

CUG 1995 Fall

 Proceedings

283

The Evaluation of Process Accounting Data to Analyze and
Pinpoint Performance Bottlenecks in a Job Mix

Jeffery A. Kuehn

, National Center for Atmospheric Research,
Scientific Computing Division, Boulder, Colorado

ABSTRACT:

When a supercomputer logs large amounts of system or idle time, expensive
resources are being wasted. Normal system monitoring tools oftenfail to expose the source of
this waste because the problems do not always lie within the operating system or its configura-
tion. The evaluation of process accounting data provides many detailed insights into the perfor-
mance problems of a job mix. Not only can process accounting data be used to trace resource
utilization, it can also help to pinpoint performance problems, and in many cases suggest solu-
tions to those problems. This paper discusses process accounting data analysis, as well tech-
niquesfor understanding the hidden messages in the data.

1 Introduction

During the day-to-day management of large computer
systems, there is frequent monitoring of system utilization
through the use of tools such as the sar(l) command. Ideally, the
reports should reflect no idle time and user utilization of 95% or
greater. When this is not the case, conventional wisdom
suggests a need to "tune the system". But adjusting kernel and
NQS configuration parameters does not always produce signif-
icant improvements because the problems often lie outside of
the operating system software within the system's applications.
When NCAR initially embarked on system tuning efforts for an
eight processor Y-MP, adjusting the system configuration
allowed for best case sar(l) reports with user time percentages in
the middle eighties range and idle time noticeable even on the
best days. After migrating toward an application-centered
approach to system tuning, the sar(l) reports reflected utilization
percentages in the middle nineties with little or no idle time
apparent for the general purpose machines, and percentages in
the high nineties for the more lightly loaded special purpose
machines. In short, on an eight processor machine, NCAR was
able to reclaim approximately one additional processor of utili-
zation beyond a best effort system tuning approach by moni-
toring and tuning the applications on a regular basis .

This paper does not suggest hard numbers for limits on appli-
cation performance as that is not possible, but rather provides
guidelines for comparing the jobs in a particular site's job mix
so that the worst performers can be incrementally improved. At
NCAR, the sar(I) reports are used to identify when applications
need tuning. The Technical Consulting Group within NCAR's
Scientific Computing Division is then responsible for ferreting
out the poorly performing applications and improving their

performance by working directly with the user community. In
the three years since this policy was implemented, NCAR's user
community has responded very positively. Furthermore, the
application tuning operations have frequently resulted in
reduced charges. However, since NCAR's user community is
somewhat transient and the applications are the result of
evolving research, continuing application tuning efforts are
required to prevent system performance from sliding back down
into the middle eighty percent range.

The key to the success of these continuing efforts has been to
identify those applications which can benefit most from tuning
and to pursue improving them first. This has the effect of
bringing system performance in line with goals within the
period of a few weeks. The process accounting records, main-
tained for job charging, are the primary source of information
used to identify problem applications.

2 Quick overview of process accounting

A comprehensive discussion of the process accounting
system is beyond the scope of this paper, however a quick over-
view will be helpful. The process accounting records contain a
summary of the accumulated resources used by a process during
its execution. This summary is the basis for the reports printed
by the ja(l) command, but contain more information than ja(1)
typically displays. Most of the information in the process
accounting records comes from the kernel's process table, while
other pieces come from the kernel's job table. The records are
written during the exit of a process (or job) and thus the
accounting records are only available for post-mortem analysis.
The records contain no time-series information, but do contain
some timememory integrals which are useful for charging but

284

CUG 1995 Fall

 Proceedings

not very helpful for tracking performance problems. The avail-
able information includes user id, job id, elapsed time, user time,
system time, memory high water mark, and others. For a
complete list of the fields available see /usr/include/sys/acct.h.

Because the process accounting records contain information
about resource utilization, they can expose problems associated
with an "imbalance" in this area. Since the idea of a balance in
resource utilization is difficult to define, it will be described in
relation to other processes running on the system for the purpose
of this discussion. With this in mind, process accounting can
help to identify programs which are either I/O bound or CPU
bound when compared to other processes on the system. Addi-
tionally, the records can point out, to varying degrees, programs
which have inefficient I/O, inefficient multitasking, and ineffi-
cient memory management. Since the process accounting
records evaluate the process from the kernel's perspective, prob-
lems such as low MFLOP rates, lack of vectorization, or ineffi-
cient algorithms cannot be discerned, but because CPU bound
processes could suffer from one or more of these problems, the
need for further analysis may be implied.

3 Performance problems exposed by process
accounting

As mentioned previously, process accounting clearly exposes
several problems related to I/O performance which directly
contribute to high system time and idle time percentages
observed in sar(l) reports. By focusing optimization efforts on
the processes reporting the highest system times, system perfor-
mance numbers can be quickly affected. Since I/O problems are
also at the root of system idle time, improving the I/O perfor-
mance of applications can positively affect idle time as well. The
use of process accounting records to recognize three classes of
I/O performance problems are examined in this section.

