Portable, Efflcient, Parallelization of a
3d Quasi-Geostrophic Multi-Grid Code

Clive F. Baillie Department of Computer Science, University of
Colorado, Boulder, CO 80309ames C. McWilliamsDepart-
ment of Atmospheric Science, University of, California, Los
Angeles, CA 90095-1565effrey B. WeissProgram in Atmo-
spheric and Oceanic Sciences, APAS, University of Colorado,
Boulder, CO 80309Jrad Yavneh Department of Computer
Science, Technion - Israel Institute of Technology, Haifa, Israel

Abstract

We have parallelized our existing auto-tasked
vector Cray C-90 3d Quasi-Geostrophic Multi-Grid
(QGMG) code in a portable and efficient way for
todays MPPs. The QGMG code addresses one of the
most important computational problems today: the
numerical simulation of high Reynolds number fluid
turbulence. In this paper we describe how we did
this parallelization, emphasising both portability and
efficiency. In addition we discuss how we implemented
our own parallel I/O so that the MPP code can read
and write original C-90 files. We give performances
on the Cray T3D MPP. The bottom line is that on all
16 processors of the C-90 the code achieved 6 Gflops;
currently on 512 processors of the T3D it is slightly
faster.

1 Introduction

One of the most important computational prob-
lems today is the numerical simulation of high
Reynolds number fluid turbulence. As members of
the NSF HPCC Grand Challenge Applications Group

(GCAG), “Coupled Fields and Geophysical and Astro-
physical Fluid Dynamical Turbulence”, we are study-
ing incompressible fluid dynamics in several regimes
involving environmental rotation and/or stable or un-
stable density stratification, all of which are motivated
by geophysical phenomena. The common theme in
this GCAG research is that significant new insights
into the dynamics of turbulence can be obtained from
high resolution, high Reynolds number computational

solutions obtained with efficient algorithms on Mas-
sively Parallel Processors (MPPs).

We use the quasi-geostrophic equations to describe
the nonlinear dynamics of rotating, stably stratified
fluids. The computational methods used to solve these
equations are explicit and implicit multigrid (MG)
solvers. We have developed an efficient implicit Quasi-
Geostrophic Multi-Grid (QGMG) solver and used it to
investigate fluids with periodic horizontal boundary
conditions and various vertical boundary conditions:
periodic, solid-boundary and Ekman drag [1].

This paper is organized as follows. In section 2
we explain the quasi-geostrophic equations. In section
3 we outline the implementation of the QGMG code.
The performance of the code on the Cray T3D is given
in section 4, and we end with some conclusions.

CUG 1995 FallProceedings 273

2 The Quasi-Geostrophic equations

Planetary-scale fluid motions in the Earth’s atmo-
sphere and oceans are influenced by strong stable
stratification and rapid planetary rotation. The
appropriate equations of motion for this asymptotic
regime are the Quasi-Geostrophic (QG) equations
[2]. The extremely turbulent nature of planetary
flows leads us to perform high-resolution numerical
simulations of QG turbulence in an effort to better
understand the large-scale flows which are so impor-
tant to the Earth’s climate.

Due to stratification and rotation, QG flow is
nearly incompressible in horizontal planes, and can be
described in terms of horizontal velocities w and v, and
an associated streamfunction ¥(z,y, z): v = —8v%/08y,
v = 8¢ /8z. The resulting small vertical velocities,
together with the thinness of the Earth’s atmosphere
and oceans, make it appropriate to use a vertical
coordinate stretched by N/f. Here, f is the Coriolis
frequency, equal to twice the vertical component of the
planetary rotation rate, and N is the vertical average
of N(z), the Brunt-V4isila frequency, which is related
to gradients in the mean density profile p(z) and the
acceleration due to gravity g by N2(z) = g8ln p/9z.
On the Earth, N/f is typically of order 100. In
this stretched coordinate system the QG equations of
motion are

09 9¥9% 0Y0q 0% _
gt Oz dy Oy o= 8x
where the potential vorticity q is

oy 8 8 [1 09
1= 922 T a2 <5(z)§>'

_Dv (1)

3y2 g (2)

Vertical inhomogeneity in the stratification is repre-
sented by S(z) = N%(z)/N?, and the so-called 3-plane
approximation is used to include the effect of the vari-
ation in f with latitude, 8 = 8f/8y. The dissipation
operator D represents the effects of all scales of motion
smaller than those explicitly resolved in the numerical
calculation; we typically use hyperviscous diffusion,
D = vV*q, where v is a small hyperviscosity [3]. Thus
there are only two main variables in the QG code: 9
and q.

