

CUG 1996 Fall

 Proceedings

155

Multi-CPU Pools in an NQS Environment

Tim Folkes

, CCLRC Rutherford Appleton Laboratories

Roger Evans

, CCLRC Rutherford Appleton Laboratories

Mike Armstrong

, Cray UK

ABSTRACT:

 Utilising the resources of a J-932 with a wide range of batch work is very diffi-
cult using only the standard NQS controls. Jobs that need most of the system resources in
memory or temporary disk space should be able to access most of the CPU’s when needed
without holding on to idle processors at other times. Dedicated run times and overnight queues
are not very popular with users who wish to develop applications throughout the day. Our new
multiple CPU job classes use the UNICOS real time scheduling features to create pools of typi-
cally 8 or 16 CPU’s for parallel jobs. The parallel jobs have a high probability of finding all
the processors they need while returning under used processors to the normal scheduling mech-
anisms.

Introduction

Background.

History

From the time of our use of Cray X-MP/416 and Y-MP/8128
machines it has long been a problem to schedule jobs which
need a large fraction, but not all, of the machine resources of
CPU’s and memory. To schedule these jobs in a dedicated
mode wastes a fraction of machine resources: to schedule them
along with a variable work load results in unpredictable perfor-
mance and little or no gain to the user who wishes to see some
reward for the effort they have put in to parallelise their codes.

Problem

On a 32 CPU J-90 the problem is greatly compounded, all
the more so by the difficulty of getting good performance out of
a large fraction of the CPU’s. With a single CPU performance
not much better than a workstation, it is only through effective
parallel processing that a user can see a significant benefit in
elapsed time and the system managers can allow the efficient
running of large memory jobs.

Aims

Our ultimate aim is to be able to schedule a mix of batch
work that will have the choice of a single CPU, or multiple
CPU’s, probably 4, 8 or 16. Most of our testing so far has been
with an 8 CPU queue. The target for the “multi” queues is that
on average they should get in excess of 90% of the requested
number of CPU’s for the duration of their execution. This paper
concerns itself with the implementation of this preferential

scheduling through real time processes and the achieved perfor-
mance on a busy machine with a mix of interactive and batch
work. At a future CUG we hope to report on the scheduling
issues for a mix of these multiple CPU queues to give a good
performance and to control memory allocation and swapping.

System

Configuration

Hardware

The machine we now have installed is a J-932/4096. We
have 216 Gbytes of Cray disk (6 DDS30’s) and 108 Gbytes of
third party SCSI disks attached to the system.

A STK 4400 silo is SCSI attached to the system with four
4480 drives. These are used exclusively for data migration and
system backups. Any user tape activity is handled via the
Virtual Tape Protocol into an IBM 3494.

The J-90 has two FDDI connections and one ATM connec-
tion. As yet the ATM interface has not been used.

Software

The J-90 is running -

• UNICOS 9.0.2.1

• OSV 2.0

• dmf 2.4.2

• cf77 6.0.4.28

• cc 4.0.3.22

• f90 1.0.3.4

156

CUG 1996 Fall

 Proceedings

• CC 1.0.3.3

• Programming Environment 2.0

• MPT 1.0

Machine Load

User Profile

The J-90 has 1232 registered users. Of these only about 500
are active at any one time with up to 100 login sessions in the
afternoon. The range of disciplines that the users cover is shown
below.

Due to this wide range of disciplines, the job mix changes by
the hour; let alone by the day. This makes trying to predict how
a job will behave on the system almost impossible.

Job Profile
We have tried to encourage users who use large amounts of

the machine’s resources to try to multi/auto task their work. On
a loaded system this does not give the performance improve-
ments that we had hoped. The job will only be allocated CPU’s
that happen to be free at the time.

NQS queues have been dedicated to certain classes of users
and were particularly affective for scheduling the whole of the
Y-MP where speedups of 7.6 times over one CPU were readily
attained. Running the “WHOLE” queues overnight is much less
satisfactory on a 32 CPU machine and even more of a problem
after the loss of 24 hour operations cover.

System Performance

The graph below shows a typical day of CPU utilisation on
the J-90. The work load tends to drop at night as the batch work
is drained from the system, with an increase in load as the day
progresses and new work is submitted.

As can be seen, at peak times the system does get very busy.
This graph was taken while we were still running UNICOS 8.0.

Solution.

