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ABSTRACT: 

 

This paper provides a discussion of the optimization technology used in the Cray
CF90 compiler. It also outlines some specific optimizations important to the compiler and
provides numbers on Cray CF90 performance relative to the Cray CF77 compiler. Lastly, it
suggests strategies for transitioning from Fortran 77 to Fortran 90.

 

1 The Optimizer Technology

 

The optimizer used by Cray’s Fortran 90 compiler is called
PDGCS which stands for Program Dependence Graph
Compiling System. This optimizer provides state of the art tech-
nology to support the Fortran 90 language.   The premise of the
optimizer is hierarchical memory optimization which structures
optimizations to reduce memory traffic, take advantage of
cache, and reduce the number of loads and stores required
within a program. The program dependence graph (PDG) is at
the heart of the optimizer and is integral to the design. Modifi-
cations to the PDG build on top of one another. As each optimi-
zation is applied, the PDG is recomputed and opportunities for
further optimization are then reevaluated. Selection of each
optimization is dictated by a series of heuristics which choose
the best optimizations in each case for decreasing memory
traffic and increase the size of the blocks for subsequent optimi-
zations. The approach of integrating optimizations and creating
an interplay between them is the direction of the compiler
industry as a whole and has the potential to provide very high
levels of performance well beyond that achievable with Cray’s
CF77 compiler.

 

2 Important CF90 Optimizations

 

Several of the optimizations within the Cray CF90 compiler
provide good performance boosts to Fortran 90 performance.
These include optimizations such as inlining of array intrinsics,
and various optimizations that restructure loops in many
different ways.

Array syntax allows for representing arrays in a concise
manner with Fortran 90 syntax. Array operations are expanded
into a series of loops and calls within the compiler. Inlining of

these intrinsics allows for other optimizations to take place on
the loop bodies and also eliminates the overhead of the subrou-
tine calls. Even with no other optimization, removal of the
subroutine call overhead can provide a good win. 

Loop fusion is an important optimization to aid array syntax.
After an array intrinsics is expand into a series of loops, the
loops can then be fused or combined into a single larger loop
where other potential optimizations can then be performed.

Loop Interchange is swap inner and outer loops. This allows
for moving dependencies out of the loop thus providing greater
opportunities for optimization within loops as well as improving
data locality and cache optimization.

Outer Loop Vectorization promotes the concept of vector
invariant code as opposed to scalar invariant code. With vector
invariant code, a vectors worth of elements are pulled to the
outer loop and the inner loop is run as scalar. Outer loop vector-
ization is used in instances where may people would think loop
interchange would be applied, but to preserve the data locality
outer loop vectorization is often preferred. As CF77 does not
perform outer loop vectorization, his type of optimization can
increase the performance of a loop by 6 to 7 times over the
performance obtained with CF77.

Loop unrolling is duplicating the body of a loop for some
number of iterations of the loop on sequential iterations. When
a loop is unrolled this allows for further optimization by
providing a larger code block for optimization and improved
code scheduling. Jamming is combining the contents of two
separate loops into a single loop when the iteration counts are
the same. Combining these two optimizations, unroll & jam is
unrolling an outer loop and then fusing the unrolled loop into a
single larger code block to be further optimized.
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Loop splitting or partial vectorization breaks a loop into a
vector loop which contains as much of the work as possible and
a separate scalar loop which contains the dependencies. The
philosophy of this optimization is that being able to vectorize
any part of a loop will provide better performance than not
vectorizing any of it. This is a very aggressive optimization and
must be applied carefully so as not to miss dependencies. The
payoffs with loop splitting can show a 2 times speedup over
non-split code which in this instance runs scalar on CF77. In the
loop example below, ZA(k-1,j) and ZV(k,j) are dependent upon
earlier iterations of the loop and thus are split into a scalar loop.
Additionally, QA referenced on the right hand side of the equa-
tion is pulled into a vector temporary for computation.

     fw = 0.17500d0

     do 23 j = 2,6

          do 23 k = 2,n

               QA=ZA(k,j+1)*ZR(k,j)

    &       + ZA(k,j-1)*ZB(k,j) 

    &       + ZA(k+1,j)*ZU(k,j)   

    &       + ZA(k-1,j)*ZV(k,j) +ZZ(k,j)

23 ZA(k,j) = ZA(k,j) +fw*(QA -ZA(k,j))
Loop collapse is a technique where a doubly nested loop is

linearized into a single loop. The following example shows a
loop that is optimized by collapsing the i and j loops into a new
loop k which runs from nsize2 * nsize1. Linearization improves
data locality and can provide significant improvements in
performance. This example shows nearly a 9 times speedup over
CF77 for the same loop.

          do i = 1, nsize2

               do j = 1, nsize1

                    a(j,i) = a(j,i) - a(j-1,i) * .99999

               enddo

          enddo

 

3 Current Performance of CF90

 

Examples of individual loops do not necessarily predict the
overall performance of a code. The following graph shows a
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comparison of the performance of CF77 6.0.4 relative to the
current release of CF90. The test suites used are standard bench-
marks (Livermore Kernels, Linpack, NAS and Perfect) and
codes from customers (Cray 100 and NFPS.) All codes are
written in Fortran 77. Numbers less than 1 in all cases represent
superior execution performance.

As you can see, the geometric mean ratio (GMR) shows CF90
out performing CF77 on all 6 suites in the study. It is possible
that individual codes within a given suite may be slower than
CF77, but to provide a GMR better than CF77, other codes must
run significantly faster. These numbers show that for a broad
base of codes, Cray’s Fortran 90 compiler out performs the Cray
Fortran 77 compiler.

Lets assume for a moment that Cray decided to move a back
to our CF77 compiler. On average, customers would loose
performance they have gained by moving to the new CF90
compiler. Without the new restructuring optimizer technology
provided with PDGCS, we would have no way to make up the
performance loss in moving back to CF77. 

 

4 The Transition Strategy

 

To complete the transition from CF77 to CF90, several steps
must be taken. First, Cray must ensure that the basic perfor-
mance of CF90 equals or surpasses that of the CF77 compiler.
As was shown in the previous graph, this has been accom-
plished. 

Cray is aware that other areas of improvement will be discov-
ered as the product matures. Wherever possible, Cray will iden-
tify and remedy these situations. Based on differences in the
technology between the two Fortran compilers, however, there
will be instances where in order to provide the best general
performance on a class of loops, performance of an individual
loop may not be as fast as was seen in CF77.

Additionally, the new restructuring technology offers oppor-
tunities for further tuning and refinements within users codes.
Just as users have tuned their applications to execute very effec-
tively with CF77, there is now an opportunity to do further
tuning of codes to gain greater performance than was previously
possible with CF77.

 

5 Summary

 

Aggressive restructuring of user’s code by the CF90 compiler
can provide greater performance than was possible with Cray’s
CF77 compiler. This increase in performance is accomplished
by exploiting memory hierarchy to improve data locality. The
CF90 optimizer is still maturing and thus additional areas for
performance improvement will be discovered and implemented.
To achieve maximum performance with CF90 however, a part-
nership between the compiler, Software development and the
code developer is required to identify areas for improvement,
and to determine the most effective avenue for realizing this
performance. The solution may require compiler changes, or
modifications to user applications to take best advantage of
existing optimizations.