Over the last few years considerable effort has been
invested into adapting and developing multigrid tech-
niques for non-elliptic and singular perturbation prob-
lems, such as the flows found at high Reynolds number
in stably stratified fluids. Using tools developed by
Yavneh [4] we now have multilevel algorithms for time-
dependent systems that describe geophysical flows,

274 CUG 1995 FallProceedings

such as QG. Integration of the QG equations requires
solving an elliptic boundary-value problem in three
dimensions even if the nonlinear advection equation
for the potential vorticity is integrated explicitly. We
use a multigrid algorithm, which is one of the best
known methods for this problem. Furthermore, we
discretize the nonlinear advection equation implicitly
in time and solve the entire system simultaneously,
employing the so-called Full Approximation Storage
(FAS) version of the multigrid algorithm. We use grid-
coarsening only in the horizontal directions.

Our implementation of the above equations of
motion allow us to study QG turbulence at unprece-
dented resolutions. Previous computations on the
Cray C-90 focused on the maximally symmetric case,
S =1,8 =0]1, 5, 6], where we found significant
discrepancies from a long-standing theoretical predic-
tion of isotropy [7, 8]. Associated with this anisotropy
is the self-organization of the potential vorticity field
into a large population of roughly spherical coherent
vortices, which then align in the vertical. Currently
we are performing several new computations on the
Cray T3D - investigating the effects of including
nonconstant S and nonzero 3, in both decaying and
equilibrium turbulence. From January to September
1995 we have consumed almost 14 T3D processor years
of CPU time.

3 Implementation of QGMG

In order to parallelize a code like QGMG for a
MPP, one writes a message passing program with
each processor responsible for part of the problem
domain. The message passing system used on the
T3D is Cray’s version of the Parallel Virtual Machine
(PVM) software from Oak Ridge National Laboratory
[9]. Therefore we parallelized QGMG using PVM
which is portable between a great many machines.

The QGMG code employs the typical V-cycle
multigrid, restricting all the way down to a 4x4
coarsest grid. As explained above, coarsening is
performed only for the two horizontal (out of the
three) dimensions so in what follows we ignore the
third dimension for the sake of clarity. We discuss each
of the multigrid’s three parts — relaxation, restriction
and interpolation —in turn, first sequentially and then
for the parallel version. Here we give only a summary,
a more detailed explanation can be found in [10].

3.1 Sequential

Relaxation of both ¢ and ¢ is performed using
the Gauss-Seidel algorithm. For g four-color ordering
is necessary since we use the Arakawa nine-point
discretization stencil for the Jacobian. However for
9 red-black ordering is sufficient (due to five-point
stencil for Laplacian). We shall discuss only the
simpler code for the red-black checkerboard case i.e.
all the even points are updated first, then all the odd
points. The sequential relaxation code for v looks like:

do ij = 0,1

do j = 1,bny
do i = 1+mod(j+ij,2),bnx,2
psi(i,j) = 0.25 * (
psi(i-1,j) + psi(i+1,j) +
> psi(i,j-1) + psi(i,j+1) - rhs(i,j))
end do
end do

call update(psi,bnx,bny,1lv)
end do

where ij=0 is red and ij=1 is black. Note the call
to update, which exchanges the information on the
periodic boundaries.

The restriction operation averages each 2x2 block
of points on the fine grid into one point of the coarse
grid (X denotes point which remains, 0 is point which
is destroyed):

X0X0X0X0 -> XXXX
00000000
X0X0X0X0 XXXX
00000000

First the residual is calculated on the fine grid and
then used on the coarse grid to calculate the right-
hand-side.

