

CUG 1995 Fall

 Proceedings

131

PARAVOL: Parallel Volume Rendering for
Virtual Medicine

Roni Yagel

, Department of Computer and Information Science, The
Ohio State University, Columbus, Ohio;

Don Stredney

, The Ohio
Supercomputer Center, Columbus, Ohio;

Gregory Wiet

, Department of
Otolaryngology, The Ohio State University Hospitals, Columbus,
Ohio; and

Asish Law

, Department of Computer and Information
Science, The Ohio State University, Columbus, Ohio

ABSTRACT:

PARAVOL is a system under construction that combines software and hardware
renderers. The system consists of the

Fuzzy-Set Renderer

(FSR),

 which runs on a Silicon
Graphics Reality Engine, and the

Active Ray-Tracer

(ART),

 which runs on the Cray T3D. FSR
utilizes hardware-based texture mapping to deliver real-time, medium quality, volume rendered
images. It is geared mainly to provide a navigation aid and a tool for preliminary data explora-
tion. Interaction is multisensory, combining various input devices and future haptic feedback.
Rendering parameters are passed from the FSR front end to the ART renderer. It is based on a
ray-stacking mechanism that supports latency hiding by postponing computation on inactive
rays. It optimizes memory usage and utilizes a cache-only-memory organization to achieve high
quality rendering while demonstrating linear speedup.

1 Introduction

Volume-based systems are becoming attractive as
processing power and memory capacity of today’s systems
approach a critical mass. From virtual surgery planning to
concurrent design, volume-based design has the potential to
greatly enhance the capabilities of surgeons and engineers.
However, processing speed and data size requirements call for
the use of either a hardware-based solution or a multiprocessing
approach. In this paper, we report on our efforts in both of these
directions and describe a system that will integrate them.

Speed and data size are two of the most important reasons
that parallel computers have become inevitable for real-time
rendering and animation of volumetric models. During an
animation process, several images are generated by repeatedly
rendering the scene. In each frame, either some objects in the
scene change their positions or the viewer changes his position
or viewing direction. Such animations have prevalent applica-
tions in the field of realistic rendering, science, and medicine.
For example, medical data obtained from MRI (Magnetic Reso-
nance Imaging) are good sources for volume visualization [12].
Because of the enormity of the data and, consequently, the time
needed to generate each image, employing a uniprocessor for

the task of rendering numerous animation frames often
becomes infeasible.

1.1 3D Rendering

Our goal is to render a 3D model, residing in

object-space,

on a 2D

image-space

, the screen. We distinguish between two
types of models

−

 surface and volume. Surface models repre-
sent 3D scenes with surface patches such as polygons (Figure
1). A

volume

 is a regular 3D grid of

voxels

. A voxel is the 3D
equivalent of the 2D pixel. Figure 2 shows a volume made up
of 8

×

6

×

5 voxels, each of size 1

×

1

×

1. Each voxel is character-
ized by its position in the 3D grid, and may have a color and
opacity associated with it. Some sources of such voxel-based
volumes are MRI, confocal microscopy, 3D simulated data, and
synthetic 3D models.

There are two main approaches to volume rendering: ray
casting and splatting. In ray casting, rays are cast into the object
space through the screen pixels (see Figure 2) [17]. For each
ray, the volume is sampled at regular intervals along the ray.
The values of the samples (color and opacity) are composited
from front to back until either the composited opacity becomes
unity or the ray exits the object space. The composited color of
the ray is the final color of the screen pixel. Our ART algorithm
for the Cray T3D is a ray caster.

132

CUG 1995 Fall

 Proceedings

The second approach to volume rendering is splatting [23],
by which the rendering algorithm scans the volume from back to
front; it starts at the voxel farthest from the eye (the black voxel
in Figure 2) and scans the whole volume, ending at the voxel
closest to the eye (the striped voxel in Figure 2). Each voxel is
drawn to the screen as a small cloud, simulating the distribution
(splatting) of the voxel’s intensity onto a neighborhood of pixels.
Our FSR uses texture-mapping hardware to implement a varia-
tion of the splatting algorithm.

1.2 Parallel 3D Rendering

Various approaches exist to parallelize the process of 3D
rendering. At one extreme, the size of the entire model is small
enough to be replicated at each node. The screen is divided into
a number of segments, the number being equal to the number of
processors. Each processor is assigned the responsibility to
generate the final image for one of these segments. In this
method, no data communication is needed to generate the final

Figure 1: A 3D surface model projected onto an 8×8 screen. Only
one ray is shown in the figure.

