVS Module Generator.
This module follows the outline of the template shown in
Figure 1. The module description function which defines
the output port and control panel for the module was
created entirely by the Module Generator. The descrip-
tion function defines an output port for image data and
a control panel which controls two sliders for the (x,y)
coordinates of the center of the mandelbrot set and a dial
for the zoom factor.

The module compute function contains code which re-
ceives the module parameters from the control panel wid-
gets and writes a small file containing these parameters.
The compute function then executes a Y-MP system call
to initiate the T3D process. The T3D process reads the
parameter file created by the Y-MP process, computes a
mandelbrot image and returns the image to the Y-MP

process via its process memory file. The Y-MP then allo-
cates memory for a scalar byte field to hold the image and
copies the returned integer data into the field structure
for the output port.

The initialization function created by the Module Gen-
erator was used without modification.

7 VolRender Module

A module developed at ARSC performs real-time vol-
ume rendering of large 3D data sets, such as environmen-
tal or MRI data [8]. Using the parallel processing power of
the T3D, 1t is possible to render large volumetric datasets
interactively at a rate of several images per second, com-
pared to minutes or longer per image on other machines.
Such a renderer opens the possibility of creating powerful
new learning and diagnosis tools using high performance
computing and networking. For example, interactive MRI
images could form the basis for a virtual reality dissection
laboratory. The availability of such a tool on the national
network would also allow medical specialists to perform
analyses and consultations on high resolution MRI im-
ages which would otherwise be impossible. This level of
visualization complexity can only be achieved with the
fast generation of data provided by the T3D.

The VolRender module is shown in an AVS network
in Figure 9. The output from the module is an image field
which is displayed using the image viewer module. The
Y-MP and T3D processes for the VolRender module
are both written in C. The T3D process employs shmem

CUG 1995 FallProceedings 117

Figure 9: T3D VolRender module in AVS network.

message passing and communicates with the Y-MP via
process memory files.

Figure 10 is an example of a volume rendered CT im-
age from the Visible Human dataset[9]. Bone material
is white, muscle is red and softer tissues appear in yel-
low. The Visible Human dataset from which this image
was created consisted of 1800 slices with a resolution of
512 by 512 voxels per slice. At four bytes per voxel, the
complete head-to-toe dataset is about 1.8GB in size.

The VolRender module has a multilevel control panel
which allows interactive control of all 3D volume viewing
parameters, such as lighting, shading, color and trans-
parency. When VolRender is used with the display
tracker module, the view can be rotated, scaled and
translated interactively using the AVS mouse conventions
for viewing 3D objects. Using 64 PEs on the T3D, the
time to render the entire 1.8GB Visible Human volume
dataset from a new point of view is about 5 seconds.

8 Library Modules

Having laid the foundation for creating AVS modules
on the T3D, we are in the process of implementing se-
lected modules from the standard AVS library. Some of
the modules which are being implemented on the T3D
are: field math, interpolate, downsize, compute
gradient, fft, convolve, tracer, and volume render.
These modules are all computationally intensive and sev-
eral of them have also been succesfully optimized for vec-
tor execution on the Y-MP [10]. The parallel implemen-
tations for several of these modules are described in the
following sections. All of these modules are written in C.
The parallel versions use MPI[11] to perform the neces-
sary data distribution functions.

118 CUG 1995 FallProceedings

Figure 10: Visible Human image rendered by VolRender
module on T3D.

8.1 Field Math Module

A field is an AVS data type which stores generalized
multidimensional arrays. The field math module is used
to perform arithmetic and logical operations (4, -, *, /,
NOT, AND, OR, XOR, shift, square, square root, and
root-mean-square) on AVS fields. The inputs consist of
one or two fields of any type (byte, integer, float, dou-
ble) and size. Binary operations may be performed either
with a single field and a constant or between two fields of
the same size. If the types differ, bytes are promoted to
integers and integers, floats and doubles are converted to
doubles.

Because of the diverse data types involved and large
number of possible operators, the field math module
provides a good model for the conversion and exchange
of data that is required for AVS data types. The parallel
implementation uses data parallelism based on the owner
computes rule. After any necessary type conversions are
performed by the Y-MP process, the T3D process is called
and the input fields are transferred to the T3D master PE
using the process memory file. The master PE partitions
and distributes equal-size blocks of the input fields to the
other PEs using the MPI_Scatter function. The proces-
sors perform the required operation on their own blocks
in parallel and return the results to the master PE using
MPI_Gather.

The primitive nature of the operations performed by
the field math module makes it difficult to do enough
computation in a single T3D processor to justify the cost
of distributing the fields to the T3D processors. However,
the structure of the T3D field math module is applicable

to other modules which perform more intensive computa-
tions, as described below.

8.2 Interpolate Module

The interpolate module uses either point sampling or
bi/trilinear sampling to compute intermediate values to
change the size of a field. The input consists of any 2D or
3D scalar field of any type. The output is a proportionally
resized field matching the type and size of the input.

In the field math module, the operation performed
on each element of the field involves only a single element
and the MPI Scatter/Gather functions can be used to par-
tition the input fields into non-overlapping blocks, which
are distributed over the available PEs. In the interpo-
late module, the interpolation operators involve several
neighboring elements in the field. For this reason, each
PE must contain one or more extra rows and columns of
data surrounding the block of the field that is owned by
the PE.

