Monitoring Object Library Usage and Changes

R.K. OwenSterling Software/NASA Ames Research Center

ABSTRACT: The NASA Ames Numerical Aerodynamic Simulation program / Aeronau-
tics Consolidated Supercomputing Facility (NAS/ACSF) supercomputing center services
over 1600 users, and has numerous analysts with root access. Several tools have been de-
veloped to monitor object library usage and changes. Some of the tools do “non-invasive”
monitoring and other tools implement run-time logging even for object-only libraries. The
run-time logging identifies who, when, and what is being used. The benefits are that real
usage can be measured, unused libraries can be discontinued, training and optimization
efforts can be focused at those numerical methods that are actually used. An overview of
the tools will be given and the results will be discussed.

1 Introduction

A large site with hundreds of users and numerous ana-
lysts with root access poses a unique challenge to track-
ing and maintaining third party libraries. The com-
bined NASA Ames Numerical Aerodynamic Simulation
program / Aeronautics Consolidated Supercomputing Fa-
cility (NAS/ACSF) supercomputing center services over
1600 users locally and across the North American conti-
nent. This site has two Cray C90s running the UNICOS
8.0.3 operating system, one with 16 processors and one
gigaword of memory, the other with 8 processors and 256
megawords of memory. The environment is maintained by
approximately 50 analysts each of whom have root access.
With this many analysts with root access there is the pos-
sibility of some confusion particularly when dealing with
the math or graphic libraries. Non-prime analysts may
make good intentioned object library changes at the urg-
ing of panicked users calling during off-hours, which may
result in confusion and problems days or weeks later. Li-
braries once installed become entrenched and nearly im-
possible to remove for fear that some users may need the
object library for their codes.

In such an environment, several tools have been devel-
oped in the last three years that monitor object library
changes, load usage, run-time usage, and help create on-
line documentation. The tools follow the UNIX toolkit
approach of performing a single function and relying on
other tools for scheduling, parsing, etc. This paper de-
scribes the underlining concepts and design issues for each

of the tools in some detail.

Directory File

filename

Inode

/

file type
permission

size

atime

mtime

ctime

file contents

File
System

%

Figure 1. Symbolic representation of UNIX files and in-
odes.

2 UNICOS/UNIX File
Internals

System

The UNICOS/UNIX operating system provides some
unique abilities to monitor access. The inode for each
file contains several bits of information some of which is

CUG 1995 FallProceedings 373

(refer to figure 1) the file type, access permissions, owner
and group id numbers, file size, number of links, and sev-
eral times - atime, mtime, ctime. The entry atime refers
to the last time the file contents were accessed or read,
mtime 1s the last time the file contents were modified,
and finally ctime is the last time the inode for the file was
modified. Incidentally, a long directory listing reports the
mtime value for each file. This inode information, par-
ticularly the atime and mtime forms the basis for a col-
lection of tools to perform non-invasive relocatable object
library monitoring.

2.1

The first tool for monitoring described here, lb-
mon, searches several standard library paths (/1ib,
/usr/1lib, /usr/local/lib, /usr/unsupported/lib,
and /usr/nas/lib, where the library path is spe-
cific to the given machine and is customized via the
Makefile. It maintains information with log files in
/usr/spool/libmon. The log file tracks when it was cre-
ated or notes when the specified library is modified. For
example, here are the contents of 1ibm.log

Library Monitoring - libmon

Mon_Mar_06_1995_07:00 Wed_Feb_08_1995_09:39 LOG_CREATED
Tue_Aug_22_1995_17:00 Tue_Aug_22_1995_16:04 LIB_MODIFIED

The first date and time note when the entry was made,
the second date and time is the library mitime. The [ib-
mon tool is called from a cron job once every hour and
tracks the library mtime by changing the log file mtime
such that they match. If a subsequent scan finds a differ-
ence then libmon flags the change, logs it, and resets the
log file mtime. Note that the date and time is in a spe-
cial format to be used with another tool, libg, that parses
through and selects lines according to the date and time.

