
CUG 1995 Fall Proceedings 61

Linear Scalability on Decision Support Systems:
Cray CS6400

Brad Carlile, Cray Research, Inc., Business Systems Division

1 INTRODUCTION

Decision Support Systems (DSS) manipulate and analyze
information to highlight previously un-explored relationships in
large Gigabyte- or Terabyte- sized databases. They are
emerging as an area of strategic value to many customers in the
merchant RDBMS market who need to explore all of their data.
In the past, lack of performance has prompted users to sample
or to summarize data for DSS processing [1], however,
sampling can hide valuable information. Insight can be gained
by knowing the detail in the large database that summary data
obliterates. Parallel processing enables completely scanning
large database for this accurate detailed information in a reason-
able time.

New powerful Solaris SMP systems, such as the
64-processor CRAY SUPERSERVER 6400 (CS6400), provide
practical platforms that are scalable and flexible enough to
handle large databases. The CS6400 is Cray's SPARC-based
SMP System that runs the Solaris 2.4 operating system and is
fully SPARC binary compatible. The combination of the
CS6400 and the parallel features of Oracle7 provide scalable
performance for DSS operations. This paper presents results
that show near-perfect linear scalability on many of the basic
tasks representative of parallel DSS queries (full table scans,
nested loop joins, sort merge joins, index creation, etc.) using
Oracle7 on the CS6400. These basic tasks are the components
of more complex queries. Optimization of these components
improves "real world" user performance. The key to high deliv-
ered performance on DSS is taking advantage of the important
application characteristics and focusing on the important system
parameters in the complete system.

2 DSS CHARACTERISTICS

An understanding of an application's characteristics is impor-
tant when implementing a balanced system. Several character-
istics of DSS dictate the need for different tuning strategies than
are applied to traditional OLTP applications. Important aspects
of DSS operation are the ad hoc nature of the queries, the paral-
lelism that can be applied to queries and the data movement
patterns within the hardware system. These aspects, when prop-
erly measured, can shed additional information on obtaining
high performance on DSS operations.

The nature of DSS systems is to iteratively refine and define
new queries based on the information gathered from previous
queries. These queries are ad hoc and unpredictable. It is diffi-
cult to pre-plan for these types of queries since they are only
executed once and a query may access millions or billions of
rows [1]. With ad hoc queries there is no perfect data layout,
especially when refreshing the database with inserts and updates
imbalances the original data layout. For predictable perfor-
mance on SMP systems, fine-grain distribution of data evenly
across the disks provides equal access time to the data. Without
this equal time access of data, bottlenecks can degrade perfor-
mance by orders of magnitude and serialize the processing.
Such performance problems are a defining characteristic of
MPPs [6] [8]. Alternatively, high-performance SMP systems
are very flexible and capable.

A characteristic of DSS applications that take advantage of
parallel processing is the ability to divide a single query into
sub-queries. Executing in parallel keeps both processors and
disks active reducing execution time. In Oracle, these
sub-queries execute on multiple "Query Servers" in parallel and
provide results to a Query coordinator that combines results as
required by the query. Parallelism, such as on the CS6400,
provides a cost-effective approach to meeting typical DSS
performance requirements on large databases.

Internal and external data movement is critical to perfor-
mance and is often an overlooked characteristic of RDBMS
operation. This is becoming more critical as the gap between
processor speed, memory speed, and disk speed grows [3].
Optimal disk reference patterns are quite different in OLTP
applications then they are in DSS applications. Typical OLTP
disk accesses are totally random and are typically in the 2 Kbyte
to 4 Kbyte size. The majority of OLTP transactions only need
data from only a few rows in a few tables. The appropriate
performance metric for these small reads and writes is
IOs/second. In contrast, many important operations in the DSS
applications tend to read many consecutive rows of a particular
table (table scans, aggregates, group-bys, joins, etc.). To opti-
mize IO for DSS, the disk accesses issued by the RDBMS
should be very large, up to 1 Mbyte or more, and consecutive.
Under these characteristics, the appropriate performance metric
for these large reads is Mbytes/second. Within a single
RDBMS, it is possible to tune it to implement OLTP transac-
tions with small-sized IOs and to implement DSS-style queries
with large-sized IOs. For instance in the Oracle RDBMS, the

Copyright © Cray Research Inc. All rights reserved.

62 CUG 1995 Fall Proceedings

"db_file_multiblock_read_count" parameter allows the DBA to
set a larger read size for DSS style queries. Currently, we
believe that delivered application disk performance for large
DSS databases should be on the order of the hundreds of
Mbytes/sec.

