

CUG 1995 Fall

 Proceedings

75

The Cray Tape Management System for Solaris

John C. Falkenthal

and

 Karen D. Reynolds

, Cray Business
Systems, San Diego, CA

ABSTRACT:

The Cray Tape Management System

(Cray TMS)

manages system
tape resources including the volumes of tape media and the devices used to
access them. The devices under Cray TMS management are protected from
unauthorized use, and are automatically allocated to users as needed. Cray
TMS works in conjunction with a tape catalog manager, Cray/REELlibrarian

(CRL).

 This paper discusses the technical challenges of implementing this
product on a Solaris system base as well as the functional capability of the
product and its relationship to the UNICOS Tape Subsystem

.

1 Introduction

Throughout the evolution of the UNIX operating system,
support for tape intensive data-processing has remained defi-
cient. The typical UNIX tape implementation provides uncon-
trolled single-user access to pre-loaded manual tape drives. No
access control for tape volumes, nor sharing of drive resources,
is enforced by the operating system. This was also true of
Solaris[1], until now. Cray TMS provides sophisticated tape
handling capabilities to the enterprise computing customer.
Cray TMS runs on the Cray Superserver 6400 (CS6400) system
under the Cray Solaris 2.4 or higher operating system.

Cray TMS is targeted to serve customers who, because of
cost considerations, are moving from mainframe and minicom-
puter systems with proprietary tape management systems onto
open systems servers (like the CS6400) running a standard
UNIX environment with no tape management system. These
customers require a replacement tape management system to
administer their tape libraries and to control access to the data
on their tapes. The primary goal of Cray TMS is to serve the
needs of these customers.

Cray TMS supports both manually loaded tape drives, like
those normally found in open-systems environments (

i.e.

 8mm,
3480 cartridge, 9-track), as well as SCSI-based media changers,
and the Storage Technology ACS family of robotic tape
systems.

A future goal of Cray TMS is to provide integrated tape
management services for third party applications which use

tapes for data processing and storage. Currently, each of these
applications is required to implement their own internal tape
management system to service the application. With an autono-
mous tape management system in each of these applications, the
system tape resources cannot be managed effectively.

2 Cray TMS Design

Cray TMS was designed by using the field-proven UNICOS
Tape Subsystem[2] as the functional model of a tape manage-
ment system for the UNIX operating system. The UNICOS
Tape Subsystem provides access protection services for tape
data by controlling tape drive allocation and by performing
system label processing for IBM standard[3] or ANSI stan-
dard[4] labeled tapes. The UNICOS Tape Subsystem optionally
uses the services of a tape catalog for specification of the access
permissions granted to volumes in the tape library. Cray
Research released Cray/REELlibrarian (CRL) in 1992 to
provide stand-alone UNICOS tape catalog services. Porting
CRL to the CS6400 to provide tape catalog services for Cray
TMS was the obvious choice.

Also in 1992, SunSoft, announced the availability of another
technology which Cray TMS would leverage,

Solaris volume
management.

 Papers describing volume management were
presented at the USENIX Winter Conference[5] and the UK
UNIX User Group/Sun UK User Group Conference[6] in
January, 1993. Although Solaris volume management
supported only removable disk media (floppies and
CD-ROMs), it was designed such that it could be extended to
support other types of removable media, such as tapes. Volume
management provides access protection for data on removableCopyright © Cray Research Inc. All rights reserved.

76

CUG 1995 Fall

 Proceedings

media. Cray TMS required a mechanism for providing similar
access controls for tape data, and so, leveraged existing tech-
nology by extending Solaris volume management to support
tapes.

What volume management did not provide was any formal
mechanisms for drive allocation. An essential function of the
UNICOS Tape Subsystem is to allocate tape drives in a dead-
lock-free manner among all system and user processes. It was
decided to further extend Solaris volume management by adding
a tape drive reservation system that employs Dijkstra’s Banker’s
Algorithm[7], in a manner similar to that of the UNICOS Tape
Subsystem.