The most complicated part of the multigrid algo-
rithm is the interpolation from the coarse to the fine
grid. The picture is the opposite of the restriction
operation (now 0 is a point which is created):

XXXX -> X0X0X0X0
00000000
XXXX X0X0X0X0
00000000

There are actually two ways to do this. The most ob-
vious way is to just send the “top-left-corner” point to

the other three points: “top-right-corner”, “bottom-
left-corner” and “bottom-right-corner”, where it is
then averaged. However this method is only simple
for linear interpolation; for cubic and higher-order
interpolation schemes it rapidly becomes complicated
due to the number of points required to calculate the
average for the “bottom-right-corner” point. There-
fore we use a two-step implementation: during the
first step the points in the i-direction are interpolated,
then in the second step the points in the j-direction.

This looks like:

XXXX -> X0X0X0X0 -—> X0X0X0X0
00000000
XXXX X0X0X0X0 X0X0X0X0
00000000

3.2 Parallel

It is relatively straight-forward to parallelize both
of the sequential implementations detailed above as-
suming a square grid, and square processor mesh, and
that the number of points per processor is always
at least one. However, in practice none of these
assumptions are valid! We can of course choose to use
a square rather than a rectangular grid, but only if the
physical system being simulated is in a horizontally
1:1 ratio box. We cannot choose the processor mesh
to be square because it unduly limits the number of
processors that can be used. Finally, the multigrid
algorithm restricts all the way down to a 4x4 (or
sometimes even a 2x2) grid, therefore having at least
one point per processor would restrict simulations to
a maximum of 16 (or 4) processors.

Thus, we must develop a general parallel multigrid
code which works on non-square girds, on non-square
processor meshes and where the number of points can
be less than the number of processors. It is this last
condition which causes the parallel multigrid code to
be more complicated than one would initially think.

Let us assume that the finest grid we are using has
nx X ny points and the processor mesh consists of n x
m = np processors. We also assume n divides nx and m
divides ny. We arrange the processors, numbered me
=0,1,...,np-1, as in the following example for a 32
processor 8x4 mesh:

01 2 3 4 5 6 7
8 910 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31

where we have drawn the first index i increasing from
left to right and the second index j increasing down-

CUG 1995 FallProceedings 275

wards. Using domain decomposition, each processor
gets a part of the grid of size (nx/n) x (ny/m) starting
and ending as follows:

start(1lv,1) = 1 + mei * (nx/n)
end(1lv,1) = (nx/n) + mei * (nx/n)
start(lv,2) = 1 + mej * (ny/m)
end(1lv,2) = (ny/m) + mej * (ny/m)

where mei and mej are the i, j positions of processor
me in the grid (e.g. processor me=17 has mei = 1
and mej = 2) and 1v is the multigrid level. Of course,
each processor has its own local indices for these global
pieces of the grid, these are simply

loops(1lv,1) = 1
loope(lv,1) = (nx/n)
loops(1lv,2) = 1
loope(lv,2) = (ny/m)

Hence loops in the original code looking like:

do bj = 1, bny
do bi = 1, bnx

become

do bj = loops(lv,2), loope(lv,2)
do bi = loops(lv,1), loope(lv,1)

In addition, this method of domain decomposition
takes care of internal boundaries between the proces-
sors as follows. In the original code, the 2d grid was
surrounded by a layer of “ghost points” which store
copies of the points on the opposite sides of the grid in
order to take care of the periodic boundary conditions.

This looks like:

+————+

+————+

Therefore when we perform the domain decomposition
on, say, 4 processors, each processor will get its own
ghost points as follows:

+——+ +——+
T 1l
T 1l
+——+ +——+

276 CUG 1995 FallProceedings

+——+ +——+
T 1l
T 1l

+——+ +——+

The “outside” layer of ghost points are the original
ones for the periodic boundaries. The ones on the
“inside”, i.e. between the processors,
“internal processor boundaries” and are an artifact
of the domain decomposition. However they are an
extremely useful artifact: for in them we shall store
copies of the points from the neighboring processors

which we shall need while executing the multigrid

are called

algorithm. Then we need only exchange the internal
boundary data once per call of restrict, interpolate or
relax, rather than every time we see an i+1, i-1,
j+1 or j—1 index in the code.