3 Measuring DSS Performance

During the tuning process it is necessary to establish the char-
acteristics of a DSS application by measuring its performance.
Appropriate performance metrics measure the important charac-
teristics of a particular operation. In addition, they provide a
reasonable prediction of performance when changing the dimen-
sions of the database. Appropriate measures of DSS perfor-
mance are MB/sec delivered during a query and the percentage
of the job that is parallel. Some performance metrics do not
allow accurate comparisons between different implementations
and should not be used to predict performance.

The MB/s figure for a particular query will be a good
predictor of the performance since a portion of most DSS queries
consist of large consecutive IO operations. During these opera-
tions, entire rows move from disk to memory even when
accessing a particular column of the row. The best characteriza-
tion is the time it takes to move this data from disk and process
it (MB/s=size of the table/time to scan the table). This disk
transfer time typically dominates the computation. Given a
particular query type, MB/s will be roughly constant on tables of
different sizes.

An inappropriate performance metric is millions of
rows/second. The problem with this measure is that the size of
a row is highly dependent on the table design (a row may contain
tens, hundreds, or thousands of bytes of data). For different size
tables, full table scan times may be very constant in terms of
Mbytes/sec whereas Mrows/sec varies by almost 3 orders of
magnitude as is illustrated in the table shown below. Mrows/sec
is an inappropriate performance metric given the inherent vari-
ability in row size.

On parallel systems, a useful DSS performance metric is scal-
ability. Caution should be exercised when discussing scal-
ability. Scalability figures can be artificially inflated by
crippling single processor performance and optimizing parallel
performance. It is important to test the application with the
appropriate tuning parameters for both parallel and sequential
executions. It is best to be suspicious of scalability calculations
based on best parallel runs against initial (un-tuned) single
processor runs.

We suggest that the best manner to look at scalability is the
speedup on a particular number of processors or the percentage
of parallelism. The only manner to accurately compare system
scalability is to use actual performance. The maximum number
of processors on a system does not determine its scalability. The
percentage of an application that is parallel and the overheads
involved in using multiple processors limit delivered parallel
performance. Parallel performance beyond a given number of
processors can be estimated using a formula based on Amdahl's
law [3]. This estimate involves determining the percentage of a
job that is parallel and predicts the speedup for a given processor
count using "percent parallel".

To determine the percentage of a job that is parallel (P=
percent parallel), a one-processor run and a 40-processor run
(full table scan with aggregates) will be used to calculate percent
parallel.

P = (1/observed_speedup-1)/(1/n-1) (1)

where n is the number of processors and speedup is the observed
speedup. For example, if a 40 processor can get a 39.083x
speedup over one processor, then the percent parallel is: P =
(1/39.083-1)/(1/40-1) P =.99939 or 99.939% parallel. To
predict other speedups, use the following formula:

predicted_speedup=1/(P/n+(1-P)) (2)

where P is the percent parallel and n is the number of processors.
Using the example above (P=.99939), we get the following
table, which shows good agreement with the actual results.

Potential errors in prediction may arise from the following
areas:

• Performance limitations due to application characteristics or
by the IO or memory bandwidth of the system.

• Changing the size of a problem will usually increase the time
spent in a parallel region (it is very difficult to use the above
estimation for a different problem size).

Prediction using Amdahl's Law
N Calculation Predicted

Speedup
Actual

Speedup

1 actual data used 1.0 1.0
8 1/(.99939/8+(1-.99939)) 8.0 8.7

16 1/(.99939/16+(1-.99939)) 15.8 14.4
24 1/(.99939/24+(1-.99939)) 23.7 23.4
32 1/(.99939/32+(1-.99939)) 31.4 32.3
40 actual data used 39.1 39.1
56 1/(.99939/56+(1-.99939)) 54.2 Est.
64 1/(.99939/64+(1-.99939)) 61.6 Est.

Comparison of MRows/Sec and Mbytes/sec
Rows Bytes/Row Seconds Rows/Sec Mbytes/Sec

2,000,000 2000 66 0.03 Mrows/s 61 MB/s
5,000,000 200 16 0.30 Mrows/s 63 MB/s

10,000,000 50 9 1.20 Mrows/s 57 MB/s
200,000,000 150 470 0.42 Mrows/s 64 MB/s

CUG 1995 Fall Proceedings 63

• Estimates can be very low if more parallelism exists by tun-
ing the code (improving performance of serial section or
making more of it parallel).