Commands were needed to access the Cray TMS function-
ality. Since that functionality was modeled after the UNICOS
Tape Subsystem, another obvious choice was to adopt the
UNICOS Tape Subsystem user command interfaces. It was
apparent that the similarities between Cray TMS and the
UNICOS Tape Subsystem may lead a casual observer to believe
the two products are totally compatible, or that Cray TMS is a
“port” of the UNICOS Tape Subsystem. Given the radically
different architectures of the two products, and the different
customer base for which they are targeted, it was clear during
design that total compatibility was not achievable. Although vast
similarities do exist between the two products, and therefore,
compatibilities, they are different in many ways.

The functionality which was still missing once all of the
obvious design decisions had been made, was system label
processing, which is required for accessing data from labeled
tapes. In the UNICOS Tape Subsystem, this function is accom-
plished by cooperation between the tape daemon and the tape
driver. The decision was made to develop a label processing
daemon and to develop a special interface to the managed tape
driver (MTD) which would allow the standard label processing
daemon (and in the spirit of open systems, any proprietary label
processing daemon) to monitor user tape accesses and perform
the necessary I/O to process the label records on the tape

3 Cray TMS Architecture

Cray TMS is composed of three distinct elements:
Cray/REELlibrarian (CRL), the StorageTek ACS client inter-
face (for configurations with STK tape silos), and the tape
management system, or TMS. Both CRL and the StorageTek
ACS client are software components that were ported to the
CS6400. Both are fully described in other publications. Only the
TMS architecture is addressed here.

3.1 Solaris Volume Management

At the architectural center of Cray TMS is Solaris volume
management, whose significant components are a
multi-threaded daemon (vold) and a pseudo-driver (vol). Cray
TMS duplicates and extends these components, re-naming them
tvold and tvol, respectively. The tvold daemon provides access
to volumes of tape media via character special device files in an
NFS file system, referred to as the tvol file system, or

tvolfs

(7).
The file system structure is contained within a memory resident,

configurable database. The tvold daemon mounts the file system
and establishes itself as the server for the file system. To respond
to file system operations, the database information is translated
into the appropriate NFS server responses. By this method, the
file system appears to contain unique devices for every volume
in the database. The volume devices belong to the tvol
pseudo-driver, which performs physical I/O by passing the I/O
requests down to the Cray Solaris SCSI tape driver,

st

(7).
Cray TMS extends the Solaris volume management architec-

ture in two significant ways:

1. Tape drive reservation and allocation services (an implemen-
tation of the Banker’s Algorithm) were added to the tvold
daemon. Reservation services are requested via a new RPC
protocol.

2. A new

pseudo-driver,

the Managed Tape Driver (MTD), was
developed to provide device-special files for labeled tape vol-
umes in the tvol file system. MTD monitors all user I/O re-
quests to labeled tapes.

The tvold daemon opens the

st

(7) driver device files for TMS
managed tape devices. These devices must be opened in order to
fulfill the I/O requests passed down from the upper driver layers
(MTD and tvol). tvold opens a special tvol driver device, the
control device, which it uses for communication with the tvol
driver. This communication is in the form of

ioctl

(2) system
calls.

The tape drive reservations server collects requests for drives
from user sessions. As volume management performs the tasks
of establishing access for a tape volume, it queries the drive
reservations server for permission to allocate a drive in accor-
dance with the reservations that have been granted to the user.

The tvold daemon is structured such that certain functional
modules are dynamically linked to the daemon in accordance
with the tvold daemon configuration file,

tvold.conf

(4).

The modules listed in Table 1 include the database module,
the media label recognizing modules, the device interface

Table 1. tvold Daemon Functional Modules

Shared Object Functional Module Description

db_crl.so Volume management database module

label_ansi.so ANSI label recognizer module

label_ibm.so IBM label recognizer module

label_unlab.so Unlabeled tape recognizer module

dev_st.so Manual-loaded device interface module

dev_sga.so SCSI media-changer device interface

dev_acsapi.so STK Silo device interface module

lyr_mtd.so Layered device management module

CUG 1995 Fall

 Proceedings

77

modules, and the layered device management module. The last
of these modules, lyr_mtd.so, was added to manage MTD device
allocation for labeled tape volumes. Each module in Table 1 has
a “type”. Each module type has a unique entry and structure of
function vectors.

