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ABSTRACT: 

 

The number of different computer architectures currently available creates prob-
lems for application developers who would like to maintain just one common source base. Early
experiences in using the prototype software for the Message Passing Toolkit (MPT) to develop
a single source code to run on both CRAY MPP (T3D/T3E) and parallel-vector processor (PVP)
architectures as well as other types of machines will be presented.  Use of the upcoming private
I/O option is also documented.  It is shown that this software provides an extremely portable,
high-performance method of implementing message-passing while still taking advantage of
many of the features of a shared-memory environment.

 

1 Overview of the MPT Software

 

A Message Passing Toolkit is scheduled for release later this
year.  The initial release of the Toolkit will consist of an opti-
mized, multitasked version of PVM,  a version of MPI and a
subset of the high-performance SHMEM library for the CRAY
J90/YMP, C90 and T90.  Eventually, the toolkit will also be
available on the T3D/T3E and will contain an optimized version
of MPI.  These libraries allow for the easy porting of existing
codes that may come from machine types ranging from clusters
of workstations to true MPPs.   This implementation allows for
the mixing of SHMEM routines in the same application with
PVM or MPI.  This feature gives the application developer the
option of coding critical portions of a code with the SHMEM
routines to take full advantage of the benefits of shared memory
for efficient data transfer and synchronization between tasks.

The PVM and SHMEM portions of this software grew out of
the T3D emulator software which was used on CRAY PVP
machines before the CRAY T3D was generally available.  It
relies on macrotasking, which is a mature and stable product.
The user may find it helpful to think of the MPT as providing a
PVM or MPI interface to macrotasking.

 

1.1 Program Initiation

 

Two basic options exist for initiating tasks in an application,
one designed to be more familiar to network-PVM users and
one designed to be familiar to CRAY T3D users.

In the first method, the master task issues a "pvm_spawn"
call with the "PvmMtSpawn" flag which will cause the spawned
processes to be started in a new multitasked group.

In the second approach, tasks are initiated by the master task
when it calls a routine "START_PES(NPES)".  A zero value
passed to this routine will cause the value of the environment
variable NPES to be used, thus allowing the number of tasks to
be determined at run time.  This approach was designed to allow
codes that currently run on the CRAY-T3D to port easily while
still allowing the flexibility of specifying the number of tasks to
use at run time.

The second method effectively produces a single,  "hostless"
(in the PVM sense) executable.  This is the method utilized in
the codes ported to date.

 

1.2 Data Transfer

 

Data transfer between tasks is accomplished by memory
copies, although exactly how this is done depends on whether
PVM or SHMEM is used.  In the case of PVM, data is copied
from the sender's area to a shared buffer, where it sits until it is
"received" by another task.

SHMEM data transfers are performed by copying memory
directly from one task's stack to another task's stack.  In order
for one task to know the address of another task's data object,
some restrictions on the storage type of the data objects must be
made.  We define the term "symmetric" to mean an object  that
exists in the same relative place on all tasks' stack and require
that all data used by the SHMEM routines be symmetric.  For C
and Fortran codes on PVP machines, this implies that the data
reside in TASKCOMMON.Copyright © Cray Research Inc. All rights reserved.
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On the CRAY MPP machines, symmetric data includes
FORTRAN data placed in COMMON storage, C static data
storage class, data allocated with shpalloc/shmalloc
(FORTRAN/ C), and  data declared  to be symmetric via a new
compiler directive (#pragma symmetric for C, !DIR$ symmetric
for F90).

 

1.3 Barriers

 

The basic method for performing a barrier in the PVP version
of the Toolkit is based on the macrotasking "BARSYNC"
routine, which is a spin-wait barrier implemented in user's space.
The simpliest, most direct way to synchronize all tasks is to use
the "BARRIER()" call. Alternatively, the PVM_BARRIER and
BARSYNC routines can be used to  synchronize all tasks or a
sub-group.  Although other barrier methods exist, this one was
chosen as it provides good  performance and doesn't impact
batch processing negatively.

 

2 Primary Experiences

 

To date we have ported several codes utilizing the prototype
software.  One code came from the T3D and was implemented
with the SHMEM library.  Two other codes had been running on
a network of workstations and were based on network-PVM.
The largest code was over 500,000 lines of Fortran. Compati-
bility issues encountered can be categorized into the following
areas: private datatype specification; task initiation; integer size;
and private I/O.  Below we explain how we dealt with these areas
in the codes.