• Estimates can be very low if using more processors increases
the percentage of a job that is parallel. (cache effects such as
interference and memory layout).

In the above example, the percent of parallelism was a good
predictor of performance. The different DSS queries measured
in this report are approximately between 98.00% and 99.93%
parallel.

Another performance metric used by some is percent speedup
(actual speed/perfect speedup). This is not an accurate manner
to report scalability since it varies with the number of proces-
sors. In the table above, the percent parallel was roughly
constant. If we looked at the erroneous percent speedup, we
would see that this figure varied between 100% and 97% and this
figure will decrease as the number of CPUs grow. This measure
does not give an accurate view of the performance and should
not be used.

4 IMPORTANT SYSTEM PARAMETERS

A DSS system consists of many components. With respect to
performance, the order of importance of these components is the
RDBMS, operating system, delivered disk bandwidth, delivered
memory bandwidth, and finally processor speed. There are
many interdependencies between various aspects of these
performance components.

RDBMS
The implementation of the RDBMS is critical for database

performance. This is especially critical for parallel-processing
performance. In general, queries can be decomposed to run in
parallel in a variety of ways. A query optimizer needs to be
intelligent enough to determine an appropriate parallel query
plan of execution. It should effectively choose between options
such as using table scan versus index reads or a particular imple-
mentation of table joins. An efficient implementation balances
query decomposition for the system configuration and database
table sizes. During query execution, multiple processes need to
be efficiently used and coordinated. In addition, the RDBMS
needs to be optimized for memory management and to properly
utilize its cache (System Global Area or SGA). Issues related to
RDBMS performance include shared resource utilization,
locking issues, IO strategies, and efficient code. Oracle incorpo-
rates all of these features in a shared-everything architecture.

Important tunable Oracle parameters are located in the
init.ora file. Parameters of interest to DSS workloads involve
SGA size (up to 2 GBytes), database block size, multi-block read
size, query server sort area size (not limited by SGA size), and
the number of query servers. The DSS Benchmark section
below discusses some of these in more detail.

Operating System
The operating system (OS) can limit the efficiency and scal-

ability of RDBMS performance. Efforts by Cray and Sun [4] [2]

allow the RDBMS to exploit performance features of Solaris 2,
such as the multi-threaded architecture of the Solaris kernel,
asynchronous IO, soft processor affinity, efficient OS striping,
and enhancements to memory management for large memory
systems. The combination of these efforts and others provides a
system that is responsive and efficient when executing parallel
workloads.

There are very few tunable OS parameters since the operating
system is tuned for RDBMs workloads. Parameters that may be
of interest to some workloads are scheduler classes, increased
semaphore limits, and the file system flusher. Providing appli-
cation scalability has been a design requirement of Solaris for
many years.

Disk Bandwidth
The CS6400 has delivered over 265 MB/s on a moderate size

disk configuration (90 Elite3 disks). This is more than some
vendor's memory bandwidth. The program tested in this case
issued continuous reads with no computations. This character-
izes the maximum realized disk bandwidth for this configura-
tion. IO-bound applications are likely to deliver less than this
figure due to additional required application processing. Deliv-
ered disk performance on a particular disk configuration
provides a much better baseline for performance estimation than
system maximums listed on spec-sheets.

In order to obtain sufficient I/O for DSS applications, disk
reads must be of a sufficient size to maximize bandwidth as
opposed to the small I/O's typically used for OLTP applications.
A simple manner to optimize the performance of large IOs is to
use a Volume Manager (Solstice DiskSuite, Veritas Volume
Manager, etc.) to stripe the data across the disks. Disk striping
can also be viewed as a way to optimize data layout on disks.
The fine-interleaving of datablocks across the disks has the
advantage of naturally distributing inserts and updated data
throughout the disk system. Ad hoc queries are naturally opti-
mized. There is no processor dependence on data layout, simpli-
fying performance tuning.

Fine-grain disk striping (64k to 1M) can increase disk band-
width and minimize disk hot-spotting. Fine-grain striping is
most generally applicable to a wide range of query types. Alter-
natively, course-grain disk striping (concatenated disks) may
give higher performance for only certain queries. For example,
the CS6400 with a moderate size disk system has delivered over
110 MB/s on a disk-resident database using Oracle.