New functional modules were written to replace the Solaris
database module, the media recognizing modules, and the device
interface modules. To support tapes, the device interface module
was extended with the addition of new function entry points.
These new functions were necessary to address differences
between tapes and disks. Unlike disk volumes, tape volumes
have multiple devices (representing different available access
modes) which must be managed such that at most one user can
open any of these devices and at most one device is in use at any
time. [Disk volumes can have multiple devices (representing
different disk partitions), but due to the random access nature of
the drives, the driver allows any number of these devices to be
simultaneously open by any number of users].

3.2 tvol File System Organization

Figure 1: tvol File System

As shown in Figure 1, there are two distinct directory hierar-
chies in the /tvol file system, /tvol/rmt/set and /tvol/dev/rmt.
/tvol/rmt/set contains “logical” paths to tape volumes. This
means there are no tape drive specific components in the path-
name. /tvol/dev/rmt contains “physical” paths to tape volumes.
Physical pathnames contain the tape drive upon which the
volume has been mounted, and are therefore only present in the
tvol file system while the volume is mounted. Allowing legacy
Solaris tape applications to run in the presence of Cray TMS is
one use of the physical paths in the tvol file system. The physical
paths represent a method of tape access that is compatible with
standard Solaris tape access.

/tvol/rmt/set/.ANSILB/ANSILB/

device_file

 is the “logical
name” of the tape volume with volume serial number (VSN)

tvol file system

/tvol

rmt dev
rmt
0

set

.UNLAB .ANSILB
UNLAB ANSILB

555555

tvold daemon
user
interface

NFS
tape
I/O

device_filedevice_file
device_file

RPC

‘ANSILB’. The ‘.ANSILB’ component of the pathname is the
CRL volume-set identifier (or VSID), for this tape volume. The
CRL volume-set ID is the VSN of the first volume of the
multi-volume set, prefixed with a dot “.” character.
/tvol/dev/rmt/0/555555/

device_file

 is the “physical name” of the
tape volume 555555 after it has been mounted on drive 0.

device_file

 at the leaf of each path represents the actual char-
acter special device file for the tape volume, as described in

st

(7). For labeled tapes, the

device_file

 belongs to the MTD
driver. For unlabeled volumes, the

device_file

 belongs to the tvol
driver. Also found in the tvol file system are several symbolic
links which are used as aliases for accessing tape volumes.
These aliases make it simpler for the user to specify certain types
of tape volume access. These aliases are described more fully in

tvolfs

(7).
This organization of device files is unique to Cray TMS. The

UNICOS Tape Subsystem creates device files at locations spec-
ified by the user (tpmnt -p <file>). With Cray TMS, the user
specification is created as a symbolic link to the actual device
file in the tvol file system.

3.3 The Cray TMS Database Module

The file system representation of the volume database is
intrinsic to the volume management design. All normal file
system activities (

chown

(1),

 chgrp

(1),

 chmod

(1),

 mv

(1),

 cp

(1),

ln

(1),

 rm

(1),

 mkdir

(1),

 rmdir

(1), etc.) are supported by the
database module interface. In fact, all database functionality
(add, update, delete) is triggered by file system activity. A new
volume is added to the internal volume management database
when it is inserted into a drive, recognized (and named) by one
of the media label recognizer modules, then placed into the file
system. A volume is removed from the database when an

rm

(1)
command causes invocation of the database “remove” function.
Volume attributes which could not be derived from file system
activity, were supported by tvol device

ioctl

(2)s which allows
arbitrary character strings to be stored in, and retrieved from, the
database record for that volume.

In the Cray TMS database module (which uses CRL as the
external tape catalog), there were three reasons for backing away
from the one to one relationship between the file system and
database.

1. The available number of volume devices (minor device num-
bers) in the file system could not support the design target one
million volume tape library.

2. The CRL database supported the data objects required for its
task as tape catalog; it could not be easily extended to also
store information for other tvol file system objects (

e.g.

, di-
rectories and links).