2.2 Non-invasive Library Usage Tracking
- libuse

An approximate measure of library usage can be deter-
mined by periodically checking the object library atime.
The tool, libuse, is invoked every 10 minutes from a
cron job and checks whether the object library was
read since the last time libuse was executed. Many
standard libraries are read whether they are needed or
not, such as /1lib/libm.a, hence the list of object li-
brary directories should only include those containing
optional third-party object libraries specific to that ma-
chine. For example, one of the machines at this site has

374 CUG 1995 FallProceedings

the paths /usr/local/1ib, /usr/unsupported/lib, and
/usr/nas/1ib. The log files are stored in the directory
/usr/spool/libuse, one for each library, where it writes
a line with the date and time. It may also contain addi-
tional information noting whether the object library was
modified. So the lzbuse files reproduce the same informa-
tion as ltbmon, but due to the volume of entries is less easy
to use. The following abridged example, 1ibnag.log, is
of the NAG (Numerical Algorithms Group) mathematical
library

Mon_Mar_06_1995_17:00 LOG_CREATED
Tue_Mar_21_1995_16:30
Tue_Mar_21_1995_16:40

Fri_May_26_1995_16:00
Mon_Jun_05_1995_11:30 LIB_MODIFIED
Tue_Jun_06_1995_09:40
Tue_Jun_06_1995_13:10

Notice that the libuse log files use the same peculiar
date and time format that can be parsed by libq.

One of the disadvantages of libmon/libuse is that there
is no easy way to determine who made the changes or
who used the library. In particular, libuse can not deter-
mine whether the object library was read once or multiple
times in the last 10 minutes and by whom. The informa-
tion only approximately measures how often the object
library is compiled with and can not determine whether
the library routines are used or not. Alternately, an ex-
ecutable can be compiled once with one of the numeric
object libraries and the program may be executed often.

2.3 Parsing Log Files - libq

Hundreds of log files can be generated and it becomes
problematic to determine which of the object libraries
were modified or used within a given period of time.
The tool, libg is a grep-like tool designed to easily search
through the libmon and libuse log files and is flexible
enough to search any file that uses the same format. All
options are given on the command line along with the
range of date and times to select for. There are defaults
for each data and time range end point. One option spec-
ifies to list only file names for those log files which have
entries within the specified date and time range. Another
option lists only the lines that fall within the date and
time range, which is useful for doing a line count of ‘hits’.

Yet another option will allow the passing of all lines that
do not fall within the date and time range. Thus, libg
forms the basis for several scripts that measure library
usage metrics. Typically, first libg is used to find which
log files have entries within the specified time interval,
and secondly then to output the selected lines within the
given time and date range which are then counted.

2.4 Additional Script Tools - libdate

libdate 1s a very simple tool that just outputs the date and
time in a format that can be parsed by libg. A typical
use of libdate is in an application front-end script where
the script tracks by whom and when the application was
executed. The following example appends the date, time,
and username to a log file.

echo ‘libdate‘ ‘logname‘ >> /usr/spool/logs/logfile

Library Monitoring - daily statistics

3500 T T T T T T T
BCSLIB -~
CRAYFISHPAK -8--
IMSL -&--
3000 - NAG —<— 7
. Total ———
T N
2500 / .
// \\\
J N
/ Y\
2000 ! | 4
/ N
i A \\
// 7 Tome A \
! - T A
1500 - [Ta y]
! / \ \
// /// \\\ \\
i N \
! / Y
1000 - I | 4
/ o D o \\\
/ T N\
500 a7 Ty B
jNa|
0 ¥
Sun Mon Tue Wed Thu Fri Sat

Sep'94 - Aug'95

Figure 2: One year’s library usage data - daily totals -
from Sept. 1, 1994 to Aug. 31, 1995

Library Monitoring - monthly statistics

2000 T T T T T T T T T T T T
BCSLIB -~
CRAYFISHPAK -8--
IMSL -&---
NAG —~—
Total ——-
1500 | ST .
AN / \
i~ VAN / 3
VAN Vi \ ! N
! A A i \
N / N i Y
S \ / A
4 A / -
Yoo/ e
1000 N / \ 4
v / \
Vi / Y
» . # s
. / p=
L W i
500 o 2 #
o &
O
/"\\ '/Elrr @ =
0 & e M S S VRN

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug
Sep'94 - Aug'95

Figure 3: One year’s library usage data - monthly totals
- from Sept. 1, 1994 to Aug. 31, 1995