2D Screen
(8×8 pixels)

3D Surface Model

Figure 2: A 3D surface volume model consisting of 8×6×5 voxels.
The model is projected onto an 8×8 screen. The dark circles along
the ray show the sampling points of the volume along the ray.

3D Volume
(8×6×5 voxels)

Voxel
(1×1×1)2D Screen

(8×8 pixels)

image, because all the objects that may be needed to generate the
respective image segments are available at the local memory of
each processor. Here we have ignored the communication
required to display the final image. This approach is referred to
as

 parallel rendering with no dataflow

.

At the other extreme, the total memory in the entire parallel
system may be just enough to hold a single copy of the 3D
model, leading to no data replication. Two different approaches
are generally taken in such cases: the

ray dataflow

 approach, or
the

object dataflow

 approach. In the former, the model is broken
up into several partitions, and each of the partitions is statically
assigned to a processor. During rendering, several rays are initi-
ated in parallel by some processors. As the rays traverse through
different volume partitions, they are accordingly passed to the
respective processors. The receiving processors, in turn,
continue tracing the ray for the part of the volume available
locally and then either pass the ray to some other processor to
continue tracing the ray or return the final value of the ray to the
processor that initiated this ray. Proper partitioning of the
volume and proper assignment of these partitions to the proces-
sors are essential for exploiting spatial and temporal coherency.
Some examples of such an approach can be found in [1][3][6].

In the object dataflow approach (for example [9] [13] [14]
[16] [20]), the 3D scene is partitioned similar to the partitioning
in the ray dataflow approach. In addition, the screen is also parti-
tioned and assigned to the processors. During the rendering
stage, the processors cast rays for the screen segments assigned
to them. For each ray, a processor fetches from other processors
the data that are not available locally but are required to
complete tracing the ray. For the first few rays, almost all the
data must be fetched and cached locally, but subsequent rays
take advantage of spatial coherence, so that most of the data that
were fetched for the previous rays are also needed (and are avail-
able) for the current ray. With a local cache of considerable size,
temporal coherence (between frames in an animation sequence)
can similarly be exploited, so that almost all the data that are
required for one frame are available in the local cache to
generate the next frame.

For the object dataflow approach, several factors affect the
performance of the system. First, the allocation scheme of the
scene (data) partitions plays an important role: if processors are
assigned partitions in a static manner, then all the demand-driven
fetches will be placed in the local cache. These fetched data are
likely to be removed, depending on some cache replacement
policy. The amount of coherency that can be exploited depends
mainly on the size of the cache. A small cache may not be able
to take advantage of even ray-to-ray coherence, while a large
cache may exploit even frame-to-frame coherence. The size of
the cache line determines how much data is transferred for each
request. As each processor potentially tries to send some data to
every other processor, the cache line and the initial data alloca-
tion influence the amount of congestion that can arise in the
network. Therefore, the algorithm should be designed to utilize
the cache as efficiently as possible.

CUG 1995 Fall

 Proceedings

133

The underlying architecture also has a significant effect on
the performance of object dataflow parallel rendering methods.
If the architecture uses a shared (or distributed shared) memory,
then the complete volume can be considered as shared data
among all the participating processors, and non-local data are
fetched using fast, hardware-based reads. This mechanism
requires the existence of directories to track down the owning
processor of the data. Hardware-based centralized and distrib-
uted schemes are two popular ways to implement the directories.
On the other hand, no notion of shared data exists if the under-
lying architectural model supports only a distributed memory
organization. The required data must be fetched using explicit
user-level message passing protocols in software, and the user
has to define all the synchronization mechanisms within the
rendering program.

For all these approaches, several issues must be considered
while designing a parallel system. Some of the more important
issues are load balancing, network congestion, parallelization
overheads, coherency exploitation, algorithm embedding, and
suitability to general-purpose parallel computers.

The design of PARAVOL includes an interactive front-end
that allow users to interact with the volume model in real time
and a back-end parallel rendering that produces higher quality
images in interactive rates (but not real time). In the next section
we describe the real-time, front-end FSR algorithm. In Section 3
we describe the robust back-end ART algorithm. We describe, in
Section 4, one of the applications we are exploring on the system

−

endoscopic sinus surgery. We conclude, in Section 5, with a
short summary of our work.