3. The rules by which CRL grants permissions for database up-
dates do not match the rules by which a file system grants per-
mission for the corresponding updates. For example, CRL
can be configured so that an ordinary user cannot add a new
volume to the tape catalog without administrator action.

78

CUG 1995 Fall

 Proceedings

Because of CRL’s inability to “store” the directory/file hier-
archy of the file system, a very limited, immutable hierarchy is
created by the database module logic during system initializa-
tion. All of the CRL volume sets (multi-volume tapes) are
located in directory /tvol/rmt/set; the file system hierarchy below
that directory is determined by the number and names of the
CRL volume sets and their constituent tape volumes.

A limitation derives from the decision not to add special
interfaces to allow for a database-unique form of permission
check before a database update (and related file system change)
was allowed. Without this permission check, volume manage-
ment cannot enforce the permissions established for CRL data-
base record updates; the solution is for the database module to
deny permission for all requested updates where the CRL
permissions cannot be checked. Since CRL has a user interface
with more update capabilities than those provided by the file
system, there is no actual loss of functionality and a minimal
impact to system usability.

An additional limitation of the Cray TMS tvol file system is
that only a small subset of the directory/file hierarchy is present
at any one time. The directory/file hierarchy is “pruned” by only
maintaining a “file” representation for the most recently used
volumes. Hence, the tvol file system contains a “cache” of
selected CRL volumes. Volume device unit numbers are recy-
cled among the “cached” volumes, which allows at least 16K
tape volumes in the cache at any time.

A volume becomes “cached” in one of two ways:

1. Its tvol file system path is referenced.

e.g.

,

open(“/tvol/rmt/set/.ANSILB/ANSILB/mn”,

O_RDWR)

;.
2. The volume is inserted into a Cray TMS drive, recognized by

one of the media label recognizer modules, and found to be in
the CRL catalog.
The algorithm used to “cache” a volume required one change

to the volume management database module interface. The
name of the “file” (volume) sought by a directory lookup had to
be provided so that the database module could “cache” it. (A
directory lookup is performed to update the “files” in the direc-
tory before the directory contents are examined.)

An attempt is made to “de-cache” a volume after it has
remained unreferenced for a period of time in the database
module cache. All copies of the object must be removed to
“de-cache” it. Since the tvold daemon keeps copies of objects
which it retrieves from the database module, the database
module cannot know whether it is safe to “de-cache” a volume.

The algorithm used to “de-cache” a volume utilizes the
existing interfaces between the tvold daemon and the database
module. When the tvold daemon (usually in its role as NFS
server) performs a directory lookup, it expects the database
module to mark the “files” in the directory as they are updated.
Any “files” not marked are assumed to have been removed from
the database, and the tvold daemon will remove its copies of the
“file” objects unless they are still in use (accessed by a user,
waiting to be mounted, or mounted in a drive). If the copies

cannot be removed, the tvold daemon will continue to treat them
as normal file system objects. This implies that the objects will
be passed to the database anytime they are updated for the
updates to be stored, and the objects will still be present in a
directory when the database is asked to perform a directory
lookup.

Using this interface, the database module attempts to
“de-cache” a volume by not marking its “file” as updated on a
directory lookup (

i.e.

, the database module claims that this
object has been removed from the database). If that volume is
not in use, the tvold daemon will remove all of its copies after
the directory lookup completes. If not, the database module will
see the tvold daemon copy of the volume object on a subsequent
update or directory lookup request. At that point, the database
module will make its own copy of the object, restore the object
to the database “cache”, and start aging the object once more for
a later “de-cache” attempt.

3.4 Device Drivers

Cray TMS employs a layered driver architecture. The tvol
and MTD pseudo-drivers (

pseudo

 because they do not actually
control a hardware device), are front-end interfaces to the SCSI
tape driver,

st

(7). Unrecognized user I/O requests received by
the tvol pseudo-driver are passed down to the st driver, unal-
tered. One additional tape control operation is provided by the
tvol pseudo-driver (see the “volume seek” description in section
3.6, Volume Set Support). The MTD pseudo-driver is actually a
front-end to the tvol pseudo-driver. MTD provides an interface
that allows user I/O requests to be dynamically limited by a priv-
ileged process.

