The Federal HPCC Program: Assessment and Challenge

George Cotter, National Security Agency

Outline

- The Federal High Performance Computing and Communications Program - A Brief Overview
- NSA's Needs; Research and Development Agenda
- HPCC Workshops; Technical Assessments
- Future for the High End User

Federal HPCC Program Goals

- Support to Agency Missions
- Support to HPCC Research Community
- Coordination of R & D Agendas
- Emphasis on Pre-competitive technologies
- Technology Undercarriage to NII
- Demonstration Applications e.g. Grand Challenges
- · Stimulate Academia and Industry to World Leadership

The Federal HPCC Program

COMPONENTS	ACTIVITIES
High Performance Computing Systems	R&D of Scalable Parallel & Distributed Computing Systems, Design Tools, Component Technology Procurement of Advanced Prototypes
Advanced Software Technology and Algorithms	R&D of Operating Systems, Compilers, Languages, Libraries, Data Mgmt, Tools, Algorithms, "Grand Challenge" Applications
National Research and Education Network (NREN)	Extend U.S. Leadership in Computer Communications, Extend Con- nectivity of, R&D Community to High Performance Computing, Nationwide Prototypes for New Communications Technologies
Basic Research and Human Resources	Grants, Fellowships, Education Programs, Pilot Projects for K-12 & Lifelong Learning
Information Infrastructure Tech. & Applications	Extend HPCC Technologies for National Challenges, Integrate Technologies for Services, Software, and Interfaces

HIGH PERFORMANCE COMPUTING

Performance Growth Embedded Systems Rapid Prototyping Facility Microsystems Networks of Workstations HPC Architectures

HIGH PERFORMANCE COMMUNICATIONS

Technologies improving Connectivity, Data Rates, Multimedia Internetworking R&D - Services, Routing & Scaling, Security Six Gigabit Testbeds - Sustaining 2.4Gbs Newest Transport Protocols Contentionless Switches, Host Interfaces Underpin other R&D - Optical Crossbars, HS Encryptors

MASS STORAGE

10*15, Scalable to 10*18 Bytes Expanded RAID Architectures HPSS Consortium/National Storage Lab

ADVANCED SOFTWARE TECHNOLOGIES

Scalable Microkernel Operating Systems Languages - HPF, HPC++, AC, DBC PVM, MPI, Ptools

ALGORITHMS, PERFORMANCE MEASUREMENT, BENCHMARKING

RELATED TECHNOLOGIES

NRC/CSTB HPCC REPORT - 1995

FINDINGS:

- Information Technology central to our society
- Information Technology advances rapidly
- Retaining IT leadership vital to U.S.
- Federal computing research investment very fruitful
- Continued Federal investment necessary to sustain lead
- HPCC agencies core of government-sponsored HPCC research

RECOMMENDATIONS:

- Continue strong government IT support
- Continue HPCCIT, increasing NII emphasis
- Continue funding research in parallel software/algorithms
- Stop funding development of commercial systems
- Teraflop computer direction not destination
- Increase communications/networking research

- Start research on very large HP, distributed information systems
- Ensure National Challenges contribute to NII technologies
- Continue NSF centers, funding applications to support HPCC technology
- Ensure Grand Challenges support HPCC technology development
- Strengthen NCO, appoint advisory committee
- Keep projects focused on HPCC objectives
- Mission agency computer procurements only for mission needs

OUR NEEDS

ULTRA HIGH-END PERFORMANCE

CONTINUOUS HIGH VOLUME THROUGHPUT

BALANCED SYSTEMS

Communications Computation Memory

HETEROGENEOUS ARCHITECTURE

Classical Vector Parallel Machines MIMD-Massively Parallel Processors Clusters/Symmetric MultiProcessors Special Purpose Devices Mass Storage Systems High Capacity Networks

MATURE SOFTWARE AND TOOLS

Applications Development Experimental & Production Codes Very Large User Community

TAXONOMY OF PROBLEM TYPES

HARD

Random Walk

Event Scheduling

Graph Traversal

Ordering

Iteration

Embarrassingly Parallel

EASY

TRENDS - KEY QUESTIONS

Problem Sets vs. Architectures - Mappings

Speed vs. Parallelism - Hedging our Bets

Transition to MPP's - Sooner Or Later?

