

CUG 1995 Fall

 Proceedings

33

SUMMARY

This paper presents the results of porting a code from the
Cray C90 to the T3D. The code is part of a global ocean
modeling application that reaches a tidal solution by
objective analysis which is an empirical approach based on
extrapolating satellite altimetry data through the use of
expansion coefficients determined by an estimation
algorithm.

The time line for migration of the estimation algorithm
begins with the C90 vector version (single CPU and
autotasked). Next the code is ported to the T3D using a
message passing strategy (SHMEM calls for
communication). Single PE optimizations for memory and
cache use are continuing and a back-port of the code is
planned to the J932 based on the division of work in the T3D
version.

The major portion of the CPU time in the estimation
algorithm is in the Basic Linear Algebra Subprograms
(BLAS) libraries which give good performance on both Cray
platforms. A major advantage of the T3D is that the much
larger problems that are planned and that require more
memory can be solved by adding more T3D processors.

ABSTRACT

There is a need for more accurate models of ocean tides and
circulations. The accuracy of ocean models is improved
when the models combine a theoretical simulation approach
with an empirical analysis of satellite altimetry data.
Increasing model accuracy often requires more memory and
more processors working simultaneously. Efficient parallel
solution algorithms can reduce the wall-clock time t o get a
tidal solution as well as take advantage of the distributed
memory available to solve large memory problems on the
T3D.

INTRODUCTION

Successfully interpreting oceanic measurements provided by
space borne altimeters improves the accuracy of oceanic tide
models. An empirical tidal model for processing
TOPEX/Poseidon satellite altimeter data solves for tidal
parameters by an estimation algorithm. The algorithm is to
difference the data collected at each ground location, then set
up a system of observation equations, form the weight

matrix, and then form the normal equations which provide a least
squares solution for the unknown tidal parameters.

The model is typically run on a Cray C90. The BLAS Level 2 and 3
are used extensively in the formation of the normal equations. The
current problem solves for 5,120 unknowns and ultimately it is
desirable to solve for 15,000 unknown tidal parameters
simultaneously.

The large distributed memory and good performance of the BLAS
libraries on the T3D motivated the migration of this application in
anticipation of the upcoming need to solve for a larger number of
unknown parameters. Results are presented for both the T3D and
the C90/J90.

APPLICATION and ALGORITHM

This application involves altimeter data retrieval from the
TOPEX/Poseidon satellite which orbits the earth in such a way that
every ten days it passes over the exact same location on the earth’s
surface. The estimation algorithm begins with differencing the data
collected by the satellite at each location on the ground track. (see
Figure 1.)

Figure 1. Basic Geometry

Basic Geometry

A

B

C

x

x
x

tA

tA+10

tA+20

tA+30

tA+40

tB+40

tB+20

tB+10

tC+30

tB

tC

ground-track

gap

gap
gap

TIME

Estimation Algorithm for Ocean Tides, C90-->T3D

Andrea Hudson, Dennis Morrow, Nick Pavlis

, and

Braulio Sanchez

,
Nasa Goddard Space Flight Center and Cray Research, Inc.

34

CUG 1995 Fall

 Proceedings

The differenced data form the set of observation equations.
The observation equations are reduced to a symmetric matrix of
order 43 (the current maximum number of differenced
observations representing 430 days of TOPEX/Poseidon data).
This matrix is the inverse of the variance/covariance matrix and
is also called the weight matrix.

The algorithm is a loop through all the reference locations
(currently 50,000). The observation equations are formed, and
the contribution of each location to the normal equations is
calculated by a series of four BLAS library routines: STRMM,
STRMV, SSYRK, and SGEMV.

The algorithm can be parallelized since the calculations are
independent for each location. This approach to parallelization,
although straightforward, does not reduce the memory
requirement. A second approach to parallelization is to divide
the data and the work in updating the normal matrix in the
SSYRK BLAS routine. Subdividing the data in this manner
also reduces the memory requirement for each individual
processor.

MIGRATION of ESTIMATION ALGORITHM

C90 Code characteristics

The code processes data for 50,000 locations and solves for a
maximum of 43 observations per location. The plan is to move
toward solving for 80 observations per location. The current
code solves for 5,120 unknown parameters, and the plan is to
move toward solving for 11,200 tidal parameters immediately
and to eventually solve for 15,000 parameters.

The runtime profile of the code is dominated by the SSYRK
BLAS routine which takes 98% of the total CPU time on the
C90. The code runs for over 14 hours at a rate of 867 Mflops
on one C90 processor and uses a maximum of 27 Mwords of
memory.