When calling another driver to perform I/O for it, a
pseudo-driver must know the driver to call and the device to use.
tvold determines the mapping between driver devices, and both
the mtd and tvol pseudo-drivers support special I/O control oper-
ations that are used to establish the device mapping to use for I/O
operations that are passed on to another driver.

The SCSI tape driver,

st

(7), has been enhanced on Cray
Solaris to provide a new control mechanism which detects tape
insert and eject events. The tvold daemon creates one thread for
each tape transport device being managed. These threads remain
blocked until insert or eject events take place. When one of these
threads detects media insertion, tvold calls, in turn, each of the
media label recognizing modules until one of them identifies the
volume. With the volume identity, tvold can look up its assigned
mapping between the tvol pseudo-device and the st device that
correspond to the drive containing the volume. This mapping is
passed down to the tvol driver when a user tries to open one of
the pseudo-devices for the tape volumes in the tvol filesystem.

3.5 Label Processing Support

Cray TMS is designed to support processing of both IBM and
ANSI standard labeled tapes. Labeled tapes were designed to
promote information interchange between foreign computer
systems by specifying volume and file structures, recorded

CUG 1995 Fall

 Proceedings

79

labels for identifying volumes and files, and basic characteristics
of the blocks containing the records constituting the file.

The information from the label records is augmented by (or
overridden by) information maintained in the tape catalog. Since
this information determines who can read and write the user
data, it is considered to be privileged and should not be acces-
sible by an unprivileged user.

Enforcing different levels of protection to different records
on the same reel or cartridge of tape media requires an interface
which allows the system to intercept user I/O requests at points
where label records would be accessed, and perform the neces-
sary I/Os to position the tape at the targeted user data. The archi-
tecture used by Cray TMS for this purpose is pictured in Figure
2.

Figure 2: Label Processing

The figure shows the user application opening a volume
device (/tvol/rmt/set/.ANSILB/ANSILB/c) which belongs to
MTD. The label daemon is a privileged process which opens
another MTD device (/tvol/lyr/mtd/ANSILB/c). MTD devices
occur in pairs, with one device called the “control” device and
the other, the “application” device. The application device inter-
face accepts all of the tape I/O commands (

read

(2),

 write

(2),
and

 mtio

(7)), but the behavior of those commands can be altered
from the paired control device. The control device interface is a
superset of the application device I/O repertoire. Additional

ioctl

(2) functions are provided to control the I/Os on the paired
application device.

user application label daemon

tvol file system

/tvol/rmt/set/.ANSILB/ANSILB/c /tvol/lyr/mtd/ANSILB/c

MTD

tvol driver

SCSI tape driver

The label daemon indirectly interfaces with volume manage-
ment. The volume management configuration allows specifica-
tion of a program to run in response to events that happen to
volumes. Among those events are:

• The volume has been inserted into a drive.

• The volume has been ejected from a drive.

The volume management configuration for Cray TMS speci-
fies that a program is to be launched when a labeled tape volume
is inserted. The purpose of this program is to provide the label
daemon with the information required to perform label
processing for the volume. This information includes the tvol
file system path of the control device which the label daemon
must open. Similarly, the eject event configuration specifies that
when a labeled tape is ejected a program is launched to contact
the label daemon with information that causes the control device
to be closed.

Although the MTD interfaces allow the label daemon to
perform the label processing functions required by IBM standard
or ANSI standard labels, MTD was designed as a general inter-
face which knows nothing about tape label formats or the
processing requirements thereof. Conceivably, a third-party tape
application which supported a proprietary labeled tape format
could use Cray TMS for application tape management by:

• writing a media label recognizer module for the proprietary
tape labels,

• writing a proprietary label daemon which uses the MTD
interfaces to perform the required label processing for the
proprietary label format, and

• configuring volume management to launch a program to
contact the proprietary label daemon at events such as inser-
tion or ejection of a tape with proprietary labels.