Memory Bandwidth
Memory Bandwidth of a system is also a major contributor to

system cost. Efficient use of the available bandwidth is critical.
The CS6400 delivers over 1100 MB/s of memory bandwidth.
Delivered bandwidth for cached data is much higher.

Memory size can also be an issue for DSS performance. Data
that does not fit in the physical memory of the system will reside
on the disk. The CS6400 supports up to 16 GBytes of physical
memory. This allows for a large SGA and large sorting area.
Swapping and paging are not generally an issue with the large

64 CUG 1995 Fall Proceedings

configurations of the CS6400. The large memory also provides
the ability to cache indexes or other randomly read "hot"
tablespaces. One manner to cache these tablespaces is to put
them in a Unix File System (UFS) and let the Unix file caching
mechanism buffer data from these tables. Using this method, it
is possible to effectively cache randomly accessed tables that
approach physical memory size. This has increased perfor-
mance for some workloads.

Processor Speed
Processor performance can be measured by using the CPU

speed or by using "cache-friendly" benchmarks such as
SPECint92. Processors designed to deliver high SPECint92
performance focus primarily on processor cache-to-processor
issues. These benchmarks do not even stress the
processor-to-memory issues that are important to most applica-
tions. For these reasons, SPECint92 results can be very
misleading when they are used to gauge performance of "non
cache friendly" operations more typical in RDBMS code. DSS
performance is more likely to be determined by IO speed or the
efficient implementation of the RDBMS.

Processor speed is important, but it must be balanced with
processor-to-memory bandwidth and efficient IO. These are
factors that SPECint92 does not measure. Recent data [5] [7]
suggests that delivered MB/s is a better estimate than SPECint92
for DSS performance. Even though this data is not directly
comparable, it can be instructive. The table below shows that a
DEC 7000 (275 MHz) has a much higher SPECint92 rate than
the CS6400 (60 MHz) but has a much lower delivered perfor-
mance on DSS operations. Results later in the paper show that
the CS6400 performance will scale with more processors.
Digital has not published any data on parallel DSS performance.

As shown above, the CS6400 is 1.2x to 9x faster than the
DEC 7000 on DSS operations, however this would not be
predicted by the SPECint92 rating (or CPU MHz). SPECint92
should not be used to predict DSS performance.

In addition, Stephen Brobst [1] has proposed a constant based
on SPECint92 to estimate performance that a processor should
have for DSS operations. His constant is (10 SPECint92/Disk
spindle). This number comes from experience on the Teradata
system (486, SPECint92 = 32) which gets maxed out at 3 disks
or 10 (SPECint92/Disk spindle). Due to the variability of this
constant on different systems and its reliance on SPECint92, it is
not recommended that this measure be used to compare systems
or estimate requirements for a balanced system.

5 DSS BENCHMARK

To demonstrate the high scalability that Oracle provides on
powerful SMP systems, several queries representative of impor-
tant DSS operations were executed with a CS6400 system. The

CS6400 (1 processor) [5]
SPECint92=89

DEC 7000 (1 processor) [7]
SPECin92=180

Full Table Scan 4.1 MB/s 3.4 MB/s
Multi-Table Join 1.3 MB/s 0.3 MB/s
Index Creation 0.9 MB/s 0.1 MB/s

benchmark consisted of tuning the database for optimal perfor-
mance and measuring various system functions and scalability
with different numbers of processors. The CS6400's configura-
tion consisted of forty 60 MHz SuperSPARC processors, 1240
MB of physical memory, and ninety (2.9 GB) disks. Oracle
version 7.2.1 was used together with Sun's Online DiskSuite
Version 4.0.1 (beta) which provided perform machine (OS)
striping for the data files. The data tablespace was evenly spread
out across 72 disks using a stripe size of 64K. The
SORT_AREA_SIZE was 20 MB per query server process,
DB_BLOCK_SIZE was 8K, and the number of
DB_BLOCK_BUFFERS was 6400 (approximately 52 MBytes).
The data tablespace had a PCTINCREASE of zero. The tuning
process only involved adjusting Oracle init.ora parameters.

A 5 million row table with 16 columns and a 204 byte average
row length was used to test the Oracle7 parallel features. A
single Oracle instance was used with a single user issuing the
queries sequentially. The amount of table data was constant
during the execution of the following tests:

Table Scan with Aggregates (SCAN). This operation scans
the table and performs an aggregation on each of the sixteen
columns in the table. Aggregation functions used were min,
max, avg, sum, and count.