I/O is not significant. The normal matrix and right-hand -side
vector (about 105 Mbytes) are written out to disk at the
conclusion of the code and a follow-on code actuall y solves the
equations to retrieve the tidal parameters.

Migration to T3D

Figure 2 shows data layout scheme for distributing the
right-hand-side vecto r U, the normal matrix DN, and the
intermediate matrix A. This figure illustrates an equal division
of data among four processors labeled PE0 through PE3.

 Figure 2. Distributed vector U and arrays A and DN

Each processor is assigned one quarter of the data. The dimension
of the U vector is 1,280 on each of the four T3D processors, making
up the total length of all 5,120 elements in U .

The work in calculating the J columns of both matrix A and DN is
split similarly among the four processors. The minimum number of
processors that could be used for this particular application is four
because it takes at least four processors to split the large DN array
(which has dimensions 5120 x 5120 on the C90). The dimension of
DN on each T3D processor is 5120 x 1280.

Figure 3 shows the process of updating the U vector (the
right- hand-side). This i s done with the SGEMV BLAS routine.
The intermediate vector DL is replicated on each processor. Each
processor has only one quarter of the A matrix and the U vector.

Figure 3. Updating the U Vector

The load is exactly balanced and there is no communication
needed since the U vector is an end result, and therefore does not
move out of the owning processor’s memory until the end of the
job.

Figure 4 shows the process of updating the A intermediate matrix.
This is accomplished with a single call to the STRMM BLAS
routine. Each processor has the entire R weight matrix, and does
calculations on only one quarter of the A matrix. The R matrix is
a square matrix of order 43. (Figure 4 is not to scale).

 Figure 4. Updating the A Intermediate Matrix.

 Communication is then needed among processors since an
up-to-date copy of t he entire A matrix is needed on all processors
for the next BLAS library routine. This communication is shown
in Figure 5.

Updating U Vector

AT= * +

U U

DL

U, DN(..,J),
A(..,J)

Pe 2 Pe 3Pe 1Pe 0

Updating A Matrix

= *RA +A A

CUG 1995 Fall

 Proceedings

35

Communication is first accomplished using the shmem_put
primitive from the SHMEM library to build a composite A
matrix on PE0. Next the shmem_broadcast routine is used to
distribute the composite A matrix to all PEs. Figure 5 shows a
schematic of the redistribution of the composite A matrix on
eight PEs. This communication scheme needs to be optimized
because it requires a barrier synchronization and it also creates
a hot spot where all PEs are trying to communicate with PE0
at the same time. The Apprentice performance analysis tool
showed that there was very little gain over having all the PEs
redundantly calculate the entire A matrix, and then avoiding
this particular communication altogether.

Figure 5. Communicating the A Matrix

Figure 6 shows the process of updating the DN normal matrix.
On the C90, this is accomplished with a single call to the
SSYRK BLAS routine. On the T3D this is accomplished by a
loop over a call to the SGEMV blas routine. Each processor
has the entire A matrix and exactly one quarter of the entire
DN matrix. An initial strategy of assigning PE0 the first set of
columns in DN, PE1 the second set, etc. lead to load
imbalance and required a call to a barrier routine for
synchronization. This was because PE0 had all the short
length columns, and therefore finished first. A subsequent

strategy of assigning stripes of columns balanced the workload
because each PE then had a mix of short and long columns from the
normal matrix. No communication is involved because, like the U
right-hand-side vec tor, the normal matrix is a final result and is not
needed until the end of the job.

Figure 6. Updating the DN Matrix.

In summary, migration from the C90 to the T3D is accomplished by
copying the weight matrix R and other initialization data to each
processor. Each processor does redundant work in calculating the
DL intermediate vector and in equation setup. The work in the
STRMM BLAS routine can be split up among the processors, but this
requires communication. The SSYRK routine can be split into a
series of calls to the SGEMV routine, and this allows the rank K
update to be done in parallel. Finally shmem_min and shmem_max
routines are used to identify the minimum and maximum element in
both the normal matrix and the right-hand-side ve ctor in order to
verify results with the C90.

RESULTS

Table 1 presents the YMP-C916 non-dedi cated runs on 1-8 c pus for
5,120 unknowns and with only 100 locations . One hundred
locations is a small but representative subset of the 50,000 actual
locations that need to be processed.

 5120 Unknowns and 100 Locations

 # CPU wall Mflops total
 cpus sec. sec. /CPU Speedup Gflops

 1 102 102 867 1.0 0.87
 2 103 73 852 1.7 1.4
 4 103 43 853 2.5 2.1
 8 103 33 853 3.3 2.8

Table 1. YMP-C90 r uns

All the listed computer runs were made during the day on production
systems and none of the results are benchmark runs. The reported
wall-clock times w ill vary depending on the load and number of jobs
in the system. The listed CPU times and megaflop-per-CPU rates
are fairly independent of system load. All the runs listed were made
with autotasking and the major factor in speedup is the autotasked
BLAS routines in the SCILIB scientific library.