The MTD control device interface includes a control

ioctl

(2)
with a data structure that specifies which user I/Os are of
interest. This specification allows I/Os to be described not only
in terms of operation (

e.g.,

open

(2),

read

(2),

write

(2),

mtio

(7),

close

(2)), but also in terms of context (

i.e.,

detect the I/O before
it is issued, detect it after it completes, or detect it only after it
terminates with an error). MTD monitors the I/Os on the paired
application device until it detects an instance of one of the inter-
esting I/Os. At this point, the control data structure is updated
with information describing the intercepted I/O and parameters
and the

ioctl

(2) returns. The controlling process is then able to
examine the updated data structure and take whatever action is
dictated, including issuing any number of I/Os via the control
device to the user’s media. Once the indicated processing is
complete, the fate of the user I/O (

i.e.,

continue, retry, or abort)
must be determined by setting values in the control data struc-
ture. Also, the controlling process may wish to establish a
different set of interesting I/Os in the control data structure
before issuing the control

ioctl

(2) once more.
In order to effectively use the MTD interfaces to control

access for every labeled tape on a Cray TMS drive, the label
daemon has a multi-threaded architecture, where one thread is

80

CUG 1995 Fall

 Proceedings

spawned to supervise each labeled tape device, and a separate
thread reads and services label daemon requests from the
communication

socket

(3N). At any given time the vast majority
of threads are blocked, waiting for the MTD control

ioctl

(2) to
return. Service for any individual user is not impacted by the
processing state of other users.

The following serves as a simplified example of how the label
daemon uses the MTD control

ioctl

(2) to monitor a user’s
labeled tape access:

1. The label daemon communication thread receives a specifica-
tion of the data the user wishes to access on the labeled tape
from

tpmnt

(1) (a Cray TMS command with a user interface
modeled after the UNICOS version).

2. The label daemon communication thread receives notifica-
tion that a labeled tape has been inserted and spawns a device
monitor thread for the application device.

3. The device monitor thread sets up a control data structure re-
questing detection of user

open

(2) termination and issues the
control

ioctl

(2).

4. The

ioctl

(2) returns indicating that the user

open

(2) complet-
ed successfully and the

open

(2) parameters requested
read/write access.

5. The label daemon uses another MTD

ioctl

(2) to identify the
user. With the user identity, the label daemon looks to see if
any data specification was provided by this user. With the
data specification (or a default specification), the label dae-
mon begins reading the label records on the tape until it finds
the label records which identify the specified user data. It then
examines the label records, and the CRL file records (if any)
to determine if the user has the necessary permissions to
read/write the specified data.

6. If the user does not have access permission, the label daemon
will update the control data structure to request that the user

open

(2) be terminated with an error. If the user does have ac-
cess permission, the label daemon will update the control data
structure to request that it be notified in the event of a user

write

(2) initiation or

close

(2) termination; user

read

(2) re-
quests are allowed to pass without interception. It also indi-
cates that the intercepted user

open

(2) should be allowed to
continue to normal completion, and issues another control

io-
ctl

(2).

7. If a user

write

(2) is detected before

close

(2), the label dae-
mon will remove

write

(2) from the set of interesting I/Os and
reissue the control

ioctl

(2). Upon detection of

close

(2), the la-
bel daemon will know to write the necessary label records to
terminate the new user data because it had detected the fact
that the user was writing data.

3.6 Volume Set Support

In Solaris 2.

x

 volume management, each volume is an inde-
pendent entity. Since IBM standard and ANSI standard label
tape formats support multi-volume tapes (

i.e.,

an ordered set of

related volumes), it was necessary to introduce support for CRL
volume sets into volume management.

By supporting only CRL volume sets, the difficult problem of
designing a generic volume management interface which
allowed for the creation of multi-volume objects was
side-stepped. CRL provides an interface for creating a volume
set, and once the volume set has been created, it is accessible
(when named) from the tvol file system.

To lessen the impact of volume sets on the volume manage-
ment design, the devices for accessing the volume set were
assigned, as usual, to the constituent volumes. The wrinkle with
volume set access is that selecting a volume device to open also
determines the initial tape position (at the start of that volume)
in the volume set.

The relationship between volume set and constituent volumes
is analogous to that between tape volume and volume devices. A
volume set consists of one or more tape volumes, but only one
may be opened at any time. So, logic was added to the tvold
daemon to deny any attempt to open a volume device in a
volume set once one had already been opened.