Requirements

Against this background we approached Cray for some
proposals as to how we could guarantee a user’s job that is well
multi-tasked, would have all the CPU resources it needed, when

Physics
15.12%

Nuc Phys
12.11%

NERC
35.33%

ESRC
0.20%

Chem

11.11% Astronomy
5.01%

Maths
3.00%

Biol Sci
2.00%

Engineering
17.12%

it needed them. This should not have any adverse effect on the
overall performance of the machine or severely impact other
jobs and interactive performance.

As the machine has 32 CPU’s, it would be useful to ‘isolate’
8 or 16 CPU’s for these high performance jobs and leave the
remaining CPU’s for other less parallel work. This has the
added benefit of enticing users to optimise their code as they
would see real benefits from using these dedicated CPU’s.

To make the quest more interesting it should be remembered
that J-90 systems are binary only, so there is no source code to
be “hacked”. We also wanted to keep the number of user exits
used to a minimum to ease any future upgrades to the operating
system.

However, it was clear that dedicating CPU’s to particular jobs
was not going to be an efficient use of resources. There is no
hard criteria for deciding what qualifies as a high-performance
job, so it would be possible to find users running jobs on these
dedicated CPU’s that did not parallelise well. Some system had
to be found scheduling the CPU’s so a well multi-tasked job
wants a CPU it gets a CPU no matter what other work is running.
This way, we can provide near-dedicated scheduling for partic-
ular jobs but without wasting CPU cycles.

Options investigated

The simplest way of increasing the potential for a job to be
scheduled by UNICOS is to decrease its 'nice' value. This in
theory should raise the priority of the job so that it gets prefer-
ence over other jobs in the system. Some testing was done on
this, but it was found that whilst it does provide some improve-
ment, these jobs did not receive the full CPU resources that they
wanted, especially when the machine is busy.

Another option investigated was to modify the scheduling
mechanism in UNICOS to schedule certain jobs before others.
This could have been combined with a local NQS user exit to
‘tag’ jobs in certain queues so that all jobs running in these
queues get dedicated resources. This would ultimately be the
best solution, but as we mentioned earlier, we have no source
code.

CUG 1996 Fall

 Proceedings

157

The solution we eventually chose was to use the UNICOS
real-time processing feature.

Design Details

UNICOS real-time processing allows jobs to set themselves
up as ‘real-time’ processes and these jobs are then guaranteed by
the kernel to receive as much CPU time as they require. It works
by having a separate kernel run-queue for real-time processes
which the kernel always looks at first when it comes to schedule
work. When all of the processes in this real-time run-queue have
been satisfied, the kernel will then schedule work from the
normal run-queue.

This means that real-time processes will get priority over any
other processes when the kernel is deciding which processes get
a CPU, and which ones do not. This also has the advantage that
if a real-time process were to go to sleep, for example, it does not
‘hog’ a CPU until it wakes up -- the CPU is returned to the
system and can be used to run another process. However, when
this real-time process does wake up and requests a CPU, it will
immediately get one.

With these requirements in mind, we decided to create special
NQS queues that users could submit jobs to, and only these
queues would be allowed to use the real-time feature. These
queues specified the number of CPU's the jobs contained therein
would use, so that standard NQS queue complexes and sched-
uling criteria could be used to limit the amount of resources this
special-case work could use. For example: we currently have a
queue called MULTI8 that is open to certain users and sets any
jobs submitted to that queue to use 8 CPU’s. As NQS has no
concept of the number of CPU's a job in a queue is using,
restricting the special-case queues to a fixed number of CPU's
means that normal NQS resource management controls can be
used. This is to make sure that only a certain maximum number
of CPU’s are running real-time work at any one time. This is
very important -- if the machine was to end up with real-time
processes running on every CPU, the machine would appear to
'hang' until one of these real-time processes finished or went to
sleep and released a CPU.

Real-time processing is not available to normal users though.
Only users with the appropriate privileges can set up a process
as a real-time process. To get around this, a ‘wrapper’ program
that has the appropriate privileges is used. Users must submit
their jobs in such a way that they execute this wrapper program
and pass the name and arguments of their real program as argu-
ments to the wrapper program.

Wrapper functionality

The wrapper program is based on the UNICOS command

ded

(8) (our version is called

gded

) and works as follows.
After processing the command line arguments, it checks to see
that this program has the appropriate privileges to be able to set
itself up as a real-time process. In particular, on a non-MLS
system or PRIV_SU system, this wrapper program must be run
as root, and must therefore setuid to root. The program also
checks to see if we are running on a guest

UNICOS-under-UNICOS operating system as real-time
processing does not work on a guest OS.