Updating Normal Matrix

AT= * +DN DNA

Stage 1: Build composite matrix on PE0.

shmem_put(cv0(my_pe()*local_size),
 dv,
 local_size,
 0)

Stage 2: Distribute composite matrix.

 shmem_broadcast(a, a, size,
 PE_root,
 PE_start,
 logPE_stride,
 PE_size,
 pSync)

Redistribution of Composite
Solution Matrix

PE
0

PE
1

PE
2

PE
3

PE
4

PE
5

PE
6

PE
7

36

CUG 1995 Fall

 Proceedings

The CPU times increase somewhat with additional CPUs and the
reduction in wall clock time illustrates the tradeoff between
turnaround time and CPU cycles.

 # CPU wall Mflops total
cpus sec. sec. /CPU Speedup Mflops

 1 470 471 188 1.0 188
 2 476 283 185 1.7 314
 4 477 186 185 2.6 481
 8 478 138 184 3.5 642
 12 482 123 183 4.0 732
 16 486 115 182 4.3 779

Table 2. J916 runs.

Table 2 shows the YMP-J916 non-dedicat ed runs on 1-16 cpu s for
the same size problem using the autotasked BLAS routines. The
speedup flattens out at just above four. Autotasked BLAS routines
provide a good parallel solution on a small number of CPUs with
minimal overhead on a loaded system.

Figure 7. Elapsed T3D seconds.

Figures 7 and 8 show the T3D results. Figure 7 shows elapsed
seconds and Figure 8 shows equivalent C90 Mflops. Both figures
have the number of T3D processors plotted on the X-axis.

 Figure 8. C90-equiva lent Mflops on the T3D

The T3D Mflops reported in Figure 8 are C90-equivalent
Mflops conservatively calculated by taking the raw flop count
from the hardware performance monitor on the C90 and
dividing that number by the elapsed time on the T3D. The T3D
version of the estimation algorithm makes redundant
calculations and therefore achieves a higher actual Mflop rate.

FUTURE PLANS

Our future plans are as follows:

1. Larger problems (more unknowns and more observation per
 location)
2. Single PE optimizations for memory and cache use
3. Back-port the T3D version of the algorithm to the J932
4. Implement the PBLAS (Parallel Basic Linear Algebra
 Subprograms) on the T3D and compare performance with
 the SHMEM implementation
5. Remove the power-of-two restriction on the number of
 unknown tidal parameters
6. Parallel I/O

CONCLUSIONS

The profile of the C90 and J90 autotasked implementation
showed that 98% of the total CPU time is spent in BLAS
library routines. Using autotasking, speedups ranged from 2 to
4 out of 12 CPUs. Production rates on the J916 were 780
Mflops and 2.8 Gflops on the C98.

The distributed memory implementation on the Cray T3D
attained 2.8 Gflops (conservatively based on C90-equivalent
flop count divided by the elapsed time). The speedup curve
up to 128 processors is proportional to the number of
processors. The curve does not appear to have flattened yet,
but eventually the serial code will begin to dominate as the
number of processors increases.

ACKNOWLEDGEMENTS

The Cray supercomputer used in this investigation was
provided through funding by NASA Offices of Mission to
Planet Earth, Aeronautics, and Space Science.

CRAY, CRAY Y-MP, an d UNICOS are federally registered
trademarks and Autotasking and CRAY Y-MPE L are
trademarks of Cray Research, Inc. The UNICOS operating
system is derived from the UNIX System Laboratories, Inc.
UNIX System V operating system. UNICOS is also based in
part on the Fourth Berkeley Software Distribution under
license from The Regents of the University of California.

REFERENCES

1. Cray Research, Inc., Unicos Math and Scientific
Library Reference Manual, Volume 3, SR-2081
6.0, 1991.

2 Sanchez, B.V., Rao, D.B., and Wolfson, P.G.,
Objective Analysis for Tides in a Closed Basin,
Marine Geodesy, 9(1), 71-91, 198 5.

T3D Mflops (using C90 flopcount)

Processors

Mflops

0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

4 8 1 6 3 2 6 4 1 2 8

Mflops

Elapsed Seconds for 100 Locations

Processors

Seconds

1

1 0

1 0 0

1 0 0 0

4 8 1 6 3 2 6 4 1 2 8

Seconds

