

CUG 1995 Fall

 Proceedings

225

1 Introduction

This work has been done in UNICOS/mk for the Cray T3E.
This paper is divided into two parts. The first is a general
description of the UNICOS/mk project goals and the I/O prob-
lems inherent in a distributed architecture system. The second
part describes the specifics of the File System Assistant (FSA)
implementation. The FSA is an unique means of providing scal-
able I/O for a distributed system.

2 Background

 In 1993, Cray Research shipped its first Massively Parallel
Processor (MPP) system, called the CRAY T3D system. The
CRAY T3D system is tightly coupled to the Cray Research
UNIX operating system UNICOS on a CRAY Y-MP or CRAY
C90 system across dedicated channels. It is the UNICOS oper-
ating system that provides all the operating system services for
the CRAY T3D system. The operating system on the CRAY
T3D system provides machine-dependent support on the local
processor element (PE) and forwards all system calls to a
UNICOS system on the CRAY Y-MP or CRAY C90 system.

 The CRAY T3D system provides good support for the appli-
cations that are run on it. It also provides a good rationale for
moving the UNICOS system to the Cray MPP platform to
provide all of the operating system services on a few PEs. This
system was targeted for the next generation of Cray MPP
providing support for large high-performance applications.

 Cray Research is creating a microkernel-based version of the
UNICOS operating system, called the UNICOS/mk operating
system. The initial purpose of the UNICOS/mk system is to
support the next generation Cray MPP system, called the CRAY
T3E system. The CRAY T3E system needs a scalable, distrib-
uted operating system, which concentrates vital system services

in a few PEs and provides minimal services on the PEs where
applications are run.

 A couple of important hardware features played a significant
role in how the new operating system development was directed.
The first feature is universal access to all I/O "ports" from any
PE. There are no peripherals local to PEs; all I/O is done to very
high speed I/O rings called the CRAY SCX channel. The
devices are connected to the SCX channels.

 The second feature is the MPP interconnect. All the PEs are
connected with a 3D Torus. The interconnect performance
supports high bandwidth/low latency communication. This was
used as the vehicle to make universal access work on a distrib-
uted system, where forwarding system call requests and replies
would be possible.

 The port of the UNICOS system from a traditional vector
processor machine to the new UNICOS/mk organization was
made possible by rebasing basic system services and
machine-dependent functions in a microkernel. The rest of the
system services were reorganized and divided into a dozen or so
servers. This allows distribution and scalability of servers.

 In addition to this fine-grain serverization, the process
manager (PM) server provides the UNICOS interface to applica-
tions. The PM is distributed to allow some system calls to be
processed locally on a PE, while the more "global" calls, or parts
of calls, are forwarded to other servers.

 Using this organization, vital operating system functions are
located on a configurable number of PEs (referred to as the OS
PEs), thus allowing the other PEs (that is, PEs that run the appli-
cations, which are called compute PEs) to forward many system
calls to these OS PEs. The UNICOS/mk system provides a
single system image across all the PEs. In this new system orga-
nization, all system services are equally accessible from any PE.
This system is now being used as a development vehicle on
CRAY T3D systems.

The File System Assistant:
A File System Distribution Technique

Jim Harrell

, Cray Research, Inc., 655-F Lone Oak Drive, Eagan,
Minnesota 55121

ABSTRACT:

The MPP architecture used on many of today’s computer systems provides some
interesting challenges to maintaining high-performance I/O. This paper describes some of the
reasons for I/O performance problems, the need for I/O distribution, and the mechanisms used
on the new Cray UNICOS/mk operating system to support high-performance I/O on its future
supercomputer mainframes.

Copyright © Cray Research Inc. All rights reserved.

226

CUG 1995 Fall

 Proceedings

3 The need for I/O distribution

The modeling of this system done by Cray Research shows
that while the distribution of services works well in most
services, the I/O intensive applications require less latency in
request processing, and some mechanism to avoid having the file
servers flooded by the request rates of the compute PEs. In order
to meet the needs of I/O intensive applications, a small support
server called the File System Assistant (FSA) has been created.
The FSA resides on each of the compute PEs.

 The FSA provides simple distribution of the basic I/O func-
tions. The remainder of this paper discusses the background and
implementation of the FSA server.

4 Choices on MPP Systems

 I/O support for applications on MPP systems is based, in
part, on the organization of the operating system. The following
paragraphs describe the different choices from our perspective.

4.1 Complete/replicated systems

 MPP operating systems that have complete operating system
services on every PE provide local I/O when files are local and
remote I/O via NFS, DFS, or some other remote file service
when the files are not local to the PE. This works well for some
kinds of applications and is used by several vendors of MPP
systems.

 The obvious advantage of a complete local operating system
on a MPP is that when I/O is local, it goes faster than sending the
request off to be processed somewhere else. However, when
data has to be loaded and unloaded from local PE systems in
order to run applications, that time needs to be factored into the
cost of I/O because it requires the use of the local processor,
keeping it from running the applications during any load/unload
operation.

