

CUG 1996 Fall

 Proceedings

151

Running the SNL MPI Benchmark Suite on the Cray T3E

Mike Davis

, System Support Analyst, Silicon Graphics, Inc.,
Albuquerque, NM

1 Overview

Over the past two years, Sandia National Laboratories (SNL)
has been porting their major application codes to run on distrib-
uted-memory and heterogeneous-cluster platforms using the
Message Passing Interface (MPI) paradigm. SNL has devel-
oped a benchmark suite from this collection of codes, and SGI’s
Cray Research Division is currently in the process of evaluating
the performance of these benchmarks on the Cray T3E
computer system. This paper describes the current status of this
ongoing activity and some of the results obtained so far.

The paper is divided into five sections, including this over-
view. Section 2 describes each of the benchmarks briefly, and
identifies the benchmark analyst working on it. Section 3
outlines the strategy that we used to port the benchmarks. In
Section 4 I relate some of the problems we faced in the porting
process and the solutions we developed to overcome them.
Finally, in section 5, I present our results to date and outline our
plans for future work.

2 The SNL MPI Benchmarks

The SNL MPI benchmark suite is composed of seven key
SNL application codes. The serial versions of these codes have
been used to perform crucial scientific simulations at Sandia and
at other research institutions for many years. Most of them are
written in Fortran 77 and have been designed to execute on a
variety of platforms, with special attention paid to the
shared-memory moderately-parallel vector machine.

2.1 ALEGRA [1]

ALEGRA is a three-dimensional solid dynamics code
capable of performing integrated shock physics and structural
analysis on a single problem. Designed from the outset to run
on massively parallel computers and implemented almost
entirely in C++, ALEGRA is the exception to the standard SNL
MPI benchmark profile outlined in 2.0 above; but it also repre-
sents the future direction of computing and software develop-
ment at SNL.

The benchmark analyst working on ALEGRA is Phil Camp-
bell (Phil.Campbell@cray.com), a System Engineer based in
Albuquerque, NM.

2.2 COYOTE2 [2]

COYOTE2 is a Finite Element Analysis code designed to
simulate heat conduction and chemical reaction, for applica-
tions such as lubrication flow and saturated flow through porous
media. It is written in Fortran 77 and makes heavy use of Level
3 Basic Linear Algebra Subroutines.

The benchmark analyst working on COYOTE2 is Mike
Davis (Mike.Davis@cray.com), a System Support Analyst
based in Albuquerque, NM.

2.3 JAS3D [3]

JAS3D is a three-dimensional finite element code, written in
Fortran 77 and used for analyzing large deformations of mate-
rials subjected to high strain rates.

Hal Meyer (Hal.Meyer@cray.com), an Albuquerque-based
System Engineer, is the benchmark analyst working on JAS3D.

2.4 MPCTH [4]

MPCTH is a hydrodynamics code designed to treat a wide
range of shock wave propagation and material motion
phenomena in one, two, or three spatial dimensions. Its prede-
cessor, CTH, was highly optimized for the Cray Y-MP architec-
ture. MPCTH is written in Fortran 77.

Phil Campbell is working on MPCTH.

2.5 PRONTO3D [3]

PRONTO3D is a solid dynamics code designed to analyze
large deformations of materials subjected to high strain rates. It
is implemented in Fortran 77.

Hal Meyer is working on PRONTO3D.

2.6 Quicksilver [5]

Quicksilver is a three-dimensional finite difference electro-
magnetic code implemented in Fortran 77 and designed to simu-
late the motion of charged particles using Particle-In-Cell (PIC)
techniques. Quicksilver is also an exception to the standard
SNL MPI benchmark profile, because it is not designed to run
in parallel in a distributed-memory message-passing environ-
ment. Like CTH, Quicksilver was extensively tuned for the
Cray Y-MP to vectorize, multitask, and perform SSD I/O. It is
included in this benchmark suite specifically to test the ability
of a distributed-memory computer system to support a
shared-memory programming environment.

Copyright



 1996. Cray Research, A Silicon Graphics Company. All rights reserved.

152

CUG 1996 Fall

 Proceedings

Rick Roloff (Richard.R.Roloff@cray.com) is the benchmark
analyst working on Quicksilver. Rick is a System Engineer
based in Denver, CO.

2.7 MPSALSA [6]

MPSALSA is designed to solve chemically reacting flow
problems in three dimensions. Analysis of both flow and reac-
tion kinetics is performed. Primary applications involve the
simulation of chemical deposition processes of interest to the
semiconductor industry. Like ALEGRA, MPSALSA was
designed from the outset to run on massively parallel computer
systems. MPSALSA is written in C.

The benchmark analyst for MPSALSA is Mike Long
(Mike.Long@cray.com), a System Engineer based in Salt Lake
City, UT.

2.8 Commonalities among the codes

Although the benchmark suite is composed of seven distinct
application codes, there are many commonalities among them
that can tend to simplify the porting and optimization process.