As stated above the red-black Gauss-Seidel relax-
ation is easily parallelized. The only complication is
figuring out if a given point i,j local to a processor is
red or black i.e. even or odd. We do this by having
a flag first_even telling us whether the first point
i=1, j=1 in the processor is even. Thus the parallel
relaxation code looks like:

do idum = 0,1

if (first_even(lv)) then
ij = idum

else

ij = 1-idum

endif

do j = loops(1lv,2),loope(lv,2)
do i = loops(1lv,1)+mod(j+ij,2),loope(1lv
psi(i,j) = 0.25 * (
psi(i-1,j) + psi(i+1,j) +

> psi(i,j-1) + psi(i,j+1) - rhs(i,j))
end do
end do

call exchange_i(psi,bnx,bny,1lv)
call exchange_j(psi,bnx,bny,1lv)

end do

The restriction operation in parallel is straight-
forward; it is only the interpolation operation, when
the number of points is less than the number of
processors, which is a little tricky. To explain this,
suppose the grid is 2x2 so the only processors in our
8x4 mesh which have points are

0 4

16 20

and when we interpolate to 4x4 we get

0 2 4 6
8 10 12 14
16 18 20 22
24 26 28 30

Therefore the processors no longer communicate with
their nearest neighboring processors — as they did
when the number of points bnx and bny is greater
than or equal to the number of processors n and m
— now they communicate with processors skipi and
skipj away in the 1 and j directions respectively, with

skipi = n/bnx
skipj = m/bny

For both the relaxation and the restriction parts
of the multigrid algorithm use of skipi and skipj in
the exchange routines works perfectly well no matter
how many points per processor there are. It is only
in the interpolate phase that there is any difference.
This difference can be reduced to two extra function
calls send_i and send_j invoked only when skipi and
skipj are respectively greater than 1.

3.3 ParallelI/0

Before going onto report the performance of QGMG
we briefly discuss the issue of I/O. Despite the fact
that MPPs have been around for some time, none
of them appear to have any useful vendor provided
parallel I/O. For example, on the T3D, one can have
all the processors write their part of the global data to
separate files or to separate records of one file, which
is fine if one always runs on the same fixed number
of processors. However as soon as one wants to run
on a different number of processors there is no vendor
provided software which will read the fragmented files
or records back. Therefore we have written our own
parallel I/O to get around this problem. After a little
reflection the obvious solution is to store the parallel
file in the same order as a sequential file would be
written by a single processor. Thus when the parallel
code is run on N processors, the sequential file is read
and split into the appropriate N pieces; then at the
end of the run the output file is re-constituted from
the N processors. This has the added advantages that
the input data files can come from the C-90 and that
the output data files can still be read by our analysis
programs which run on the C-90.

Table 1: Total times in seconds for 10 multigrid cycles

of QGMG on various numbers of processors of the
T3D.

Processors | PVM 3.2 | PVM 3.3 | SHMEM | F90
32 (1x32) 321.9 239.8 244.8 -
32 (4x8) - 209.1 211.7 142.9
64 (1x64) 477.6 144.3 144.6 -
64 (8x8) - 120.8 116.2 77.1
128 (1x128) - 99.5 99.9 -
128 (8x16) - 63.2 60.0 42.7
256 (1x256) - 95.1 87.2 -
256 (16x16) - 42.3 31.7 23.4
512 (2x256) - 43.5 44.0 -
512 (16x32) - 18.9 18.6 15.0