Sort-Merge Join (SMJ). This entails joining the table to itself.
Here the table is scanned twice where each scan chooses half the
number of rows resulting in 5 million rows being grouped by
different criteria, resulting in 1,000 evenly distributed groups
that are ordered. The sort-merge join is selected over
nested-loop join by the use of an optimizer hint.

Parallel Indes Creation (INDEX). For this operation, a set of
query servers scans the target table, and passes the row IDs and
column values to another set of query servers that sorts the index
entries. These sorted entries are finally passed to the query coor-
dinator process that builds the index. For this test an index was
built on a single numeric column in the table.

Nested-Loop Join (NLJ). This operation scans the table with
2% of the rows selected to join with another instance of the same
table. The join is 1:1 so 100,000 index lookups are done on the
index created by the index creation test. The joined rows are then
filtered by the predicate in the inner table returning 10 rows. The
nested-loop join is selected over sort-merge join by the use of an
optimizer hint.

 Results
The SCAN operations using 40 processors took only 24

seconds to complete while one processor took approximately 16
minutes to complete. This is a speedup of 39 times compared to
a non-parallel operation with a single CPU. The NLJ operation
showed a 37x speedup, reducing the query time from half an
hour to 45 seconds. The speedup for the SMJ operation is also
significant since the initial scan as well as the subsequent join
and group-by operations are parallelized. In each of these cases,
all processors are effectively used. Even more performance is
expected with an expanded IO system with more disks and

CUG 1995 Fall Proceedings 65

controllers to increase the delivered IO bandwidth for these IO
intensive operations.

These benchmark results demonstrate near-linear scalability.
Analysis of these queries show an average of 99% parallel,
which as discussed above, predicts that all 64 processors can be
effectively used on the CRAY CS6400 system. The graph
below compares actual results with perfect linear scaling with
the number of processors. During these runs, only the number
of query servers was varied with other parameters kept constant.
Optimal performance was obtained at 1 processor and 40 proces-
sors, not optimizing the performance for other processor config-
urations.

Another feature explored is parallel loading of the database.
For large databases this can be an important time-consuming
operation. Multiple processors will greatly accelerate this oper-
ation. Parallel Load involves reading multiple data files from
disk and using the multiple concurrent direct loader sessions to
write this data simultaneously to the same table in the database.
Performance on Parallel Load is IO bound and additional perfor-
mance improvement can be obtained by increasing the number
of disks and controllers.

Updated and additional results will be made available at the
conference presentation.

SCAN SMJ INDEX NLJ
0

500

1000

1500

2000

S
ec

o
nd

s

Sequential vs Parallel Performance on Cray CS6400 (40 CPUs)

Sequential Parallel

938

24

1676

77 48

1262

1656

45

Linear Scalability on Cray CS6400 (40 CPUs)

CPUs

S
p
ee

d
up

0

5

10

15

20

25

30

35

40

1 8 16 24 32 40

Linear

SCAN

NLJ

6 CRAY SUPERSERVER 6400 SYSTEM

The CS6400 is an enterprise-class application or data server
for a wide range of tasks such as on-line transaction processing
(OLTP), decision support systems (DSS), on-line analytical
processing (OLAP), or data warehousing. The result of a tech-
nology agreement between Cray Research and Sun Microsys-
tems, the CRAY CS6400 is a binary-compatible upward
extension of Sun Microsystems' product line. Its full compati-
bility with Sun Microsystems' Solaris operating system guaran-
tees the availability of the largest set of third-party solutions in
open systems. Large configurations of this SMP system can
simultaneously support sixty-four processors, 16 Gigabytes of
physical memory, and 10 terabytes of online disk storage. The
CS6400 also has the capacity to combine DSS and online trans-
action processing (OLTP) job mixes on the same platform. The
CS6400 also provides processor partitioning to segregate these
workloads for flexibility in system management. In addition to
DSS scalability, the CS6400 has also shown excellent OLTP
Scalability. It leads in the industry in TPC Benchmark™ B
Results with a performance of 2025.20 tpsB and leads in
price/performance with $1,110.14 per tpsB (result date: 6/4/94).

RAS features are a critical part of the design of the CS6400.
There is nearly complete redundancy of system components in
the CS6400. This includes multiple redundant system buses,
N+1 power supplies, dual pathing, RAID devices, disk
mirroring, etc. The CS6400 also offers fail-over, hot swap of
system boards, dynamic reconfiguration (and expansion), and
automatic reboot. A separate service processor including moni-
toring software (with call home on unplanned reboots) and
remote diagnostics.