3.1 I/O buffers sized incorrectly

When the library I/O buffers are misconfigured for an appli-
cation, large I/O requests are split into several smaller I/O
requests by the application libraries. This means that a single I/O
request at the user level may generate many calls into the oper-
ating system, each transferring a subset of the data.

3.1.1 Characteristics

Small I/O buffers leave a telltale fingerprint in the process
accounting records. For processes using a significant amount of
resources, both in terms of accumulated system CPU time and in
terms of the amount of data transferred, the following character-
istics can identify those processes which may benefit from I/O
buffer size adjustments.

• A relatively large percentage of total CPU time is system
CPU time.

• A relatively large percentage of the elapsed time is I/O wait
time.

• Much of the I/O wait time is logged as "locked I/O" wait
time.

• The number of logical I/O requests divided by the number of
physical I/O requests will be greater than I .0.

• The average transfer size is relatively small.

• A rough estimate of the transfer rate formed by the quotient
of data transferred and I/O wait time is significantly less than
the device speed.

3.1.2 Further analysis and improvement

The CRI procstat(1) utility can be used during program
execution to determine which files may benefit from larger I/O
buffers. Analysis of the I/O statements in the source code will
show the actual transfer sizes. These transfer sizes should be
considered as the minimum size for an I/O buffer. In the case of
sequential access files, performance can be further improved by
making the I/O buffer size a multiple of this minimum.

3.2 I/O routed through the system cache

The Fortran libraries routinely attempt to route data transfers
around the kernel's buffer cache, but in many cases, such as for
text I/O, Standard C I/O, and illformed raw requests, the data is
sent through the system's buffer cache. For requests on small
files and files which are accessed from many different programs,
passing the data through the buffer cache works to the advantage
of overall system performance. But in the case of very large
datasets associated with grand challenge applications, this is
often an impediment to performance. If such files are read or
written only once, caching them does little good. If they are read
or written more than once, the buffer cache must typically be
inordinately large to ensure reuse of the data, reducing the total
memory available for large codes. Finally, the kernel's buffer
cache management algorithms are geared towards acceptable
performance in the general case, whereas an application that
carefully manages its own I/O can almost always improve on the
general case LRU-style algorithms used in the kernel.

3.2.1 Characteristics

Data movement tbrough the operating system's buffer cache
also leaves a telltale fingerprint in the process accounting files.
For processes using a significant amount of resources, both in
terms of accumulated system CPU time and in terms of the
amount of data transferred, the following characteristics can
identify those processes which are moving data through the
kernel's buffers.

• A relatively large percentage of total CPU time is system
CPU time.

• A relatively large percentage of the elapsed time is I/O wait
time.

• Much of the I/O wait time is logged as "unlocked I/O" wait
time.

• The average transfer size is relatively small.

• A rough estimate of the transfer rate formed by the quotient
of data transferred and I/O wait time is significantly greater
than the device speed.

CUG 1995 Fall

 Proceedings

285

3.2.2 Further analysis and improvement

As with the case of small I/O library buffers, a code passing
data through the system cache can be run under the control of the
CRI tool, procstat(l), to isolate which files are at issue.
Re-routing this data around the system cache may be straightfor-
ward, but several cases in which improving the code required
significant rewrites have been encountered. As always, the costs
and benefits must be weighed.

3.3 Inefficient SSD usage

The SSD is an often misunderstood tool for improving I/O
performance. It usually shows best for out-of-core solutions
where the working data for a program are stored in the SSD and
the program transfers small pieces into memory, cycling repeat-
edly through the working data. In these cases, each word of data
on the SSD is read and written many times during the execution
of the program. The worst case use of the SSD is for files that are
read once and never written. Files which are written once and
never read are generally not appropriate for the SSD except in
special cases where it is necessary to disencumber memory as
quickly as possible so that computation may be resumed. In all
cases, larger transfers to the SSD are more efficient than small
transfers. Therefore, preference should be given to larger data
transfers.

3.3.1 Characteristics

As with other I/O processes, SSD usage or misusage leaves a
clear trail in the process accounting records. For processes using
a significant amount of resources, both in terms of accumulated
system CPU time and in terms of the amount of data transferred
to and from the SSD,the following characteristics can identify
those processes which are not reusing the data they have stored
in the SSD or those which are transferring data in small chunks.

• A relatively large percentage of total CPU time is system
CPU time.

• The average size of an SSD transfer is small.

• The ratio of total SSDI/O to SSD high water mark is small.

3.3.2 Further analysis and improvement

As was the case with other I/O problems, further insight into
performance on a file-by-file basis can be gained by running the
code in question under the control of procstat to isolate the SSD
file accesses requiring optimization. Restructuring the code to
make use of the SSD through larger transfers will reduce the
system time. For those files which are not reusing the data in the
SSD, moving the files back to disk is worth considering.

4 Performance problems implied by process
accounting

Several performance problems which are not clearly exposed
by the process accounting records can still be inferred from
process accounting. As with the I/O problems, the key to recog-
nizing this new class of problems is again the percentage of the
time spent in the operating system. Once a suspicious process is

identified, other performance analysis tools can be employed to
isolate and fix the problem.