Hardware Models vs. Programming Models - Facing the Facts

System vs. User Parallelization - A Key Investment Issue

Multitasking vs. Resource Partitioning - Also Facing the Facts

Price vs. Performance - Selling out the User

What Will Market Support - Picking Winners and Losers

Technology Gaps - Spawning R & D

NSA HPCC RESEARCH DIRECTIONS

HARDWARE

PIM Superconducting Switch Diamond Substrate Technology Multi-Chip Module Technology SPLASH II H-NET Gigabit Networking (ATM/SONET) Evaluation of Architectures Link/Cell Encryption

SOFTWARE

CM-5 Node C Compiler including Vectors (AC) Data Parallel, Bit Serial C (dbC) Large Workstation Clusters (RES) Cooperative Computing Software Network File System on a Workstation Cluster (MNFS) Benchmarks for Parallel Architectures Secure Microkernel

TOOLS & PERFORMANCE MONITORING

Visualization Instrumentation of Parallel Architectures

PIM CONCEPT

Cray 3/PIM (Processing-in-Memory) Wafer

CUG 1995 Fall Proceedings 15

SOFTWARE TECHNOLOGY FRAMEWORK

Emphasis On Industry Shortcomings

Understanding Architectures; Strengths & Weaknesses Disconnects between Programming and Hardware Models Immaturity Of Systems Software Offerings Tools Built For Less Knowledgeable Users Uniqueness Of Some Of Our Problems Support To Our In-house Developments

Examples:

AC-

Node Level Compiler For CM-5 Close Match Between Language & Machine Used With Any CM-5 Programming Model 10X Improvement Over CM-5 Data Parallel Model Working With Cray Research For T3D

DBC -

Data Parallel, Bit Serial C TWIST - Execution Environment Several Applications - e.g. TERASYS/PIM

Tools, Algorithms, Language Extensions

SOME OBSERVATIONS

Our Computational Challenges Are Boundless

Our Real Limitations Are Intellect, Technology and Money

Heterogeneous, Distributed Computing Is a Fact of Life

Architectural Rules:

First:	Speed
Then:	Balance
Next:	Parallel
Last:	Massive

What Isn't Working - Shifting Software Burden Back to User

What Counts:

Implementation - Not Just Invention Commercialization - We Buy Our Production Systems Support - Be It Public Domain or Commercial Technology Growth Potential - Interest Wanes if Migration's Obscure

What's Sad:

Competition Drives Down Profits Reduced Profit Drives Down R & D Industry Mortality is too Great Federal HPCC Program Has Had Little Effect

16 CUG 1995 Fall Proceedings

HPCC WORKSHOP ASSESSMENTS

PURPOSE

Examine Key Areas of High Performance Computing to Help Guide Federal HPCC Program

SPONSORS

Major HPCC Agencies and Collaborators

PARTICIPATION

Government, Industry, Academia Technical Leaders

WORKSHOPS

April 14-16 1992	Pasadena I - System Software and Tools for High Performance Computing Environments
May 4-7 1993	Workshop and Conference on Grand Challenge Applications and Software Technology
Feb 22-24 1994	Enabling Technologies for Petaflop Computing
Jan 10-12 1995	Pasadena II - System Software and Tools for High Performance Computing Environments
Aug 14-23 1995	Petaflops Summer Study on Applications
	HPCC WORKSHOP ASSESSMENTS

PASADENA I - SYSTEM SOFTWARE AND TOOLS FOR HIGH PERFORMANCE COMPUTING ENVIRONMENTS - 14-16 APRIL 1992

KEY FINDINGS

Inadequate Programming Models Poor Understanding of Resource Balance Math Libraries Unavailable Limited User Access to System State Disparate User Interfaces and Execution Models Absence Checkpoint/Restate and Exception Handling Dynamic Resource Management left to Programmer Programming in Heterogeneous Environment Very Hard I/O, File Handling Not Keeping Pace