2 The Fuzzy Set Renderer (FSR)

We have developed a visual interface using splats [23] that
can produce frame rates up to 20 Hz using an SGI ONYX/RE.
This same system produces graphics at a rate of 12Hz using an
SGI CRIMSON/RE.

The

Volume Splatter

 relies on the notion of

 fuzzy voxel set,

which consists of a subset of the volume’s voxels. For each
voxel in the original volume we evaluate a transfer function

, where

∇

and

ρ

are the gradient and the
density of the given voxel and,

t

 is the inclusion criterion. We
include a voxel in the

fuzzy set

if it has a large enough

t

 value
(above some user-defined threshold). Note that if we pick

F

to
be a projection onto the second coordinate,

ρ

, we do merely
thresholding on the density. We name each voxel passing the

F

threshold a “

splat

”. The idea of fuzzy voxel set is similar to

semi-boundaries

 and

shells

 used by [22]. However, unlike
previous methods, which choose the voxels for the set by
segmentation methods, our approach chooses the voxels to be
included by their contributions to the final image. This process
which effectively rejects all the voxels that contribute little or
nothing to the final image, greatly reduces the burden placed on
the rendering pipeline.

The resulting subset of voxels, the fuzzy set, is ordered in the
same fashion as the original volume: we hold slices of splats,

F: ∇ ρ,() t→

where each slice contains rows of splats. The only difference is
that the number of elements (splats) in each row may not be
equal. Each row of splats is a sparse vector of original voxels;
thus, for each splat in a row, we maintain its position in 3D
space. In addition, we maintain the normal at each splat, which
we calculate based on the information in all its twenty-six adja-
cent voxels.

The volume splatting algorithm takes as input a fuzzy set. The
algorithm traverses the fuzzy set in a back-to-front order. For
each member of the set it renders a rectangle facing the viewer,
textured with a splat texture. The splat texture contains an image
of a fuzzy circle, with opaque center and transparent circumfer-
ence. Various functions can be used to govern the decay of
opacity in this circle of influence, and we use a Gaussian func-
tion [23]. We also implemented a faster version of the rendering
algorithm in which, instead of rectangles, we render enlarged
points on the screen. These points have constant opacity and,
therefore, generate images with some visible artifacts; however,
because points are very simple graphic primitives, this method
supports higher rendering speeds.

We control the material properties of the splats; however, for
reasons of speed, we vary only opacity and diffuse reflection of
the material for each splat. We define multiple light sources
(infinite and local) and use the GL light routines to shade the
splats. Transforming the rectangles, scan-converting the
textured rectangles, and compositing colors and opacities are
performed by the SGI graphic hardware.

2.1 Performance

Our renderer is composed of two processes, one that performs
some preprocessing and one that renders. The general design of
the renderer borrows some of the ideas in Iris Performer [19].
However, while Performer operates in three phases

−

 traversal,
culling, and rendering we have only two

−

 culling and rendering.
Our culling phase is a little more complex than Performer’s.
Most of the polygons in a standard Performer scene are indepen-
dent of the viewer’s eye point. Only in special cases (e.g., bill-
boards) does Performer rotate polygons to make them face the
viewer. In our case, all the polygons (splats) must face the
viewer. In orthographic viewing we create all the viewer-facing
polygons by translating a single polygon around the volume.
Therefore, during the culling phase, we do not treat a fuzzy set
as a stream of independent splats but as a geometric structure
with some regularities.

For culling, we hold our splats as sparse vectors aligned with
the original volume major axis. We cull splats by culling every
such sparse vector. This operation reduces the complexity of the

problem from

n

3

 to

n

2

log

n

. The

log(n)

 term comes from a binary
search for the sparse vector location where clipping occurs. The
output of the culling process is a display list containing all the
information for the most rapid rendering of an image. Our render
task takes this display list and renders it.

We run our splat renderer on a multiprocessor Onyx with
Reality Engine graphic hardware and a single Raster Manager

(RM) board. Extracting a fuzzy set out of a 128

3

 volume takes

134

CUG 1995 Fall

 Proceedings

≈

60 seconds. Depending on the choice of splat threshold, we
can control the resulting number of splats in the fuzzy set. For a
fuzzy set with 50,000 splats lighted by four light sources at
infinity, we get render rates of about twenty frames per second
for point splats and about seven frames per second for textured
rectangular splats. Although initialization must be repeated
whenever the user changes the transfer function or loads another
dataset, for many visualization operations involved in data
exploration FSR provides very attractive rendering speed.