4.1 Multitasking problems

Multitasked codes can exhibit unusually high system CPU
times for several reasons, the most common of which stem from
granularity problems, both too coarse and too fine. Furthermore,
if a program requests more processors than it is able to use, an
increase in system time will be evident. Also, seemingly inno-
cent constructs in which a system call occurs within a guarded
region can cause a cascade of deadlock interrupts and thus high
system time.

4.1.1 Characteristics

The first step to identifying poorly multitasked codes in the
accounting records is to make note of those codes which are
flagged as multitasked through the presence of a valid multi-
tasking structure. Though this structure contains information
about the connect time to N CPUs, this information is of limited
usefulness when collected from a process running in a batch
environment. The fingerprint of multitasking problems includes
combinations of the following characteristics in processes using
a significant amount of CPU time resources .

• A relatively large percentage of total elapsed time is system
CPU time.

• A relatively large percentage of total CPU time is system
CPU time.

• A relatively large percentage of total elapsed time spent in
semaphore wait.

4.1.2 Further analysis and improvement

Although the accounting records are not helpful in locating
the source of multitasking problems, CRI' s atexpert(l) tool can
quickly localize the problem and provide insight into its cause.
Depending on the type of problem encountered, a solution may
simply require a reduction in the number of CPUs called, or it
may require some recoding.

4.2 Poor memory management

Codes which make requests to the operating system for
increases in memory will incur a great deal of overhead if
memory must be reshuffled to grant the request. This can
become a problem if an application makes several small memory
requests to the operating system rather than aggregating the
requests. This occurs most often when the application is explic-
itly managing its own memory.

4.2.1 Characteristics

The fingerprint of poor memory management is, like that of
multitasking problems, rather generic~ The characteristics to
watch for are:

• A large otherwise unexplainable system CPU time.

• A relatively large I/O swap count.

286

CUG 1995 Fall

 Proceedings

4.2.2 Further analysis and improvement

The CRI procstat(1) command is also useful in tracking prob-
lems with memory allocation. If memory allocation is in fact a
problem, it can be easily resolved through loader directives
which set the initial size and the default increment for dynami-
cally managed memory.

4.3 CPU bound processes and low MFLOP rates

A CPU bound process is one which spends most of its time
running in user space. Frequently, this is caused by slow and/or
inefficient algorithms which the compiler fails to vectorize. The
accounting records reveal nothing about the MFLOP rates
achieved by a code, but a disproportionately large percentage of
the total CPU time in user space execution can imply that there
may be a problem. Further analysis with more specialized tools
will be necessary to determine if a particular CPU bound code
will be responsive to optimization.

4.3.1 Characteristics

Unlike the other performance problems discussed in this
paper, the hallmark characteristic of a CPU bound process is an
unusually small percentage of the total CPU time spent in the
operating system. Other clues that a code is CPU bound might
include an I/O wait time that accounts for an unusually small
percentage of the elapsed time. While these could indicate an
efficient but computationally intensive process, it is usually
worth further analysis.

4.3.2 Further analysis and improvement

Most of CRI's performance analysis tools are geared towards
analyzing CPU bound codes, but the first and simplest tool is the
hardware performance monitor. This tool can provide a snapshot
of the code's actual MFLOP rate which can be directly compared
against expected performance numbers for the machine in ques-
tion. Should the code be running at well below the expected
performance, additional tools such as the Perftrace libraries can
be used to instrument the code and locate the performance
bottlenecks for optimization.

5 Is once enough?

How frequently to monitor system utilization will obviously
depend on the user community and job mix. If the community is
transient, or if the job mix varies greatly, it is worthwhile to
perform frequent examinations of the process accounting. If the
job mix is more stable and the users are veterans, less frequent
monitoring will suffice. At NCAR, the sar(l) reports help to
determine the appropriate level of system monitoring and user
contact required for optimum system utilization. When the
sar(1) reports appear good, monitoring is given a low priority.
When the sar(1) reports look poor, monitoring demands a higher
priority. At this point, a few of the worst performers will be
contacted each day for a couple of weeks. Most of the users
contacted have responded well and were willing to cooperate.
Working with the users representing the worst offending codes
is usually sufficient to bring the machine's performance back
into line with expectations in a very short period of time. Over
the past few years, the method for contacting users who appear
to be having problems has been streamlined down to a short
email with an offer of assistance and an attached explanation of
simple changes aimed at correcting the problem, such as resizing
I/O buffers.

6 Summary

There is more to tuning a system than adjusting the kernel
configuration parameters. To achieve the highest possible
system utilization numbers, it is also necessary to tune the appli-
cations running on the system. To put this another way, a
well-tuned operating system cannot compensate for a
poorly-tuned job mix. Process accounting records can provide
valuable clues about which applications are performing poorly
and, in some cases, can also provide clues as to why an applica-
tion is performing poorly. Regular monitoring of the process
accounting records and contact with the user community can be
very effective tools in maintaining a well-tuned and efficient
system. While application tuning is not a panacea for system
performance problems, it is an integral part of maximizing the
available resources on a supercomputer.

