

160

CUG 1996 Fall

 Proceedings

 Automatic Performance Monitoring on YMP Family,
Application at IDRIS/CNRS

Etienne Gondet

, IDRIS/CNRS Supercomputing Center for
Scientific Research, Bat 506, BP 167, 91403 Orsay Cedex,
FRANCE.

ABSTRACT:

How to register vectorial performance of all the user programs running on your
YMP computer? We have developed a tool based on hpmflop that has been used on our C90 at
CNRS/IDRIS (French National Supercomputing Center for Scientific Research). We will discuss
the implementation, pros and cons, and added value that such a tool can bring. This paper will
present C90 performances by means of graphs and statistics on users’ programs.

1 INTRODUCTION

IDRIS

is the French Supercomputing Center for Scientific
Research belonging to the CNRS. It is equipped with an IBM
scalar cluster, two Cray C9X, a Mass Storage System (EMASS,
CONVEX and FileServ software) and a T3E. This paper
describes a home-made tool to help with vectorization built on
CRI HPMFLOP which is able to record automatically all execu-
tion performances on C9X.

2 PRINCIPLE AND REALIZATION

2.1 HPM : Hardware Processor Monitor

Most CRAY users know HPM can give, after a run, a vecto-
rial performance summary. This can be done without any over-
head, essentially because it is built on hardware counters.

Each counter has to pick up the number of times a specific
event such as vector floating multiply occurs. From these basic
hardware counters, HPM builds up a page of vectorization
information.

2.2 HPMFLOP

 The purpose of CRI HPMFLOP is to register systematically
these hardware counter values at the end of each execution.

To start the mechanism, the system manager has to configure
your loader (SEGLDR) by adding in /lib/segdirs/def_ld and
/lib/segdirs/def_seg the following directive:

hardref=_hpmdumpg, trbk

Below is the typical line of data dumped in a log for every
execution collected by HPMFLOP : hpmg which is a marker,
date and time at the end of execution, the execution’s PID, the
user’s UID, the name of the executable and the N basic hard-
ware counters.

hpmg 844683885 5090 28622 a.out
162307404017 20592934599 135584687250
37297986 274395161180 17556749138

505341756 185403602 ...

N=32 on C90, J90, T90 and only 8 on YMP.

2.3 Rebuilding HPM from the basic hardware counter val-
ues

We now have to process this log to make it understandable
and valuable. In this paper, we consider the case where N=32
and we cover the basic counters from B0 to B31. In the HPM
report , the counters are divided into 4 groups:

• Group 0 : main block, counters B0 to B7.

• Group 1 : instruction hold issue, counters B8 to B15.

• Group 2 : instruction types, counters B16 to B23.

• Group 3 : vector operation types, counters B24 to B31.

These 32 basic counters of HPM are detailed in Figure 4
which represents a C90 HPM output.

But the most valuable HPM indications have to be recalcu-
lated using the following formulae:

• User time = T0 = B0 * Clock period

• Vector Floating ops/sec = T1 = (B27 + B28 + B29) / T0

• Floating ops/sec = T2 = (T1 + B22/T0)

• VEC mem. reference/sec = T3 = (B30 + B31) / T0

• Avg conflict/ref = T4 = B5 / T3

• B/T mem ref/sec = T5 = (B4-B23)/T0 -T3

CUG 1996 Fall

 Proceedings

161

• All vector instruction = T6 =

• Avl = Average length = T7 =

2.4 Our favorite metrics

We have decided to reduce the volume of information to one
line for all collected executions with the following information:

• Date and time of end of execution.

• Login.

• Name of the executables

• User time (T0).

• Vector Megaflops (MFlops=T1).

• Megaflops (Mflops = T2).

• Millions of Instructions per second (Mips = B1/T0).

• Instruction Buffer Fetch per second (IBFs = B3/T0).

• Average Conflict by Reference (Avg Conf/ref = T4).

• Average vector length (Avl = T7).