3 Library Usage

The tables 1 and 2, and the corresponding figures 2 and 3,
represent one year’s data from the NAS machine, a C90
with 16 processors and 1 GW of memory. The selection
of mathematical libraries range from the general purpose:
IMSL, NAG, SLATEC, and the no-longer supported BC-
SLIB; to the specialized: BCSEXT, and CRAYFISH-
PAK. LAPACK version 2.0 was added in Jun ’95 and has
been trimmed down to not conflict with the portion of
LAPACK included in the CRI LIBSCI. CRAYFISHPAK
is a proprietary library from Green Mountain Software
that is the purported successor to the elliptic partial dif-
ferential equation solver FISHPAK. BCSLIB is from Boe-
ing Computer Services and was once freely available for
Crays; however, it is no longer supported and only the ex-
tend library BCSEXT is supported which adds many spe-
cialized routines for out-of-core solvers and sparse solvers.
BCSEXT is not a replacement for the BCSLIB though.
This site, which is a national resource for aerodynamics,
has many users from Boeing whose codes rely on access-
ing BCSLIB. The first figure 2 shows that most of the

library compilation occurs during the work week, which

CUG 1995 FallProceedings 375

is not at all surprising. The second figure 3 shows the
usual seasonal variations. The “dip” in March 95 is due
to the machine’s new operational period (NOP) where
the users’ allocations are renewed, new users are added,
and non-renewed users are disabled. Therefore, it’s not
unusual for a flurry of activity and lull in the couple of
months before the NOP, where users are attempting to
use up their allocations and finish their work.

4 Run Time Logging

The non-invasive monitoring that was described starting
in section 2 can not determine who is using a library, what
specific routines are being used, or even if the library is
used at all. If the sources for an object library are avail-
able, then calls to some type of logging routine can be
added within the sources ... perhaps with some difficulty.
However, many of the object libraries (e.g. BCSLIB, BC-
SEXT, and even the CRI libraries) are available in binary
form only and the “luxury” of modifying the sources is
not possible. The only solution is to actually modify the
relocatable object files and change the entry and external
names, and to add front-end code that calls the run-time
logging code and the routine.

The advantages of installing run-time logging to a re-
locatable object library are manyfold. First of all, the de-
tailed information gives library usage, which routines are
being used, and who is using it. This knowledge can help
focus training efforts, and to guide optimization efforts,
and if patterns become apparent then further library ac-
quistions can be more specialized. Second, it’s actually
easier modifying the relocatable object library than modi-
fying the sources in many cases. Third, only one file needs
to be modified ... the relocatable object library instead
the hundred or so source routines. Only two additional
files need be compiled and added to the object library.
One of which contains the front-end code and the other
one which handles the run-time logging. However, there
are some disadvantages of run-time logging. Primarily,
there is the added overhead of performing disk 1/O. This
is minimized by logging only the first call to any given
routine and ignoring subsequent calls. This situation can
be further improved by only installing run-time logging to
the higher level routine calls that are called infrequently
in a code. Avoid run-time logging to low level routines
such as the BLAS routines or sorting routines that may

376 CUG 1995 FallProceedings

be called repeatedly. The call to the run-time logging
routine adds the overhead of an additional function call
and whatever memory accessing and computational op-
erations involved.

4.1 Object Library Modification - robj

This tool, robj, is the most dangerous of all the tools de-
scribed here. It parses through relocatable object files or
bld libraries of relocatable object files and identifies the
program descriptor table (PDT) entry point name and
the externals sections for each relocatable object.

The PDT is the first table for each routine in the relo-
catable object. It contains information needed to link the
module to other modules (such as the entry points and
externals used in the routine) along with maintenance in-
formation (such as the date and time of compilation, the
compiler used, and the operating system level). The four
sections of the PDT are the header, block names, entry
points, and the external names. The details of the PDT
structure and the rest of the relocatable object or bld li-
braries can be found from the relo(5), bld(5), symbol(5),
and most importantly the header file relo.h.

The program, robj, departs from the UNIX toolkit
approach and provides a comprehensive range of capabil-
ities. In most cases i1t requires an entry file and an relo-
catable object file or bld library. The entry file contains
a list of routines to consider, comments, and optionally
the new routine names. The one restriction is that the
new routine name must be the same length as the orig-
inal. This restriction makes the new relocatable object
the same length as the original and avoids many other
problems. The following is an example of an entry file:

list of entrynames

(these are comments)

change the name of MYSUBR1 to MYSURF1

the new name must have the same number

of characters

MYSUBR1 MYSURF1

MYSUBR2

change MYFUN1 to MYPUN1

MYFUN1 MYPUN1

MYFUN2

MYFUN3

E1l

MINEONLY

the above is a comment only. Entryname MINEONLY in
‘mylib’ is not affected by any robj processing

at all.