The main technical interest in volume set support lies in the
design to allow the opened volume device to access any volume
in the set. The solution proved to be relatively easy given the
layered driver architecture in Cray TMS.

Although, the tvol driver passes user I/Os through to the
physical device driver, the tvold daemon provides the tvol driver
with the identity of the physical device to use. This occurs by the
following mechanism:

1. A user opens a volume device in the tvol file system.

2. The user open is directed to a specific logical device in the
tvol driver, either directly (because a tvol device was
opened), or indirectly (because an MTD device was opened
and the label daemon instructed MTD to direct I/O to the tvol
driver device).

3. The tvol driver checks to see if it has received a mapping to a
physical device for the logical device. If so, it will invoke the
mapped driver to perform subsequent user I/Os on the
mapped device.

4. If, on the other hand, the tvol driver has no physical device
mapping, it adds a “no map” event for the logical device to
the queue of work for the tvold daemon.

5. Using an

ioctl

(2), the tvold daemon collects and processes
tvol driver events in turn. When it gets a “no map” event, it
looks up the volume object which has the logical device as
one of its devices in the tvol file system. It checks to see if the
volume is mounted on a drive. If not, actions are taken to get
the volume mounted (

e.g.,

request an autoloader device to
mount it, or send email to the system administrator) and the
“no map” request is queued awaiting mount completion.

6. When a volume is mounted, it is first detected as a media in-
sertion by the device interface module which provides access
to the physical drive. Once detected, the media label recog-
nizer modules are called in turn, until the volume is identi-

CUG 1995 Fall

 Proceedings

81

fied. At this point the tvold daemon knows the identity of the
volume and on which physical drive it is mounted.

7. Once the volume with the “no map” device has been mount-
ed, the tvold daemon is able to pass the physical device num-
ber back to the tvol driver by using a “map”

ioctl

(2). The tvol
driver can then pass the user’s subsequent I/O requests to the
mapped physical device’s driver.

Given that this logic was already in Solaris volume manage-
ment, it was only necessary to introduce a new event which
would cause the physical device mapping for a tvol driver device
to be changed. The new event takes the form of a new “volume
seek”

ioctl

(2) supported by the tvol driver for volume set
devices. The

ioctl

(2) data includes a specification of the targeted
volume position.

The processing of this

ioctl

(2) is similar to that (described
above) which established the initial physical mapping for the
volume set device. The differences are:
• This occurrence is reported to the tvold daemon as a “vol-

ume seek” event for the opened volume set tape device.
• This event provides the tvold daemon with the

ioctl

(2) data
specification which is used to calculate the identity of the
volume targeted by the “volume seek”.

• Once the target volume is found to be mounted so that the
physical device is known, the tvold daemon can respond to
the “volume seek” event. A new tvol driver “remap”

ioctl

(2) is used to change the physical device mapping of
the opened volume set device to point to the physical
device of the target volume.

Once all of this processing is complete, the “volume seek”

ioctl

(2) returns and subsequent user I/O to the open volume
device will be directed to the physical device containing the
targeted volume in the volume set.

This method of redirecting a user-opened volume device to
use a different physical drive without disturbing the user appli-
cation should prove useful in the future as a foundation for
implementing sophisticated error correction strategies. Physical
device remapping allows for the option of substituting another
drive in the hopes of retrieving data from a volume with unre-
coverable data errors.

3.7 Cray TMS Command Interface

As previously described, the Cray TMS command set is
based largely on the UNICOS Tape Subsystem command inter-
face. The following table presents a synopsis of the command set
provided by Cray TMS. This list does not include any of the
commands provided by CRL.

Table 2. TMS Commands

Command Description

rsv(1) reserve tape drive resources

rls(1) release reserved tape resources

4 Significant Features

Cray TMS contains numerous operational features, many of
which are unique to Cray TMS. Some of these are:

• The Default Reservation

Cray TMS attempts to simplify typical tape operations by
providing a “free” tape reservation for all user jobs. The user is
not required to make an explicit reservation with the “rsv”
command, if a single tape device is required. In this instance, the
“tpmnt” operation can begin a user tape session. Also, the reser-
vation is automatically released when access to the tape is
closed.