Next the wrapper checks to see if it is running as a batch job,
and if so, which NQS queue it is currently running in. A config-
uration file is then examined to see if the current queue name is
a valid one for this wrapper, and if so, how many CPU’s should
it be using. The environment variable NCPUS is then set with
this value, overriding the previously set value.

The program then sets itself up as a real-time process. Then
the effective userid is changed back from root to the real user.
The programme then calls exec(2) to start the user job over the
wrapper program, thereby keeping all of the real-time privileges.
The user program will then run as normal, but will received all
of the CPU resources it requests, regardless of the amount of
‘normal’ work in the system.

gded

The way this works for the user is that we have set up a series
of NQS queues. These are imaginatively named MULTI4,
MULTI8 and MULTI16. The access to these queues is
restricted. The user has to prove that the job can auto/multi task
well enough to merit running in the queue.

Jobs in these queues should get 4, 8 or 16 CPU’s respectively.
The

gded

 programme is run before the executable in the style
of

hpm

. If a user does forget to include the gded directive then
the job will run as a normal job. This is not a problem except
that the job is blocking an execution slot for a job that could
usefully utilise the CPU’s.

Results

The following results were obtained by running a multitasked
code in each of the three queues. The job just runs the binary
first as a normal “user” process, followed by ja to print out the
multitasking information. It then runs the same binary as a real
time process.

The binary is an almost ideally balanced application that
solves a set of coupled wave equations in frequency and one
space dimension. It consists of autotasked outer loops
surrounding vector inner loops and is used locally as a standard
test of machine performance.

“Quiet” System

The first example was run in the morning after the user work
load had drained overnight and before the users had come in and
started to flood the system with the days work.

The first graph shows the number of requested CPU’s against
what was delivered for the normal and real-time processes. The
data points are the average number of concurrent CPU’s as
reported by

ja

 for the job in each of the three special queues.

The next graph is of the

sar

 figures for user and system
CPU time for the period that the jobs were running.

158

CUG 1996 Fall

 Proceedings

It is fairly obvious when each of the jobs was running.

Loaded System

The next set of data was taken while the system was heavily
loaded. The details are the same as for the quiet system.

The dips in the above graph were due to the system going
idle. This coincided with the %waitio going up and the gded
process starting and finishing.

Problems

There have only been a few problems with the system so far.
One problem is that while the real-time processes are running,
console messages are disabled. This includes the message saying
that console messages are disabled. The message saying that
console messages are enabled are printed. The messages are
written into the relevant syslog files if needed. There does not
seem to be any way round this without source code.

The increase in waitio time seen in the sar graphs above was
only noticed while the data was being collected for this paper.
So far we do not have any reason for this anomaly.

3 . 9 9

1 4 . 6

7 . 9 2

1 5 . 6

3 . 9 9

7 . 9 7

0

4

8

12

16

4 8 12 16

normal real-t ime

0

10

20

30

40

50

60

70

80

90

100

08:51:06 08:56:08 09:01:10 09:06:12

User System

We have had one user using

gded

 with a programme that
micro-tasks. It also calls some system library routines that are
autotasked. The job was getting 15 real-time processes instead
of 8. The gded programme does not limit this use of CPU’s since
it controls only the autotasking performance via NCPUS.

As mentioned earlier, if a user forgets to include the

gded

directive the job will still run, but as a normal process. We have
had at least one user use this as a way to by-pass our usual job
scheduling. If this becomes a serious problem we may have to
look at using some of the NQS user exits to perform further
checks on the job.

This method of scheduling does have the disadvantage that
you are limited in the number of jobs of this type that you can
run. We have not tried running more real-time processes that
you have CPU’s, but this would probably hang the system until
the real-time processes had finished. Some guard against this
will have to be put into NQS via queue or complex limits

Summary

We have been very pleased with the way this command has
worked. Those users who have made the effort to multi-task

8 . 9 9

5 . 3 6

3 . 1 1

15 .29

7 . 9

3 . 9 6

0

4

8

12

16

4 8 12 16

Normal Real-time

0

10

20

30

40

50

60

70

80

90

100

13:35:22 13:41:43 13:48:03 13:56:14 14:02:38

User System

CUG 1996 Fall

 Proceedings

159

their code are now able to make better use of the system. What
we still need to do is to bias our accounting system so that we
reward the MULTI users. If the job uses 8 CPU’s we may
charge them for as little as 4 CPU’s as an incentive.

Acknowledgements

We would like to thank Cray UK for their assistance in this
project.