If no optional secondary name is given then roby will
“diddle” the routine name. In the above example the
routine MYFUN2 will be changed to MyFuN2. Note that
Fortran does not specify that case 1s important and by
default the CRI compiler converts all external names to
uppercase. The diddled name mixes and alternates up-
percase and lowercase letters which makes the Fortran
routine inaccessible from Fortran and unlikely to collide
with other external names in C. robj has options to val-
idate the entry file, compare it to the relocatable object
file, and can produce new entry files of matching rou-
tines. One example where this capability can be useful
for other than run-time logging is with the Numerical Al-
gorithms Group (NAG) math library. NAG only sends
out the “single-precision” version of the library for CRI
machines. The single-precision routine names end with
the letter “E”, in contrast to the double precision rou-
tines names that end with the letter “F”. The following
finds all the entry names and can be redirected to a file
that needs to be edited

robj -v -o 1ibXXX.a | grep Pdtent
then using the following
robj -x -w —e newXXX.entries -o 1ibXXX.a

produces a new library named LibXXX.a with modified
entry names as specified in newXXX.entries. Note that
the —x option must be added to change all the external
references otherwise any internal references within the li-
brary will be unsatisfied.

4.2 Front-End Code

One of the principle tasks for robj is to produce the front-
end code for run-time logging (see figure 4). The front-
end code must interface with the established external
name, the “diddled” external names, and call a logging
routine with the external name passed to it. It must do
all of this, while not disturbing the argument list stack.
Fortunately, this can be performed using Cray assembly
language. The key is the —a option in the following ex-
ample

robj -a -x -w —e XXX.entries -o libXXX.a > libXXXfe.s
as libXXXfe.s
bld r LibXXX.a 1ibXXXfe.o

where stdout is redirected to a file 1ibXXXfe.s, which
is subsequently compiled and added to the modified li-
brary archive.

Relocatable Diddled

Object Relocatable

Library Object
Library
Front-End
Logging

/

Figure 4. Relocatable object library modification by
robj.

The following is an assembling language template with
explanatory comments that describe the front-end code
stubs. The assembly code has the entry name of the li-
brary routine which then calls the “diddled” library rou-
tine using the argument stack as-is. After the “real” li-
brary routine is executed then the assembly code calls
another routine that performs the run-time logging.

IDENT LIBSUBR

* modify the entry point name above

* the following is included in the load module
COMMENT ’libinfo stub 1.0 09/12/94

, (¢) R.K.Owen,Ph.D. 1994’

ko o o o o ok oK ok ok ok oK ok ok ok ok ok sk ok ok ok ok sk ok ok ok o ok ok ok ok o ok ok ok ok o ok ok ook ok ok

* Assemble with Cal Version 2.0 *

ko o o o o ok oK ok ok ok oK ok ok ok ok ok sk ok ok ok ok sk ok ok ok o ok ok ok ok o ok ok ok ok o ok ok ook ok ok

* ALLOW UNDERSCORES IN IDENTIFIERS

EDIT OFF
FORMAT NEW
@DATA SECTION DATA,CM
@DATA = W.*
CON A’LIBSUBR’L ;Real library rtn
BSSZ 1 ;name in ascii
;terminate w/ null
*
SAV1 BSSZ 1 ;2 blank words to
SAV2 BSSZ 1 ;save return value
SECTION *

CUG 1995 FallProceedings 377

QCODE SECTION CODE
QCODE = P.*
*
MXCALLEN 1 ;max number of args
*
LIBSUBR ENTER
*
* goto subroutine 1st don’t mess with registers
* ... pass argument list as-is
*
R P.LiBsUbR ;Real library rtn
*
* save routine/function output (s1/s2) to restore
* later
*
SAV1,0 S1 ;single return
SAV2,0 52 ;double return
*
* log usage
CALL LIBINFO, (GDATA) ,USE=A7
*
* let the return value default to whatever given by
* subroutine/function call
*
S1 SAV1,0 ;single return
52 SAV2,0 ;double return
*
EXIT
EXT LiBsUbR:p ;Real library rtn
ENTRY LIBSUBR ;stub entry
END

where LIBSUBR is the routine name; LiBsUbR is the
real library routine with a “diddled” name; and LIBINFO
is the logging routine, which accepts a single argument —
a null terminated character string.