4 Performance of QGMG

In Table 1 we present times in seconds of a ten
multigrid cycle run of QGMG using a grid of size 2562,
on various numbers of processors (and for different
processor topologies) for several different versions of
the code. Note that this size problem does not fit
into the memory of less than 32 T3D processors.
When we first implemented QGMG on the T3D, the
Cray PVM available was version 3.2 which did not
have global reduction operations, that is functions
like SUM, MAX, MIN, so we had to write our own.
Unfortunately they were very inefficient and did not
scale properly, as can be seen from the times in the
second column of Table 1. Later, Cray released version
3.3 of PVM which does have global reduction functions
and these gave dramatic improvements in performance
(column 3). For a further smaller improvement we also
tried the so-called shared memory (SHMEM) global
reduction functions (column 4). For the PVM 3.3
and SHMEM cases the processor topology makes a
significant difference: choosing a square configuration
(e.g. 16x16) yields more than twice the performance
of a linear one (1x256). Recently, it became possible
to run in single precision on the T3D by using the
Fortran 90 compiler. This effectively doubles the size
of the cache, and halves the length of the messages, so
QGMG runs significantly faster as shown in the last
column of Table 1.

The original QGMG code running on all 16 proces-
sors of the C-90 achieved 6.0 Gflops and took 18.9
seconds for this benchmark run. Thus the fastest
time we obtained on the T3D in double precision, 18.6

CUG 1995 FallProceedings 277

seconds for 512 processors, corresponds to 6.1 Gflops.
In single precision, 15.0 seconds is 7.6 Gflops.

5 Conclusions

We have parallelized a 3d quasi-geostrophic multi-
grid code originally designed for the Cray C-90 in
a portable fashion and are running it in production
on the Cray T3D. We have done this via domain
decomposition and message passing using PVM. On
all 16 processors of the C-90 the original code achieved
6 Gflops; currently on 512 processors of the T3D we
obtain 6.1 Gflops with the parallel code (in double
precision). Currently we are production running large-
scale computations of quasi-geostrophic turbulence on
the Cray T3D with system sizes of 2562, to date we
have used almost 14 processor years of CPU time.

Acknowledgements

This work is supported by NSF Grand Challenge
Applications Group Grant ASC-9217394. CFB is
also partially supported by DOE contract DE-FG02-
91ER40672 and by NASA HPCC Group Grant NAG5-
2218. JBW is also partially supported by NOAA
grant DOC-NA-26-GPO-12201. IY and JCM were
also partially supported by NSF through the National
Center for Atmospheric Research. The Cray T3D runs
were performed at the Pittsburgh Supercomputing
Center under grant MCA93AS010P through funding
from the National Science Foundation. We would like
to thank Raghurama Reddy at PSC for his help.

278 CUG 1995 FallProceedings

References

[1] I. Yavneh and J.C. McWilliams, “Multigrid
solution of stably stratified flows: the quasi-

geostrophic equations”, submitted to J. Scz.
Comp. (1995).

[2] P.B. Rhines, Annu. Rev. Fluid Mech., 11, 401
(1979).

[3] R. Sadourny and C. Basdevant, C.R. Acad. Sci.,
39, 2138 (1981).

[4] I. Yavneh, SIAM J. Sci. Comput., 14, 1437-1463
(1993).

[5] J.C. McWilliams, J.B. Weiss, and I. Yavneh,
Science, 264, 410 (1994).

[6] J.C. McWilliams and J.B. Weiss, CHAOS, 4, 305
(1994).

[7] J.G. Charney, J. Atmos. Sci., 28, 1087 (1971).
[8] J. Herring, J. Atmos. Sci., 37, 969 (1980).

[9] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,
R. Manchek and V. Sunderam, “PVM: Parallel
Virtual Machine — A Users’ Guide and Tutorial
for Networked Parallel Computing” (The MIT
Press, Cambridge, MA, 1994).

[10] C.F. Baillie, J.C. McWilliams, J.B. Weiss and
I. Yavneh, “Implementation and Performance of
a Grand Challenge 3d Quasi-Geostrophic Multi-
Grid code on the Cray T3D and IBM SP2”, to
appear in Proc. Supercomputing '95 (1995).