2.2 Discussion

Several drawbacks exist. First, the renderer relies on prepro-
cessing to reduce the number of fuzzy voxels. If all the object is
rather transparent, namely, most voxels contribute to the final
image, the performance of this algorithm will greatly degrade.
Moreover, the speed we achieved is based on simplifications in
the illumination procedure. The transfer function is precomputed
and cannot be changed in real time. Some advanced rendering
features such as reflections are not possible. Various operations
on light sources, colors, and material attributes are limited.

Also, we developed a volume deformation algorithm [15] that
will allow us to simulate, for example, surgery-specific opera-
tors. This algorithm is based on deforming the sight ray used to
render the volume. FSR, which is based on splatting (rather than
ray casting) cannot incorporate these techniques.

We, therefore, need to implement a software-based algorithm
that will place no limiting conditions on the rendering procedure.
The only way to achieve some reasonable throughput from such
an algorithm is through a parallel implementation. In the next
section we describe our active ray tracing (ART) algorithm and
its Cray T3D implementation.

3 The Active Ray Tracer (ART)

We adopted an object dataflow approach to parallel rendering
on a distributed memory machine. The screen is divided into
several regions, which are assigned to the processors in a cyclic
manner. The object space is partitioned into equal-sized cells
containing the objects in the 3D scene. For example, when we

render a 128

3

 volume, we may divide it into (4096) cells, each
of size 8

×

8

×

8

×

 voxels. Each processor maintains the local status
of all cells in the 3D space. If a cell is available locally, its status
is

valid

; otherwise it is in an

invalid

 state. A processor can use
only those cells whose status is marked

valid

.

Each processor keeps track of a random, disjoint subset of the
cells in a data structure called the

 directory

. The processor
records in the directory the list of all processors holding a copy
of the cells. The randomization process alleviates hot-spotting at
specific nodes. The processor holding the directory is referred to
as the

home node

for these cells. Each cell has a home in exactly
one processor. Whenever a cell is unavailable locally, a request
is first passed to the home node of that cell. The home node
searches its directory to determine the node closest to the
requesting node that has a copy of the requested cell. It then

instructs that processor to send a copy of the cell to the
requesting processor.

During the rendering stage, a processor is responsible for
generating the image of the assigned screen regions only. All the
rays to be traced are queued up in a

ray stack

. The processor
starts tracing the rays at the top of the stack. Each ray is
advanced through the 3D space as long as all the cells along its
way are available locally. If the progress of a ray is interrupted
because of unavailability of a cell, the ray becomes

inactive

 and
is therefore put back in the stack. At the same time, a request is
sent to the home node of that missing cell. The processor then
searches in the stack for an active ray, that is, a ray that was
waiting for some data that has already arrived. The algorithm
repeatedly scans the ray stack until an active ray is found (in
which case it is traced) or until the stack becomes empty (in
which case the algorithm moves to generate the next frame). In
the case of recursive ray tracing, a special illumination model
has to be formulated to support this model of stopping the
processing of one ray while computing another [24].

Now we describe how the cell requests are handled in this
distributed directory parallel renderer. The information corre-
sponding to each cell in the directory is a list of all processors
that have a copy of the cell. No state information is needed,
because the cells are always read-only. This assumes that the
animation takes place by altering the viewing parameters only
(position and direction of the screen)

 −

the objects do not move
in the scene. Such animations are prevalent in computer graphics
and scientific visualization. The handling of the more general
case, in which objects are allowed to move, is also possible and
is currently under investigation.

Five kinds of messages are used to maintain the directories.
The first three correspond to a cell request, while the last two are
used for cell invalidations.

1.

RQST

: This message is used for requesting a cell not avail-
able locally. The requesting processor passes the request for
the cell to the home node. The home node, upon receiving this
request, traverses its directory looking for the processor closest
to the requesting processor that holds a copy of the requested
cell.

2.

FRWD

: The home node forwards the request to the closest
processor, instructing it to pass the requested cell to the re-
questing processor. Upon receiving a FRWD message, a pro-
cessor sends the appropriate cell (a DATA message) to the
requesting processor.

3.

DATA

: This message type indicates that a requested cell has
arrived. The processor receives the data and updates its mem-
ory accordingly.