• Bypass Label Processing

Privileged users may request labeled tapes be accessed such
that the entire contents of the tape are accessible, including the
header and trailer label records.

• Dynamic Tape Drive Reconfiguration

Tape devices can be brought under Cray TMS management,
or removed from Cray TMS management during runtime by
modifying the tvold configuration file,

tvold.conf

(4), and then
signalling the tvold daemon. Also, if runtime errors are detected
on a tape device, that device will automatically be removed from
TMS control, or “deconfigured”.

• Operator-less

Unlike mainframes and supercomputers, the CS6400 is
designed to be an operator-less system. There is no operator
message facility on Solaris as exists on UNICOS, in which the
operator can assign user jobs to particular tape devices. Due to
this fact, Cray TMS maintains the notion of

identifiable and
unidentifiable volumes. An unidentifiable volume is a
non-labeled tape on a manually loaded tape drive. All other tapes
are identifiable. The only method of access for an unidentifiable
tapes on Cray TMS is by first mounting the volume, then using
the physical pathname to the volume, in the tvol file system.

• CRL is Required

tpfrls(1) forcibly release tape drive reservations

tpmnt(1) setup access to labeled tapes

tpdevlist(1) display drives and device groups

tpstat(1) display status of drive resources

tprst(1) display reservation status

tplabel(1M) apply labels to a tape volume

tplist(1) display internal label records on tape

tvolcancel(1) cancel request to load a volume

Table 2. TMS Commands

Command Description

82 CUG 1995 Fall Proceedings

Unlike the UNICOS Tape Subsystem, CRL is a required
element for the proper operation of Cray TMS.

5 Futures

As Cray TMS nears release, and general availability, several
product enhancements have been committed for the next release.
These include:

• An enhanced unlabeled tape interface

The MTD driver will own all device files in the tvol file
system, including unlabeled tape volume device files. tpmnt (1)
can then be used for both labeled and unlabeled tape access. The
labeld daemon will automatically apply or remove tape labels as
required. The result of which is a more consistent user interface
between labeled and labeled tape volumes.

• The “tpmnt -O <offset>” option will be supported

Users can specify “volume offsets” on which to begin
processing multi-volume tape sets. This alleviates the need to
scan past unnecessary tape volumes in order to locate the desired
dataset.

• User EOV Processing

Users can optionally gain control of labeled tape volume tran-
sitions as each volume hits logical EOT. This allows optional
trailer information to be written to each volume, and requires the
user initiate multi-volume tape transitions using the

volume-seek ioctl(2). (See tvolio(7) for more information
regarding volume-seek operation.)

• Volume-set Concurrency

Multiple user access to the same volume set will be permitted
and, where possible, will be allowed to process in parallel.

6 References

[1] Stringer, Phil, “Tapes and Robots for the CS6400 SuperServer,” in 1995
Spring Proceedings, Cray User Group (CUG) Inc., Denver, CO, 1995.

[2] UNICOS Tape Subsystem User’s Guide, Cray Research, Inc. Document
Number SG-2051 7.0, November 1992.

[3] MVS/370 Magnetic Tape Labels and File Structure Administration, Release
1.2, IBM Publication Order Number: GC26-4064-2.

[4] American National Standard for Information Systems - File Structure and
Labeling of Magnetic Tapes for Information Interchange, ANSI Standard
Number: X3.27-1987.

[5] Alt, H., “Removable Media in Solaris,” in Proceedings of the USENIX Win-
ter Conference, USENIX Association, San Diego, CA, January 1993.

[6] Alt, H., “CD-ROM’s and Floppies in Solaris”, Proc. Jan. 1993 UK UNIX
User Group/Sun UK User Group Conference, January 1993.

[7] Dijkstra, E. W., “Cooperating sequential processes,” technological Univer-
sity Eindhoven, The Netherlands, 1965. (Reprinted in Programming Lan-
guages, F. Genuys, ed., Academic Press, New York, NY 1968.)