COYOTE2, JAS3D and PRONTO3D are all members of a
single application system called ACCESS

[3]

. Codes in the
ACCESS system are developed and maintained in accordance
with a single set of guidelines and use a common set of libraries
and tools. In the production environment, the integration and
maintenance of many of the ACCESS codes are done by a single
group.

In addition, ALEGRA and MPSALSA use parts of the
ACCESS support environment to perform their binary datafile
I/O in a platform independent manner. Lastly, both MPSALSA
and COYOTE2 use a common parallel linear system solver
package called AZTEC

[7]

.

3 Benchmark Strategy

The benchmark process was divided into five stages; each
stage addresses a key issue in porting these codes to the T3E.

3.1 PVP / CF77 Verification

Although the codes that make up the benchmark suite have,
in their serial configurations, been successfully executed on a
wide range of platforms, the MPI versions have been exposed to
only a few environments. Some, but not all, of the benchmark
codes had been run on a Cray Parallel Vector Processor (PVP)
system, such as the Cray J90, using the CF77 compiling system
and the MPI component of the Cray Message Passing Toolkit
(MPT). Our first porting step, then, was to verify that the codes
would execute properly on a Cray PVP system.

3.2 CF90 Port

Since the CF77 Compiling System is not available on the
T3E, we had to port the Fortran 77-based codes to the CF90
programming environment.

3.3 T3D Port

During the course of this benchmarking project, the avail-
ability of T3E systems for benchmarking purposes has been
limited. T3D cycles were in comparatively good supply,

however, so we deemed it reasonable to make a T3D port the
next step in the process. Because the MPI component of MPT is
not available on the T3D, we used the T3D MPI software from
Edinburgh Parallel Computing Centre (EPCC) to build the codes

[8]

.

3.4 T3E Port

Once a benchmark code was executing successfully on the
T3D, it would be moved to the T3E and run there. Each bench-
mark code in the suite comes with at least two input problem
sizes, called “short” and “long.” The short problem is designed
to run on 4 PE’s and the long problem 128. Until very recently,
only two T3E systems have been generally available to us, one
with 4 PE’s and one with 64. So our next logical step was to
ensure that the “short” benchmark problems would execute.

3.5 T3E Scale-up

We are now in the process of locating a 128-PE T3E system
on which to run the “long” benchmark problems. This step will
yield the most interesting information.

4 Lessons Learned

Each step in the porting process presented its own unique set
of problems. For most of them, the cause and the solution were
fairly obvious; there were some, however, which have required
significant time to track and solve.

4.1 PVP/CF77 Verification

This step in the porting process proved relatively painless,
although two problems of interest did arise. First, a few of the
benchmark codes referenced obsolete versions of routines that
are now part of the Posix Fortran interface. (This is actually
more pertinent to CrayLibs than CF77.) The CF77 compiling
system recognizes these at load time and flags them as unsatis-
fied external references. We solved the problem by modifying
the source code to make the correct Posix Fortran (PXF) calls.
Note that it is generally NOT safe to simply equivalence these
obsolete calls to their Posix counterparts, because the argument
lists are quite different.

Second, the codes that executed IPXFARGC to get the
number of arguments on the command line would find that
number to be 2 greater than expected. The extra arguments were
added to the command line by the

mpirun

 script, which is used
to start the MPI application. Since

mpirun

 always adds exactly
2 arguments to the command line, and they are always the last
two arguments, a reasonable fix is to deduct 2 from the return
value of IPXFARGC. This is, in fact, the fix we used. It is worth
noting, however, that this problem is not present in the T3E envi-
ronment, due to differences in the implementations of the
Network and MPP versions of MPI.

4.2 CF90 Port

Problems encountered in the CF90 port all fell into the cate-
gory of data type conflicts.. We found instances where variables
of non-default size (e.g. INTEGER*4, LOGICAL*4) were being
passed to Fortran intrinsics and I/O statements. The CF90

CUG 1996 Fall

 Proceedings

153

compiler flags these occurrences and issues a diagnostic
message. We solved the problem by modifying the source code
so that the passed variables were of default size.

4.3 T3D Port

It was in porting the benchmark codes to the T3D that we
encountered the most interesting problems. And because they
usually exhibited no direct symptoms they were also the most
difficult to track down and solve.

First, there was the problem of differing data word size. See
Table 1 below. All of the SNL MPI benchmark codes had been
executed successfully on a platform whose characteristics match
those described in the row labelled “Workstation.” In the case
of those codes that had been run on a PVP machine, the source
code had been modified to include the appropriate conditional
code to handle PVP characteristics. But, since the codes had no
provision for the T3D, sizes were being computed incorrectly,
thus causing indexing and data corruption problems. We fixed
the problem by closely examining all conditional sections of
code (typically denoted by “#ifdef CRAY” constructs) and
changing all references to “sizeof(float)” into “sizeof(double).”