These three steps are shown as a graph in Figure 3a. This
procedure of acquiring a cell from another node is termed a

3-hop request system

, because three hops are required to finally
receive a requested cell. When the home node is itself the closest
to the requesting processor, it becomes a 2-hop request system.
All the steps are performed asynchronously. This is important

CUG 1995 Fall

 Proceedings

135

because the processors do not wait to receive particular
messages. Moreover, the RQST and FRWD messages are typi-
cally very small and do not affect network data traffic.

The above method of acquiring non-local data differs from
previous object dataflow algorithms. In earlier algorithms, the
home node always contains the requested data, so no FRWD
message is needed. This adversely affects the system’s perfor-
mance in two ways. First, the home node always expends some
memory for statically storing some data not needed by it.
Second, sending of the (possibly large) requested data uses
larger network bandwidth by traversing more channels in the
network. With data migration, a processor stores only those data
that are required for the generation of the parts of the image
assigned to the processor, thus utilizing the local memory effi-
ciently. By forwarding the cell request to the closest processor,
it utilizes the network channels in an efficient manner also. A
short message (FRWD) travels across the network to the closest
processor, while a large message (DATA) travels a short
distance to the requesting processor. In the results section we
will see that the time required to determine the closest node and
the time spent for the extra hop (FRWD message) are negligible.

We observe that in the case in which one is careful to assign
adjacent screen segments to adjacent processors, it is very likely
(and for ray casting it is always so) that the requested cells will
be found at, and fetched from, adjacent processors. This unique
attribute of our approach allows for the efficient exploitation of
spatial and temporal coherency.

R

H

D

1. RQST

2. FRWD

3. DATA

Figure 3: (a) A 3-hop system for requesting data (cells) from
other processors. (b) A 2-hop invalidation process for discarding
a cell from a processor’s memory. R=requesting processor,
H=home node, and D=closest processor containing the

R H

1. INVRQST

2. INV

(a)

(b)

(if not only cell)

(if only cell)

Do nothing

In addition to the 3-hop mechanism for data fetching, we need
a 2-hop procedure (Figure 3b) for invalidating data that are no
longer required locally. A processor that wants to discard a cell
needs to request permission to do so from the cell’s home node
since this data might consist of the only copy of the cell in the
entire system.

4.

INVRQST

: Whenever a processor’s local memory exceeds a
pre-specified limit, an LRU scheme is used to purge some lo-
cally available cells. Before removing a cell, the processor
asks the home node’s permission to do so by sending an IN-
VRQST message. When a home node receives the invalida-
tion request, it checks whether this is the last copy of the cell
in the system. If other copies exist, it sends an invalidation
message (INV) to the processor to purge the cell from its
memory. Otherwise, it does nothing.

5.

INV

: Upon receiving this message, a processor is sure that it
can purge the cell from its memory, and does so.

The different types of messages described above are handled
similarly to polling-based Active Messages [5]. While the
processor proceeds from one ray to the next in the stack, it polls
the buffers to check for any pending messages, using
non-blocking probes. The messages, if any, are received, and
appropriate action is taken immediately. Home nodes forward
the requests for cells to the appropriate nodes. A forwarded
message is handled by immediately sending the requested cell to
the requesting processor, and invalidation messages are handled
accordingly. All such pending messages are dealt with before
proceeding to the next ray.

This interleaving process has a two-fold effect on the perfor-
mance of the algorithm. First, the communication latency is
hidden by the computation process (rendering), except start-up
costs. Second, it avoids deadlock due to filling up of buffers. By
constantly polling and emptying the buffers, a processor avoids
the indefinite filling up of its buffers, and by sending only a
small number of messages after tracing each ray, a processor
avoids hot-spot congestion at other nodes.

3.1 Results

The object migration parallel rendering method has been
implemented on a 32 node Cray T3D at the Ohio Supercomputer
Center. The T3D is a scalable massively parallel (MPP) system.
Each PE is a DEC chip 21064, having 64 MBytes of memory per
node. The PEs are connected by a very fast, bidirectional 3D
torus interconnection network that has four virtual lanes per
node in each direction. The system can be used either in
message-passing mode or in shared-memory mode; we chose the
first paradigm to incorporate our algorithm. Each processor runs
at a peak clock speed of 150 MHz (clock cycle time = 6.67
nsec.). The Cray T3D supports deterministic wormhole routing,
and communication takes place at 150MB/sec/link/direction, the
message start-up time being 1.5 microseconds.