The speedup factors obtained are the result of joint engi-
neering efforts by Oracle, Cray, and Sun in exploiting the perfor-
mance features of Solaris 2, such as the multi-threaded
architecture of the Solaris kernel, asynchronous I/O, and effi-
cient OS striping. Likewise, the hardware strengths of the
CRAY SUPERSERVER 6400 that facilitate good scalability
include the quad XDBus bus architecture, fast SCSI controllers,
and larger CPU caches to hold frequently referenced data and
instructions. Oracle will exploit faster CPUs with larger caches
to deliver even bigger performance boosts for future genera-
tions.

The SMP architecture allows DSS queries to be optimized for
parallel operations, while avoiding the MPP performance and
administration problems. MPP performance can be very depen-

System Components Configurations Specifications
Number of Processors 4-64 SPARC 60 MHz SuperSPARC
Memory Size 16 Gbytes SMP, Shared Memory
System Bandwidth 1.7 GB, 4 XDBuses 55 MHz
I/O Channels 16 SBuses 800 MB/s
Bus Controllers 64 Full Coherency
Online Disk Capacity 10 Tbytes Using 9 GB disks
Operating System Solaris 2.4 SVR4, Solaris Enterprise

Server

66 CUG 1995 Fall Proceedings

dent on data layout. On MPPs, the user has the choice between
executing high-performing "good" queries and slow-performing
"bad" queries. This has the drawback of potentially "training"
users what queries not to submit. In these respects, MPPs are
more difficult to tune and to administer. Even on an MPP that
uses a shared disk strategy, there can be other problems on an
MPP due to coordinating the various IO requests from within the
MPP.

7 CONCLUSION

Performance and scalability are particularly important for
DSS applications. The CS6400's SMP design allows commer-
cial DBMSs to effectively use its large configuration of proces-
sors. Large configurations of the CS6400 provide excellent
scalability on DSS operations using the Oracle7 shared-every-
thing implementation. The characteristics of DSS operations
allow IO optimizations that deliver high bandwidth. The effi-
cient implementation of the RDBMS on the C6400 provides
near-linear scalability while maintaining all of the advantages of
SMP systems. These effects are effectively demonstrated using
the MB/s and percent parallel metrics. Past limits to SMP scal-
ability are avoided by providing sufficient performance at every
level in a balanced system.

8 REFERENCES
[1] S. Brobst, "An Introduction to Parallel Database Technology", VLDB Sum-

mit, Miller Freeman, Inc, 1995.
[2] A. Cockcroft, Sun Performance and Tuning, SunSoft Press, A Prentice Hall

Title, 1995.

[3] J.L. Hennessy and D. A. Patterson, Computer Architecture A Quantitative
Approach (Morgan Kaufmann Publishers, San Mateo CA, 1990).

[4] D. McCrocklin, "Scaling Solaris for Enterprise Computing", Cray User's
Group, 1995.

[5] Oracle and Cray Superserver 6400 Linear Scalability, Oracle Corporation,
May 1995.

[6] "Open Computing & Server Strategies", Fourth Quarter Trend Teleconfer-
ence Transcript, META Group, Dec 13, 1994.

[7] J. Scroggin, "Oracle7 64-Bit VLM Capability Makes Digital Unix Transac-
tions Blazingly Fast", Oracle Magazine, Vol IX, No 4, July/August 1995, pp
89-91.

[8] C. Stedman, "What you don't know... ... will hurt you", Computer World
MPP & SMP special Report, March 27, 1995, supplement pp 4-9.

9 AUTHOR INFORMATION
Speaker's Biographical Sketch

Brad Carlile is a Performance Analyst at Cray Research,
Business Systems Division. He is responsible for analyzing and
characterizing real-world workloads. Background includes
work on eight distinct shared and distributed memory parallel
architectures on a wide variety of commercial and technical
applications. His current focus is DSS performance issues.

Contact Information
Brad Carlile
Cray Research, Business Systems Division
8300 Creekside Ave,
Beaverton, OR 97008
bradc@oregon.cray.com
(503)520-7622 (voice)
(503)520-7724 (fax)

CUG 1995 Fall Proceedings 67

68 CUG 1995 Fall Proceedings

CUG 1995 Fall Proceedings 69

70 CUG 1995 Fall Proceedings

CUG 1995 Fall Proceedings 71

72 CUG 1995 Fall Proceedings

CUG 1995 Fall Proceedings 73

74 CUG 1995 Fall Proceedings