 It is worth mentioning that while there were no local devices
on the CRAY T3E system, and therefore the necessity of
providing a complete local system was not present, that repli-
cated/complete systems would probably not have been our
consensus choice for the following reasons:

• The difficulties in providing a single system image on top of
multiple systems

• The difficulties in organizing files to be available on the PEs
where applications need them.

• The amount of memory required for complete operating sys-
tem services

• The processing and interrupt time for local daemons makes it
difficult to schedule multi-PE applications without having
some processes in the multi-PE application waiting for
other processes to be scheduled.

4.2 Distributed systems

 Several MPP systems, including Cray Research's, use oper-
ating system service nodes instead of complete system support
on all PEs. These systems usually have microkernels and enough
operating system support to manage the PEs hardware, and

handle application system calls by forwarding the requests and
passing the replies back to the application.

 A system that concentrates all the operating system services
on a few nodes and forwards all application requests must bear
the latency and potential for bottle necks at the PEs that process
the system call requests.

 Systems that use forwarding can limit the kinds of applica-
tions that are supported. Another course that has been taken
before is to initially provide a system that forwards all system
calls, and then later to support some number of system calls
locally on all PEs, and forward the remainder to OS PEs.

5 The I/O bottleneck

 There are many system calls that do not occur often, and this
is one rationale used to justify not providing complete system
support on all PEs. The simplest alternative is to simply forward
all system calls to OS PEs for processing, which is easy.
However, most system call reports for Cray machines, show
read, write, and seek as the number one, two, and three system
calls by usage. In most systems, system call usage and system
time are related. Generally, these calls together claim better than
75% of overall system call usage. Usually the top 10 system calls
account for between 90 and 95% of total system calls processed
during any reporting period.

 Because of this, and a general desire to make I/O perform
well, some simple models were generated to determine how I/O
would work in the new system. This work indicated two areas
that needed attention. The first was IPC overhead and the second
was I/O scalability.

5.1 IPC Overhead

 The IPC overhead had two categories of problems. The first
was that the IPC implementation was inefficient. IPC is a large
concern because historically message passing systems get
scrapped because of, among other things, the overhead of the
messages. However, this is a general problem, and is not
addressed in this paper. The second overhead problem was that
the protocol between the process manager and the file server had
too many IPC messages.

 There are a number of solutions that can and are being used
to reduce the IPC usage, and thereby the overhead. First, the
protocol between the process manager and file server was
changed to reduce the number of messages. A different approach
was taken when the servers were on the same PE. In this case,
direct jumps replace the messages between the servers. The
protocols between other I/O-related servers, like the file server
and disk server were also changed so that the sleep waiting for
I/O completion would take place in the file server.

 Changes were made to avoid the context switch that is part
of a remote IPC from one PE to another. In this case, the inter-
rupt thread wakes up a thread to process the incoming IPC. The
whole path can involve multiple threads and several
sleep/wake-up pairs on each PE. Context switches are extremely
expensive and these are avoided whenever possible. One solu-

CUG 1995 Fall

 Proceedings

227

tion was to provide interrupt threads that were guaranteed not to
sleep.

5.2 Scalability (User Controlled)

 There are different ways of approaching solutions to I/O
scalability problems. The very best way is to reduce the number
of requests from user applications, and ensure that all I/O is done
directly to and from user buffers.

 Another change is to make sure that the use of all positioning
functions is reduced. For some reason, positioning functions
precede many I/O requests even when the I/O is strictly sequen-
tial. There are a series of POSIX position-independent I/O func-
tions that provide the capability to pass position and the I/O
request in the same system call.

 At first glance this would appear to violate the UNIX philos-
ophy of simple, single function system calls, but the positioning
addition does help, especially in reducing request load. Other
important tools are interfaces that provide parallel request
processing, like listio, or interfaces that take advantage of hard-
ware capabilities, like allowing distribution of I/O to a number
of PEs. The Cray MPP hardware supports an I/O centrifuge
feature, which allows I/O to be read and written to multiple PEs
at the same time. Software support for this feature was added to
the listio(2) system call.

5.3 Supporting the I/O request load by distribution

 The strategies that require changes in user programs, or
expect particular user behavior are not going to solve all the
problems. Some heavy users can be expected to seek optimized
solutions, but others may not. Even though the MPP system is a
relatively new architecture, there are going to be applications
that will not be able to be structured in a particular fashion. It is
a better strategy to expect to support a broader variety of appli-
cation I/O profiles.

 The UNICOS/mk system is aimed at supporting large
multi-PE applications, but the system will also provide a devel-
opment environment for interactive users, and single PE appli-
cations. Because there is a mix of requirements, and the single
PE and interactive will consist of mostly small I/O operations, it
is believed that small I/O should be optimized. Small I/O here is
defined less than 8KB. I/O at device speeds is also provided.