To analyze the attributes of our implementation we tested
various aspects of it by varying some of the parameters that
control its performance. We have tested the impact on perfor-

136

CUG 1995 Fall

 Proceedings

mance of cache size, cell size, number of processors, and volume
resolution. We measured rendering times and number of cells
fetched in various scenarios.

When cache size is decreased, we expect more thrashing to
happen because some cells that are removed from a small cache
might be needed again while rendering the same frame. In
Figure 4 we observe that when the total amount of cache in all
eight processors approaches 2.5 times the volume size,
processing time stabilizes at around 560 seconds. In this test we

rendered 60 frames of a 128

3

 volume, using cell size of 8

3

. A
volume of this size occupies 2MB of memory. In the case of 8
processors, we will not need more than 640K cache at each node
to perform optimally.

There are two main reasons for the time penalty suffered
when cache size decreases. The first is thrashing which can be
measured by looking at the number of cell fetches. The second
is the overhead of our algorithm that needs to scan the ray stack
many more times.

Table 1 shows the total times (in seconds) taken to generate

30 frames of 128

3

 and 256

3

 volumes. Screen sizes (that is,

number of rays traced) are 256

2

 and 512

2

, respectively). Times
for a small number of processors are not available in the case of

256

3

 because of lack of memory. The graph in Figure 5 demon-
strate the almost linear speedup achieved with our algorithm. We

Table 1. Rendering times, as a function of the
number of processors, for generating 30 frames.

Processors 128

3

256

3

1 2153 -

2 1062 -

4 557 3915

8 281 1968

16 142 996

560

580

600

620

640

660

680

700

720

1 1.5 2 2.5 3 3.5 4

Total Time

CS

Times

Figure 4: Rendering time as a function of cache size. The total
amout of cache in all eight processors is equal to CS*volume size
(CS = cache size).

attribute this speedup to two main reasons: the first is our ability
to conceal communication overhead by effective latency hiding
based on ray stacking; the second is that other overheads such as
send and receive start-ups and directory maintenance are
negligeable and amount to approximately 0.1% of the total time.
The maintenance of the LRU replacement policy is somewhat
costly (about 2.5%) and tuning the system to the optimal cell and
cache sizes can yield significant benefits. The efficiency for the

256

3

 volume is measured relative to the timing for 4 processors.

4 Application: Endoscopic Sinus Surgery

Endoscopic Sinus Surgery (ESS) is currently the procedure of
choice for the treatment of medically resistant recurrent acute
and chronic sinusitis. Its rationale is based on the simple premise
of improving the natural drainage of the sinuses into the nasal
airway.

The paranasal sinuses are composed of a series of labyrin-
thine passageways and spaces located in the lower forehead,
between the eyes, at the center of the cranial base, and behind the
cheeks. Several factors complicate surgery in these areas. First,
the sinuses are surrounded by vital structures such as the eye
socket and its contents, the internal carotid artery, which
supplies blood to the brain, and the brain itself. Such structures
lie within millimeters of the sinus boundaries. Second, to avoid
external incisions, access to the sinuses is through the nostril,
which precludes direct visualization and manipulation of the
sinus structures by the naked eye. The technique consists of
visualizing landmark structures within the nasal cavity and
sinuses, excising and “biting” out diseased tissue, probing and
suctioning under direct visualization through the endoscope or
via a video monitor with attached endoscopic camera, as shown
in Figure 6. The nostril becomes a fulcrum of rotation because
the scope and other instruments must pass through this narrow
area to gain access to the deeper sinus structures. Recognition of
key structures by both visual and haptic queues is paramount to
a safe, minimally invasive, and adequate technique.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Speedup

Processors

1283

2563

Figure 5: Speedup results for volume rendering of 1283 and 2563
volumes on 1 to 16 processors.

CUG 1995 Fall

 Proceedings

137

Today the technique is taught by a stepwise approach. The
learning process is labor intensive and can be frustrating because
models and cadavers can show only limited variability and inter-
action. There is no way to actually practice the techniques
learned without using either cadaver material or live subjects. A
realistic simulator of the paranasal sinuses will allow for a
quicker understanding of the three-dimensional anatomy and
allow a safe and realistic environment for the novice surgeon to
learn the techniques. A true simulator must have realistic haptic
as well as visual display. Many of the surgical maneuvers
require subtle haptic as well as visual cues. Inside the sinuses,
many of the tissues look similar, and it is their “feel” that allows
the expert surgeon to distinguish between such structures as
another air-filled passage versus the thin bone that covers the
brain and eye. One can be removed aggressively, while the
other’s disruption may lead to a disastrous result for the patient.
Haptic display is essential if the simulation is to be more than
just a “fly through”. Finally, to convey a sense of reality the
system must deliver real-time photo-realistic rendering of the 3D
environment.