The logging routine needs to have a unique external
name for each library that has been modified for run-
time logging. The utility, roby, takes this into account
and substitutes a name which is based on the library or
relocatable object file name; however, this can be over-
ruled by the -i option. Currently, the run-time logging
routine 1s written in C and stores the routine name in a
quadratically hashed array. The first invocation of a given
routine, the logging routine writes the date and time, the
user id, and the routine name to a world writable file.
This is not desirable! Subsequent versions will use either
the syslogd daemon, or a customized daemon, to collect
the logging information and to write the information in
a more secure manner. The following is an example from

378 CUG 1995 FallProceedings

/usr/spool/logs/libims120.1log (The usernames have
been changed)

Wed_May_17_1995_08:49 L2TCG filei
Wed_May_17_1995_08:49 LFSCG filei
Fri_Jun_02_1995_16:54 QDAGS mrgoers
Wed_Jun_07_1995_17:26 QDAGS mrgoers
Wed_Jun_14_1995_15:57 LSGRR ilu
Thu_Jun_15_1995_08:40 LSGRR ilu
Thu_Jun_15_1995_08:47 LSGRR ilu

The logging routine is also designed to fail gracefully on
any type of error, so the user is never inconvenienced in
any manner if logging can not be performed (e.g. the log
file has incorrect permissions or is missing).

5 On-Line Documentation - all-

doc / f77head

Finally, the last tool of any use 1s on-line documenta-
tion. The command-line utility, alldoc, does a keyword
search on a database and lists out the specified documen-
tation from doc files. Keyword searches can be strung
together from one call to alldoc to another to fine-tune or
narrow the search. Once a candidate routine is selected
then documentation can be viewed. This documentation
is created from the initial comment fields of the library
sources. Most library sources are well structured and awk
scripts can be used to select out these comment fields. For
sources which are not consistently structured another tool
was created named f77head that can select everything
from the initial subroutine or function declaration to the
first executable statement.

The next version of alldoc, which is in progress, will
be more user friendly and require less disk space. The
document files can be compressed and can invoke other
command-line programs (i.e. man or other on-line docu-
ment facilities). This last feature should save even more
disk space by eliminating documentation redundancy.
The execution of other command-line programs also al-
lows the inclusion of documents, such as man pages, for
libraries that are available in object form only.

6 Conclusion and Goals

Several tools have been created in the last few years to
monitor, to run-time log, and to document relocatable
object libraries. The tools help to track relocatable ob-
ject library changes in an environment that grants root
access to many analysts, where changes can be lost in the
noise. The tools can also monitor usage, which can be in-
strumental in determining which object libraries to keep
or to discard due to lack of use. The library management
tools form a unified collection of utilities that follows the
UNIX paradigm of several small well defined tools.
Work continues on modifying and improving the code,
which is still considered a beta version by the author. The
run-time logging needs to be reworked to write the logging
information in a more secure way. The library monitoring

tools have ported easily to other UNIX systems and the
author is exploring the possibility of porting the robj ca-
pabilities to COFF (common object file format) and ELF
(Executable and Linking Format) object formats. All re-
quests should be sent to rkowen@nas.nasa.govand there
may be restrictions due to U.S. export control.

7 Acknowledgements

Dr. Ed Hook of Computer Science Corporation wrote the
first version of alldoc. This project is funded by Sterling
Software on behalf of the NAS / ACSF computer center
located at NASA Ames Research Center located at Mof-
fett Field, California. Special thanks to Terry Nelson for
proof-reading this paper.

Library Sun Mon Tue
bcsext 5 14 6
bcslib 345 830 837
crayfishpak| 73 217 160
imsl 500 1507 1769
lapack 0 0 1
nag 4 29 61
slatec 1 47 36
Total 928 2644 2870

Wed Thu Fri Sat| Total
13 30 6 2 76
785 TT7T 624 498 4696
193 144 202 115| 1104
1650 1648 1458 468(9000
0 0 5 1 7

72 87 26 17 296
23 19 22 5 153
2736 2705 2343 1106(15332

Table 1: One year’s library usage data - daily totals - from Sept. 1, 1994 to Aug. 31, 1995

Library Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug| Total
bcsext 0 0 2 3 0 4 1 0 3 45 0 18 76
bcslib 457 727 449 446 502 297 282 465 234 180 289 368| 4696
crayfishpak| 47 6 34 26 91 184 55 90 189 190 153 39| 1104
imsl 657 333 868 747 858 727 506 766 1064 1068 669 737| 9000
lapack 0 0 0 0 0 0 0 0 0 5 0 2 7
nag 65 53 3 10 30 19 8 10 4 36 37 21 296
slatec 2 0 23 20 7 15 6 0 43 35 1 1 153
Total 1228 1119 1379 1252 1488 1246 858 1331 1537 1559 1149 1186 (15332

Table 2. One year’s library usage data - monthly totals - from Sept. 1, 1994 to Aug. 31, 1995

CUG 1995 FallProceedings 379