As in field math, the input field is transferred from
the Y-MP to a master PE on the T3D. The master PE
then uses the MPI_Send function to distribute blocks of
the field with the necessary overlap to all the processors.
These blocks are received by the MPI_Recv function in
the slave processors. All processors perform interpolation
on their own blocks in parallel and then return the results
to the master PE using another pair of MPI_Send and
MPI_Recv calls.

8.3 Compute Gradient Module

The compute gradient module is used to compute
gradient vectors for 2D or 3D scalar byte fields. The
output is a field of the same dimension as the input, but
each field element is a 3D vector of floating point values
representing the gradient at that point.

The compute gradient module requires the imme-
diate neighbors of each point for which the gradient is
computed. Thus, each PE requires exactly one extra row
or column on every side of the block of elements to be cal-
culated. The data distribution scheme was implemented
using the MPI_Send and MPI_Recv functions in the same
manner as in the interpolate module.

9 Future Work

A major portion of our development effort for the mod-
ules which have been completed has been directed at
the communications interface between the Y-MP and the
T3D. This includes data conversion, exchange, and dis-
tribution, as well as process control. All of the T3D mod-
ules employ a data parallelism model based on the owner
computes rule. As we attempt to implement additional
modules from the AVS module library, we expect to de-
vote more effort to developing and benchmarking parallel
implementations for the algorithms which are employed

in modules such as fft, convolve, tracer, and volume
render.

In the future, our work will also address the creation
of new T3D application modules using AVS as the user
interface for the application. To accomplish this, we are
in the process of developing a Module Generator targeted
for the T3D. With this tool it will become possible to
quickly incorporate T3D code into an AVS module.

We intend to use the Module Generator to create T3D
modules for new modelling and visualization applications
on the T3D. In particular, we propose to adapt a large-
scale 3D reservoir model to the T3D AVS environment
using the proposed T3D Module Generator. This type of
model 1s one of the fundamental tools which the oil indus-
try in Alaska, and around the world, uses to model and
enhance petroleum production. However, the underlying
reservoir modelling technique is not limited to hydrocar-
bons and may also be applied to other subsurface flow
problems, such as groundwater contamination.

Another application of interest is the processing of syn-
thetic aperture radar (SAR) images from earth-orbiting
satellites. Production code is already running on the T3D
which performs the computationally expensive process of
calibrating and rectifying SAR i1mages so they may be
used in large area mosaics and combined with other satel-

lite imagery, such as LandSat and AVHRR [12].

10 Conclusions

Our experience has shown that it is relatively easy to
develop new AVS modules from T3D applications. In ad-
dition, AVS provides a powerful user interface for these
applications. Using the T3D, significant performance
gains are possible for existing modules relative to other
AVS platforms. The limiting factor is usually the speed at
which the AVS data can be transferred between the fron-
tend host and the T3D. In situations where the amount of
parallel computation to be performed is substantial, our
results indicate that the resulting speedups can be dra-
matic. Thus, execution of compute intensive AVS mod-
ules on the T3D appears to be an extremely promising
approach to the problem of harnessing the power of par-
allel computation.

11 Acknowledgments

Jon Genetti and Greg Johnson of ARSC participated
in the development and testing of the codes described in
this paper. Dan Katz of Cray Research assisted with the
implementation of the process file I/O between the Y-MP
and T3D.

This project was funded by Cray Research, Inc. and by
the Strategic Environmental Research and Development
Program (SERDP) under the sponsorship of the Army
Corps of Engineers Waterways Experiment Station.

CUG 1995 FallProceedings 119

References
[] Cray MPP Fortran Reference Manual, SR-2504 6.1,
Cray Research, Inc., June, 1994.

[2] Standard C Reference Manual for MPP, SR-2506 4.0,
Cray Research, Inc., June, 1994,

[3] CRAY T3D System Architecture Overview, HR-
04033, Cray Research, Inc., September, 1993.

[4] AVS Module Reference Manual, Release 5, Advanced
Visual Systems, Inc., February, 1993.

[8] AVS User’s Guide, Release 4, Advanced Visual Sys-
tems, Inc., May, 1992.

[6] AVS Developer’s Guide, Release 4, Advanced Visual
Systems, Inc., May, 1992.

[7] Jiang, T. Ming and Sarnowski, Beata, “C++ Mod-
ule Generator for AVS,” AVS ’94 Conference Pro-
ceedings, pg 186-198, April, 1994.

[8] Johnson, G. and Genetti, J., “Medical Diagnosis us-
ing the CRAY T3D,” Proceedings of the 35th Semi-
annual Cray User Group Meeting, pg 70-77, March,
1995.

[9] The Visible Human Male Dataset, Visible Human
Project, National Library of Medicine, Bethesda,
MD, 1995.

[10] Woys, K. and Roth, M., “AVS Optimization for
CRAY Y-MP Vector Processing,” Proceedings of the
35th Semi-annual Cray User Group Meeting, pg 78-
89, March, 1995.

(11] Clarke, L.,“The MPI Message Passing Standard on
the CRAY T3D,” Edinburgh Parallel Computing
Centre, University of Edinburgh, 10pp, 1994.

{12] Logan, T., “Terrain Correction of Synthetic Aper-
ture Radar Imagery Using the CRAY T3D,” Pro-
ceedings of the 35th Semi-annual Cray User Group
Meeting, pg 268-274, March, 1995.

120 CUG 1995 FallProceedings