STRATEGY

Unprecedented Cooperation Across HPC Community Stimulate Complete Programming Environments Coordinate MultiAgency Research Programs The Kennedy Model for Advancing Development

PETA(FL)OP I - ENABLING TECHNOLOGIES FOR PETAFLOPS COMPUTING - 22-24 FEB 1994

FOCUS

Applications and Algorithms Device Technology Architecture Software Technology

MAJOR FINDINGS

Cost:	May be Prohibitive
Applications:	Aircraft Industry, Environment, Biology and Medicine, National Security
Device Technology:	Silicon Forecast Supports Superconductivity Significant Optical Systems Unlikely Memories on Critical Path
Architectures:	I- Shared Memory, Cacheless, Multiprocessor II- Massively Parallel Processor III- Multigrid PIM (Massive, Fine Grain Parallel) System Diameter, Latency Critical Issues
Software Technology:	<i>System-level Methodologies Completely Inadequate to Challenge Entire New Paradigm May be Essential</i>

HPCC WORKSHOP ASSESSMENTS

PASADENA II - SYSTEM SOFTWARE AND TOOLS FOR HIGH PERFORMANCE COMPUTING ENVIRONMENTS - JAN 10-12 1995

GOALS

Assess Progress Since Pasadena I

Identify Isues in Development, Deployment and Use of Systems Software and Tools

Develop Recommendations for Resolution, Framework for Continuing Review of Progress

KEY FINDINGS

Systems SW and Tools Lagging Significantly HPC MPP HW Architectures Dominant Source of Difficulty Transition from Research to Commercial Products Poor A Few Bright Spots - MPI, PVM, HPF HPC Market Will be Driven by Commercial Users HPC Market Currently Too Small to Attract ISV's SMP's a New Market Factor - ISV Leverage Potential

STRATEGY

Production of Minimum Base Tool Environment Community Standards Forum - Establish Requirements and Specifications for Tools, Infrastructure Interoperability Sponsor Detailed Evaluation Studies to Eliminate HW Barriers Determine Minimum Requirements for HPC HW System Identify HW Hooks and Mechanisms to Strengthen Systems SW and Tools Identify Key SW to Exploit ISV Resources Support Interdisciplinary Investigation of Heterogeneous Computing

IMPLEMENTATION

Create an Oversight Committee for Systems SW and Tools Create a Standing Committee on HPC SW Tool Set Functionality Convene a Committee on Infrastructure and Interfaces Create a "Circle of Excellence" for Sponsorship of Research Identify Key Applications; Sponsor ISV Porting Sponsor White Papers; Minimum Requirements for HW Support Extend Application/System Evaluation/Characterization Studies Support Rapid Deployment Consortia Extend NHSE Charter into Broad Community Coordination Role Create National Distributed Hererogeneous Testbed

HPCC WORKSHOP ASSESSMENTS

PETAFLOPS SUMMER STUDY ON APPLICATIONS - 14-28 AUG 1995 (Preliminary)

REQUIREMENTS

Rich Potential Set of Applications Some Near Term

APPLICATION CLASSES

Performance Dominated - Memory Scales: N^3/4 Law Data Intensive - Drives Memory Hierarchy Balanced Systems - Extend Commercial Development Exotic Applications

ARCHITECTURAL IMPLICATIONS

Variable Architectures (PETAFLOPS I) Concurrent Architecture Studies Essential Agressive Hardware Technology Programs Needed Integrated Applications-Architecture Studies Must Occur Detailed Performance Models Required to Verify Architectures

SUGGESTIONS FOR PROGRESS

Complete Applications Case Studies Detailed Recommendations/Milestones Follow-up Workshops: Applications/Algoritms, Systems SW, PETAFLOPS II