 

2.1 Private Datatype Specification

 

The first issue that must be dealt with is to ensure that all data
is private. On the CRAY T3D and on networks of workstations,
all data is private unless explicitly defined otherwise.  On the
PVP shared-memory machines, all data that is global or static is
shared among tasks. For FORTRAN codes, this means data that
is in COMMON or that is used in DATA or SAVE statements.
Data in C that is global includes data declared outside the func-
tion level and data that is statically declared.  These shared data
objects may be converted to task-private via a TASKCOMMON
compiler directive.  This can be done with the '-a taskcommon'
and '-h taskcommon' options on the F90 and C compilers,
respectively.  As no equivalent option exists for the CF77
compiler, each COMMON must be declared as
TASKCOMMON.  Each of the codes ported so contained a mix
of Fortran 77 and C source.  The conversion to
TASKCOMMON of the Fortran 77 code was accomplished
automatically using SED scripts.

An additional consideration when using the SHMEM library
is that all data to be transferred must be "symmetric", i.e., all data
used as the target or source when calling the get and put routines
must be in TASKCOMMON.  This is required in order for the
library to know where data on the other task's stack is placed.

 

2.2 Task Initiation 

 

Changes needed to initiate tasks should be relatively minor,
provided the master task is generated by the same executable

used for the slave tasks.  The MPT provides some extenstions
that users may find handy to simplify the startup process. For
example, the "START_PES(NPES)" routine starts up tasks
simply, and the "SHMEM_N_PES()" and
"SHMEM_MY_PE()"  funtions return the number of PEs (npes)
and the PE number in the range of 0:npes-1, respectively.  Alter-
natively, the functions "MY_PE()" and "NUM_PES()" can be
used to return the PE number and number of PEs, respectively.
When "START_PES()" is used, command line options passed to
the executable will exist for all tasks, so there is no need for the
master task to read and broadcast the values.  The same input file
may be read by different tasks so that that data need not neces-
sarily be read by one process and then broadcast to the other
processes.

 

2.3 Integer Size 

 

A PVM compatibilty issue that must be dealt with is integer
size.  Standard network PVM only implements  4-byte integers,
whereas CRAY machines are based on 8-byte integers.  It should
be easy for the user to supply a variable or to utilize macros to
ensure that the correct datatype is passed to the PVM
pack/unpack routines.  However, many users find the method of
sending a PVM message (init, pack and send) combersome and
have written a single routine to perform these three functions.
They pass a pointer to the data through this routine and rely on
all data to be packed as integer.  This is not a healthy practice in
general and will not work on CRAY machines.   Better methods
are to use pvm_psend/precv, which passes data as bytes, or to
pass an argument indicating the variable type to be used in
packing the data.  Another option is to pass all data as blocks of
bytes. A disadvantage of the byte-based methods is that it still
requires the programmer to be aware of the relative datatype
sizes on the machine used.

 

2.4 I/O 

 

Multitasked codes on CRI systems, by default, use shared
I/O. This is exactly opposite to the situation that exists on clus-
tered machines, where I/O is all private and a single file cannot
be shared.  I/O done through C can circumvent the issue by using
unique file descriptors for each task, but for existing Fortran
codes, the workaround may involve significant source code
modification.  To address this issue, the Programming Environ-
ment (PE 2.0) introduces the capability of specifying files to be
private to each task.

The user can assign the "private" attribute via the assign
command or system call.  This approach has the advantage of
allowing the application to specify global or private i/o on a per
file basis, whichever is more convenient for the given application.

 

3 Performance Notes and Results 

 

Scalability results for the three codes are shown in Tables 1,
2 and 3.  The first example  from an academic code called
FLO67. This code is primarily used for benchmarking purposes.
A version of this code that was running on  the CRAY-T3D
using the SHMEM library was ported to the C90 using the MPT
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prototype software.  All communication was done on the C90
with the SHMEM routines.   The code employs a multigrid
method and the smallest mesh used determines the amount of
parallelism in the code. For this size example, this was the
limiting factor to the scalability.  The speedups of 1.8 on 2
processors, 2.9  on 4 processors and 4 on 8 processors are quite
good and similar to the highly optimized autotasking implemen-
tation of the code.