Our system (see Figure 7) consists of a mock patient head
housing electromechanical mechanisms that provide the force
reflection to the user. Reconstructed anatomy derived from
magnetic resonance and computed tomography data is registered
with the model of the face. The 3D volumetric model is rendered
to the screen using the FSR algorithm described in Section 2. A
surface model of the surgical instruments is integrated with the
internal view of the reconstructed anatomy. The digital referents
of the instruments are graphically updated through information
provided by the sensors inside the model head. One of the instru-
ments is the endoscope, whose location provides the viewpoint
and viewing vector for the user and the generation of the scene.

Figure 6: An illustration showing a surgeon looking through the
eyepiece while the video image is displayed on the monitor in the
back.

Viewing and shading parameters can be sent to the ART
renderer, (described in Section 3) for high-quality rendering.

We have integrated a five degrees-of-freedom (5DOF) probe,

the Microscribe

TM

 by Immersion Corporation of San Jose. This
probe presents an intuitive interface for the users, allowing them
to work in a natural way within the patient model. The user
views the internal anatomy, which has been reconstructed in the
computer, by direct observation of the computer monitor. This
method is similar to viewing the surgical field via a monitor.
Eventually, we will incorporate the video directly to the scope as
this technique is employed by experts.

The efforts of FSR and ART are not yet fully integrated under
the PARAVOL system, and some components such as volume
morphing [15], high quality illumination, and visibility prepro-
cessing [25] are being developed. We are still working to
complete each renderer and complete the implementation of the
umbrella PARAVOL system.

5 Conclusion

In this paper, we have described PARAVOL, a system under
construction that combines hardware-based interactive
rendering with parallelized software-based high quality
rendering. The first method, called FSR, exploits today’s texture
mapping hardware such as the Reality Engine. FSR also relies
on the extraction of some subset of (fuzzy) voxels. The parallel
algorithm, termed ART, runs on the Cray T3D machine. It uses
a distributed directory organization for tracking the cells
required by a processor for generating images during an anima-
tion sequence. Unlike existing methods, it exploits both spatial
and temporal coherence in an animation sequence to reduce
communication between nodes. The main advantages of the
method are efficient local memory utilization, effective latency
hiding, reduction in network congestion, and static load
balancing. These are the factors that contribute to the linear

Figure 7: The MicroscribeTM held by a surgeon inserted into the
nasal cavity of a mock patient head. The monitor displays a view
of the virtual patient in real time.

138 CUG 1995 Fall Proceedings

speedup of our algorithm. We advocate in this paper the
construction of a system that combines the advantages of hard-
ware-based rendering algorithm as a front-end to parallel soft-
ware-based renderer. We believe that only such a solution will
be able to satisfy the ever growing demands of virtual medicine.

6 Acknowledgments

This work was partially supported by National Science Foun-
dation Grant CCR-9211288, Department of Defense
USAMRDC 94228001, and by the Advanced Research Projects
Agency Contract DABT63-C-0056.

7 References

1. D. Badouel, K. Bouatouch, T. Priol. “Ray Tracing on Distributed Memory
Parallel Computers: Strategies for Distributing Computations and Data”.
SIGGRAPH ‘90 Parallel Algorithms and Architecture for 3D Image Gener-
ation Course Notes. pp. 185-198.

2. H. Burkhardt III, S. Frank, B. Knobe, J. Rothnie. “Overview of the KSR1
Computer System”. Technical Report KSR-TR-9202001, Kendall Square
Research, Boston, February 1992.

3. J.G. Cleary, B. Wyvill, G.M. Birtwistle, R. Vatti. “Multiprocessor Ray Trac-
ing”. Research Report 83/128/17, University of Calgary, October 1983.

4. B. Corrie, P. Mackerras. “Parallel Volume Rendering and Data Coherence”.
Proceedings of Parallel Rendering Symposium, October 1993, pp. 23-26.

5. T. von Eicken, D.E. Culler, S.C. Goldstein, K.E. Schauser. “Active Messag-
es: a Mechanism for Integrated Communication and Computation”. Proceed-
ings of the 19th International Symposium on Computer Architecture. Gold
Coast, Australia, May 1992, pp. 256-266.