Year of First DRAM Shipment Minimum Feature (µm)	1995 0.35	1998 0.25	2001 0.18	2004 0.13	2007 0.10	2010 0.07	DRIVER
Memory Bits/Chip (DRAM/Flash) Cost/Bit @volume (millicents)	64M 0.017	256M 0.007	1G 0.003	4G 0.001	16G 0.0005	64G 0.0002	D
Logic (High Volume: Microprocessor) Logic Transistors/cm ² (packed) Bits/cm ² (cache SRAM) Cost/Transistor @ volume (millicents)	4M 2M 1	7M 6M 0.5	13M 20M 0.2	25M 50M 0.1	50M 100M 0.05	90M 300M 0.02	L (μP)
Logic (Low Volume: ASIC) Transistors/cm ² (auto layout) Non-recurring engineering cost/transistor (millicents)	2M 0.3	4M 0.1	7M 0.05	12M 0.03	25M 0.02	40M 0.01	L(A)
<i>Number of Chip I/Os</i> Chip to package (pads) high perf.	900	1350	2000	2600	3600	4800	L, A
Number of Package Pins/Balls Microprocessor/controller ASIC (high performance) Package cost (cents/pin)	512 750 1.4	512 1100 1.3	512 1700 1.1	512 2200 1.0	800 3000 0.9	1024 4000 0.8	μP A A
<i>Chip Frequency (MHz)</i> On-chip clock, cost-performance On-chip clock, high performance Chip-to-board speed, high performance	150 300 150	200 450 200	300 600 250	400 800 300	500 1000 375	625 1100 475	μP L
Chip Size (mm ²) DRAM Microprocessor ASIC	190 250 450	280 300 660	420 360 750	640 430 900	960 520 1100	1400 620 1400	D µP A
Maximum Power High performance with heatsink (W) Logic without heatsink (W/cm ²) Battery (W)	80 5 2.5	100 7 2.5	120 10 3.0	140 10 3.5	160 10 4.0	180 10 4.5	μP A L

Table 1: OVERALL ROADMAP TECHNOLOGY CHARACTERISTICS

From THE NATIONAL TECHNOLOGY ROADMAP FOR SEMICONDUCTORS, 1994--Semiconductor Industry Association

UNCLASSIFIED

PROJECTIONS FOR THE TERAFLOP COMPUTER IN THE YEAR 2000

	REGULATED POWER PER UNIPROCESSOR (KW)	NUMBER OF PROCESSORS (#)	"WALL PLUG" POWER (KW)	POWER DENSITY PER UNIPROCESSOR (WATTS/INCH ³)
ECL	1.5	1000	3600	830
GaAs	0.7	500	850	200
JJ	0.001	80 (2.5 Ghz)	200	0.3
JJ	0.001	20 (10 Ghz	200	0.3

Keep the Performance Gap from Opening Wider

Establish Government-Industry-Academic Consortia

Establish Research Program Narrowly Focused-Systems SW Language Issues Compiler Structures Operating Systems (Microkernels to Autoscheduling) All Critical, Generic Tool Issues User Requirements and Functionality Peer-level Selection for Pre-competitive Development Conduct Systems-Significant Applications Case Studies Incorporate NHSE into Consortia Create Heterogeneous Computing Testbed Leverage Systems Vendor and ISV Industries Objective: Honest Teraflop Performance for General User

Adopt Petaflop as HPCC Long-range Focus

Support Essential Material Science and Device Technology Silicon Superconductors Promising Optical Developments Memories a Special Case Exotics

Support Architectural Developments (e.g. Petaflop I Models)

Extend Systems Software Consortia Charter Research in New Paradigms Coordination Applications, Systems Software, Architectural Communities

OUR CRI EXPERIENCE

An Original Client

Acquired Every Machine Developed

Enjoy Broad Technical Collaboration

C90, T3D, TRITON, T3E Currently

Often Represent CRI Interests Within Government

Seldom at Odds (e.g. Export Control Policy)

Future of CRI Important to the Nation

National Security

Competitiveness

Technology Leadership