The second table shows the performance of a fluids code. The
original code was based on PVM and only scaled up to 8 proces-
sors with a disappointing speedup of 4.4 on 8 processors. The
communication intensive portions of the code were changed to
use SHMEM routines, and some synchronization points were
eliminated.  This caused the speedups to improve to 2.0 on two
processors, 4.0 on 4 processors, 7.3 on 8 processors and 11.0 on
16 processors.  Work on single node performance and further
revisions in the parallel version resulted in improved speedups
of 7.7 on 8 processors and 12.1 on 16 processors.

The third table shows data from a finite element structures
code. Work on this code is currently on-going. This data is from
the initial port of the code, i.e., no optimizations were made yet.
If we ignore the time spent during the data input and problem
setup phase, it can be seen that the scalability is quite good.
Further work is planned to run the code on more processors and
with larger examples.

A few things became clear during the work that went into
porting these codes.  In general, the SHMEM routines provide
the highest performance at the cost of reduced portability to
non-CRAY machines.  This performance difference is most
apparent for short messages.  The differences are due to the fact
that the SHMEM routines do one memory copy whereas the
PVM routines perform two memory copies (to and from the
buffer) in addition to the overhead of the extra PVM protocol.

Secondly, the amount of time spent in the barrier routine has
a great effect on overall performance.  It is preferable to use a
barrier on the whole set of tasks rather than a subset. The
PVM_BARRIER works more efficiently when the Cray-exten-
sion "PVMALL" groupname is used, as this allows the function
to skip the analysis of which tasks are in the named group.

The applications developer may need to decide whether to
have a master task read in some data and broadcast it to the other
tasks  or  to have each task read in the data from it's own private
file.   Although the latter method is easier to program, in general

the cost of each processor doing it's own I/O increases as the
number of PEs increases.  Typically,  it does not matter which
method is used for small numbers of tasks,  but as the number of
tasks increases, the more efficient method  is to have one task
read the data and broadcast it to the other tasks.

A significant advantage of the CRAY PVP systems is that
multitasked codes can be run during batch relatively easily.
Some systems have difficulty running multiprocessed jobs on an
active shared system, as any memory swapping or time-slicing
causes problems in recognizing deadlock  and/or seriously
degrades overall system performance.  This causes some organi-
zations to throttle usage on their parallel computer such that only
one process runs on a CPU at a time.  The multitasking software
that this new Toolkit is built on is a mature, reliable product and
many of these system issues were addressed some time ago.  In
the course of this work, we have seen excellant speedups for 2
and 4 processors during a heavily loaded J90 system on a regular
basis.

 

4 Summary

 

We have successfully demonstrated the usefulness of the
prototype MPT software on several real-world applications.
High performance is achieved through fast data transfers and
synchronizations.  Portability is achieved across the CRAY plat-
forms and only minor changes are necessary to enable codes to
run on non-CRAY architectures.

The adoption of a distributed-memory programming style
does not prevent us from taking advantage of some of the
features of the shared memory and bonafide parallel operating
system of these machines.   The shared filesytem provides the
developer with the choice of using shared or private I/O, while
still being able to take advantage of the fast I/O subsystems of
the CRAY machines.  The convenience of having one execut-
able is provided, as is the convenience of allowing the end-user
the capability of choosing the number of tasks at runtime. The
applications developer will appreciate the automatic deadlock
detection feature, the hardware-performance monitor and the
full set of performance software tools available. The computer
system can be fully utilized as these codes run well in a batch
environment and do not degrade system throughput.
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Table 1.  FLO67:  Multigrid Fluids Example.

 

FLO67:  96x16x24 mesh with three levels, 10 cycles

 

1 CPU 2CPU 4CPU 8CPU

 

C90 Autotasking 1.0 1.75 2.75 3.84
C90 MPT SHEM Proto 1.0 1.79 2.91 4.14

4 PE 8 PE 16 PE                       
T3D W/ SHEM 1.0 1.9 3.03

 

Table 2. Fluids Code 157K Cell Example.

 

Performance  Relative  To 1 CPU

 

1 CPU 2 CPU 4 CPU 8 CPU 16 CPU

 

J90 MPT-PVM
Original Code   1.0 2.0 3.6 4.4 2.7 
Improve Communications 1.0 2.1 4.0 7.3 11.0
More Optimizations 1.0 n.a. n.a. 7.7 12.1

C90 Autotasking 1.0 1.5 1.9 n.a. n.a.

 

Table 3. 4000  Finite Element Sturctures Example.

 

J90 Speedups

 

   

 

1 CPU 2 CPU 4 CPU                       

 

Overall 1.0 1.95 2.96 
One Statuc Increment         1.0 2.21 3.96