6. M. Dippe, J. Swensen. “An Adaptive Subdivision Algorithm and Parallel Ar-
chitecture for Realistic Image Synthesis”. Computer Graphics 18(3), 1984.
pp. 149-158.

7. Foley J.D., A. van Dam, S.K. Feiner, J.F. Hughes. Computer Graphics, Prin-
ciples and Practice, second edition, Addision Wesley, 1992.

8. N. Green, M. Kass, G. Miller. “Hierarchical Z-Buffer Visibility”, Proceed-
ings of SIGGRAPH’93, pp. 231-238.

9. S.A. Green, D.J.Paddon. “Exploiting Coherence for Multiprocessor Ray
Tracing”. IEEE Computer Graphics & Applications, November 1989, pp.
12-26.

10. E. Hagersten, S. Haridi, D.H.D. Warren. “The Cache-Coherence Protocol of
the Data Diffusion Machine”. Michel Dubois and Shreekant Thakkar, edi-
tors, Cache and Interconnect Architectures in Multiprocessors. Kluwer Ac-
ademic Publishers, 1990.

11. T. Joe, J.L. Hennessy. “Evaluating the Memory Overhead Required for
COMA Architectures”. IEEE Computer, September 1994, pp. 82-93.

12. A. Kaufman. Volume Visualization, IEEE CS Press, 1991.

13. H. Kobayashi, H. Kubota, S. Horiguchi, T. Nakamura. “Effective Parallel
Processing for Synthesizing Continuous Images”. New Advances in Comput-
er Graphics. Proceedings of CGI ‘89, pp. 343-352.

14. H. Kobayashi, S. Nishimura, H. Kubota, T. Nakamura, Y. Shegei. “Load
Balancing Strategies for a Parallel Ray-Tracing System Based on Constant
Subdivision”. The Visual Computer. 1988. pp. 197-209.

15. Y. Kurzion R. Yagel. “Volume deformation using Ray Deflectors”. The 6th
Eurographics Workshop on Rendering. Dublin, June 1995, pp. 21-32.

16. A. Law, R. Yagel. “CellFlow: A Parallel Rendering Scheme for Distributed
Memory Architectures”. International Symposium on Parallel and Distrib-
uted Processing Techniques and Applications. Athens, Georgia, November
3-4, 1995.

17. M. Levoy. “Display of Surfaces from Volume Data”, IEEE Computer
Graphics and Applications, Vol. 8, No. 5, May 1988, pp. 29-37.

18. W. Messerklinger. Endoscopy of the Nose. Urban and Schwartzenburg, Inc.
Baltimore, Maryland, 1978.

19. J. Rohlf J. Helman. “IRIS Performer: A High Performance Multiprocessing
Toolkit for Real-Time 3D Graphics”, Proceedings of SIGGRAPH ‘94. Or-
lando, Florida, July 1994, pp. 381-395.

20. J. Nieh, M. Levoy. “Volume Rendering on Scalable Shared-Memory MIMD
Architecture”. Proceedings of 1992 Workshop on Volume Visualization.
Boston, MA, pp. 17-24.

21. P. Stenstrom, T. Joe, A. Gupta. “Comparative Performance Evaluation of
Cache-Coherent NUMA and COMA Architectures”. Proceedings of the 19th
Annual International Symposium on Computer Architecture. pp. 80-91. May
1992.

22. J.K. Udupa D. Odhner. “Interactive Surgical Planning: High-Speed Object
Rendition and Manipulation Without Specialized Hardware”. Proceedings
of the First Conference on Visualization in Biomedical Computing. pp.
330-335, May 1990.

23. L. Westover. “Footprint Evaluation for Volume Rendering”. Proceedings of
SIGGRAPH ‘90, Computer Graphics, 24(4):367-376, August 1990.

24. R. Yagel and J. Meeker. “Priority Driven Ray Tracing”. Technical Report
OSU-CISRC-8/95-TR35, Department of Computer and Information Sci-
ence, The Ohio State University, August 1995.

25. R. Yagel and W. Ray, “Visibility Computation for Efficient Walkthrough
Complex Environments”, accepted to PRESENCE, April 1994.

26. K. Ying, P. Schmalbrock, B.D. Clymer, “Echo-Time Reduction for Submil-
limeter Resolution Imaging with a Phase Encode Time Reduced Acquisition
Method”. Magn. Reson. Med., 33:82-87, 1995.