Another problem arose because of differences in the behavior
of the Fortran SIGN intrinsic on the T3D compared to the PVP.
The SIGN intrinsic accepts two arguments, say X and Y, and
returns -ABS(X) if Y is less than zero or ABS(X) if Y is greater
than or equal to zero. The difference occurs in the case where Y
has a value of -0. On the PVP, SIGN returns ABS(X), whereas
on the T3D it returns -ABS(X). This problem exhibited itself in
JAS3D and PRONTO3D, where the following construct was
heavily used:

 T = SIGN (0.5,Y) + SIGN (0.5,-Y)

which is another way of saying:

 IF (Y.EQ.0) THEN
 T = 1
 ELSE
 T = 0
 ENDIF

On the T3D, this constuct was always yielding a value of zero
for T. We solved the problem by replacing all occurences of the
construct with the equivalent IF block.

A problem that appeared in the ACCESS dynamic memory
management library turned out to be due to the difference in the
return value of the

sbrk

 system call on the T3D versus the PVP.
On the T3D,

sbrk

 returns a byte address, whereas on the PVP it
returns a word address. The ACCESS memory manager was
designed to return a word address to its caller, and contained
conditional code to decide whether or not to scale the

sbrk

address after allocation. This conditional code was treating the
PVP and the T3D alike, which caused improper addressing and
data corruption problems on the T3D. We fixed the problem by
modifying the source code of the ACCESS memory manager to
interpret

sbrk

 addresses as byte addresses on the T3D.

The internal representation of the Fortran character descriptor
is drastically different on the T3D compared to the PVP. Specif-
ically, it is a two-word structure with the address in the first word
and the length in the second. This caused problems in sevaral
Fortran-callable C-language utility routines, where it was
assumed that Fortran character arrays passed in as arguments
could be treated as C character arrays or as non-character arrays.
This assumption was safe on the PVP system so long as the
Fortran character array being passed was aligned on a word
boundary. On the T3D, however, translation is always neces-
sary. The recommended method of translating Fortran character
descriptors in a C function is via the

_fcd

 family of functions
defined in the header file

fortran.h

. We fixed these problems
by identifying them individually as they presented themselves,
and modifying the appropriate source code modules to do the

_fcd

 translation.

In a related matter, the EPCC MPI library for the T3D does
not support the use of any Fortran-based message-passing calls
with a value of MPI_CHARACTER for the data type argument.
The EPCC documentation

[8]

 describes this restriction, justi-
fying it as necessary to preserve the performance of the
message-passing routines; it also includes a technique for
circumventing the limitation, involving the use of non-character
arrays and the EQUIVALENCE statement. We chose to imple-
ment a less intrusive workaround, using a small C-language
interface library. Note that this restriction also exists within the
MPI component of the Cray Message Passing Toolkit.

The only “easy” problem that occured during the T3D port
involved missing sort and search routines. The CrayLibs envi-
ronment on the PVP platform includes some popular routines to
sort numeric data (ORDERS) and perform searches on sorted

Table 1.

Sizes of Numeric Data Types on Various Platforms

Platform Real
Double
Prec. float double

Workstation 4 8 4 8

Cray PVP 8 16 8 8

Cray T3D 8 N/A 4 8

154

CUG 1996 Fall

 Proceedings

data (WHENEQ et al., ISRCHEQ et al.). These routines are not
available in CrayLibs on the T3D. The JAS3D and PRONTO3D
codes require these routines to perform their material-contact
analysis. We fixed this problem by locating source code for the
sort and search routines in the Cray Unicos source archive and
integrating it into the benchmark codes.

4.4 T3E Port

Once ported to the T3D, the benchmark codes had no prob-
lems moving to the T3E. All we had to do was recompile the
codes with targeting set for the T3E and delete all references to
the EPCC MPI software (the MPI component of the Cray
Message Passing Toolkit was available for us on the T3E). From
our experience so far, it appears that the T3E is fully compatible
with the T3D in the areas of functionality and software environ-
ment.

5 Future Work

As of the date of this writing, we are in the process of running
the benchmark codes on the T3E under the Apprentice perfor-

mance analysis tool to identify areas to optimize, and we are
trying to locate a 128-PE system on which to run the “long”
benchmark problems. We expect to be able to report on the
results of these activities at the next CUG. Further, we will be
testing the Quicksilver benchmark on HPF/CRAFT when it
becomes available. In the meantime, we hope that our experi-
ences in porting the SNL MPI benchmarks to the Cray T3E
system will prove to be of use to other T3E users.

6 References

[1] http://www.sandia.gov/1431/ALEGRAw.html

[2] http://www.cfd.sandia.gov/docs/coyote/coyote-welcome.html

[3] http://www.cs.sandia.gov/SEACAS/SEACAS_Overview.html

[4] http://www.sandia.gov/1431/CTHwdoc

[5] http://www.ppt.sandia.gov/projects/quicksilver

[6] http://www.cs.sandia.gov/CRF/mpsalsa.html

[7] http://www.cs.sandia.gov/HPCCIT/aztec.html

[8] http://www.epcc.ed.ac.uk/t3dmpi/Product