 The last goal involved predicting the amount of I/O required.
This is always difficult in the absence of hard numbers. Previous
experience with large systems suggests a few thousand per
second, but this has not been studied carefully. Cray Research
has set the goal at 400 to 800 I/O operations per second per PE.
Given this goal and a large number of PEs it was rapidly proven
that a single file server would become a bottleneck.

 There are a couple of ways of spreading the I/O load. Three
slightly different mechanisms are as follows:

• A remote mount, multiple file server mechanism

• Multiple file servers using shared tables; this is based on the
Shared File System concept already in use at Cray Research.

• A slave or assistant file server on every compute PE

 The following sections describe these mechanisms in more
detail.

5.3.1 Remote mount mechanism

 The remote mount mechanism uses multiple file servers,
each mounting some number of different file systems, which are
connected by remote mount to form a single tree of file systems,
as is normally found on a UNIX system. This is a simple solution
because remote mount is a relatively simple concept to imple-
ment. However this solution depends on I/O requests naturally
spreading evenly across different file systems. Unfortunately
this rarely happens.

5.3.2 Multiple file servers sharing tables

 Another way of spreading the I/O is to use multiple file
servers sharing the file system tables and using a locking
protocol to protect access to the tables. Variations on this mech-
anism include partitioning the vnode or file tables among the file
servers and passing requests between them, depending on which
file server held the tables that would be used by to satisfy the I/O
request.

 This method would be useful where high speed locking prim-
itives existed in the hardware. In this case, an extended version
of a multi-threading locking mechanism would be a good place
to start. If a table partitioning scheme is used, then the locking
and request passing might support file systems spread across a
network.

 There are several difficulties with these slightly different
Shared File system mechanisms. The first is that the scaling will
be determined by the number of file servers sharing the tables.
The second is that there is probably an upper bound to the
number of file servers that could be involved in the sharing,
which is assumed, without benefit of data, to be small.

5.3.3 File system assistant (FSA)

 The last mechanism is the file system assistant (FSA). This
is a special server that resides on every compute PE. The purpose
of a FSA is to off-load read, write, and seek operations from the
file servers that are on remote OS PEs to the local PE. The open,
close, and other less used operations are forwarded to the file
server.

 This allows reads and writes to be processed locally, inde-
pendent of the file server and removes the latency and overhead
of the IPC to the file server for request and reply processing.
Moreover, because the process manager (PM) and FSA are
local, the communication is done directly via jumps instead of
requiring IPC to marshal arguments, copy messages, and switch
thread contexts.

 The FSA is composed of a server main function and message
management routines, a copy of much of the Cray local file-
system code relevant to read and write operations, and stubs that
forward and respond to other file system requests. The FSA
server is much smaller than a complete file server.

 The FSA does not do any caching of data. The current imple-
mentation requires an open(2) flag to enable the use of the FSA
by the file server. Other restrictions are to use regular files and

228

CUG 1995 Fall

 Proceedings

well-formed I/O (that is, I/O done on sector boundaries so as not
to require caching). Note that currently, the default mode of I/O
is direct to the user buffer. This was inherited from the vector
version of the UNICOS system. Coherency problems are
avoided by not caching data. Data is cached in the file server
and/or the disk server.

 The FSA can be used or bypassed. The remote file server can
be used at the same time as the FSA. The different servers can
be used by the same application on different files without inter-
ference or confusion.

 The flow of control on open(2) and close(2) is similar to each
other. The PM on the local compute PE receives a request from
a user program. The request is forwarded to the remote file
server. The file server sends an IPC to the FSA which contains
vnode and inode data, disk block allocation data, the location of
the disk server to be used, flags, and so on. The FSA replies to
the local PM. All future communication concerning this open
file for this application will be sent directly to the FSA.

 A close operation goes from the user application to the local
PM to the file server. The file server closes the file and forwards
the request to the FSA which completes the close.

 The disk block allocation will eventually run out or be inval-
idated. In this case, the FSA makes a special request to the file
server for another allocation. The reply is the updated allocation,
which is handled by the FSA. A truncate request to the file server
generates a broadcast invalidate to all FSAs that have the file
open.

 The read(2) and write(2) flow of control is from the user
application to the local PM and then to the FSA, which processes
the request locally. Assuming the blocks are all within the local
map, then the I/O request is turned into a request to the disk
server and that request is forwarded via an IPC call.

6 Summary

The File System Assistant is but one attempt to address I/O
scalability and I/O distribution problems on distributed architec-
ture systems. The problems described in this paper are not
specific to the Cray T3E, but is inherent in all distributed or
client-server systems. Results to date indicate that the FSA has
greatly reduced the latency of the dominate I/O system calls.