Below is the output of our home made tool called

hpmi

. This
example shows the differences between a pretty good and a very
bad vectorized code.

atlas:>hpmi -u rlab002
Date Heure Login Mfs Temps Mips IBFs VMfs Conf/ref Avl Nom
------- ------- -------- ----- ------- ------- ------ ------ --------- ------ ------
Feb08 12:22 rlab002 20 845 106.77 0.04 13 0.26 5.15 pri1
Feb08 16:26 rlab002 20 841 106.66 0.04 13 0.26 5.15 pri1

Feb17 16:16 rlab002 668 964 30.42 0.01 668 0.07 94.02 ari

The commands output contains multiple alarms:

• MFlops have to be as high as possible, whereas MIPS have
to be low.

• Sometimes the Vector Megaflops are lower than the Mflops,
which is a good indicator of a non fully vectorized code (use
profview and compilation listing).

• High IBFs (over 1.0) can be due to

spaghetti

 codes : codes
with a lot of control transfer such as branch instructions or
subroutine calls (use flowview for further investigation and
to inline appropriate subroutines).

• The Conf/ref is relevant for Memory conflicts. It is some-
thing to look for, especially on C90 because even well vec-
torized applications on CRAY 2 or ymp can generate a lot of
conflicts on a C90 (use perfview).

• The Avl is a very important vectorization indicator comple-
mentary to MFlops. A value much lower than 128 can be a
clue that this code did not vectorize on a big enough loop.

B1 Bi
i 16=

23

∑–
 
 
 

T0()⁄

Bi
i 24=

31

∑ 
 
 

T6 T0×()⁄

3 MOTIVATIONS AND BENEFITS

3.1 A post mortem and automatic vector performance tool
without time overhead

There are several motivations to implement such a tool. The
main one is to be able to benchmark codes in real production
conditions and to say for example, this code reaches 400
MFLOPS for every 300 executions of 10 000 seconds each
whatever the data set is.

Most of the time, a code cannot be benchmarked on any
possible type of dataset because this would be too time
consuming and often it is benchmarked on testsets which are not
completely realistic. With HPMFLOP, we can have a
post-mortem, overhead free and automatic registration of all the
user code performances.

3.2 User information about vectorization

At our site, it is particularly important to have such a tool
because we have a great number of users, about 1600 logins
working on 450 scientific projects and each user can have
several codes. So the objective is to offer a command which
summarizes for them all their execution performances. Thus,
they are able to know quickly their performances on their
production datasets.

Another benefit is to alert people who have unexpectedly
broken their vectorization because they have modified their code
by adding new functions, which is not uncommon, especially
when the code is rewritten or reused by someone else.

4 CAUTIONS

4.1 variable HPM_MT

You can use the environment variable HPM_MT to set the
time limit above which you decide to record the vector perfor-
mance summary. By default, this lower limit is only 5 seconds,
and consequently you have a lot of artefacts like system cron or
daemons which are not useful. We have decided at our site to set
the limit to 600 seconds which is the interactive limit. This has
two consequences:

• We do not register all the interactive runs.

• We do not register the smallest runs in batch.

With this site limitation you can be sure to have a very reason-
able log size.

4.2 HPMFLOP limitations

In fact, due to the characteristics of this CRAYTOOL, it does
not collect the performance summary of executions if:

• CPU Time limit is exceeded.

• They are killed either by the user or the system team.

• A floating point exception or an operand range error occurs.

• The system crashes.

• The executable comes from another site, academic or com-
mercial, which did not configure the linker to HPMFLOP
works.

162

CUG 1996 Fall

 Proceedings

4.3 Special caution: value of MFLOPS

One can argue about the interest of this metric because it is
well known that it is not the perfect indicator for the performance
of an algorithm. A more efficient algorithm can make less
MFLOPS because it reduces the number of multiplications and
additions needed to do the same work. So a higher MFLOPS
does not necessarily indicate a better algorithm, but only that it
is better suited to this type of computer.

Moreover, some algorithms such as lattice-gas never use
multiplication and addition functional units but the vector
logical,shift pop and integer adds units (see in Figure 4: B24,
B25, B26). Therefore MFLOPS is zero because it only picks up
multiplications and additions. The following example describes
the group counter 3 for a lattice-gas application :

B24 : Vector Logical : 413.67M
B25 : Vector Shift/Pop/LZ : 079.53M
B26 : Vector Integer Add : 264.11M
B27 : Vector Floating Multiply : 000.00M
B28 : Vector Floating Add : 000.00M
B29 : Vector Floating Reciprocal : 000.00M
B30 : Vector Memory Read : 448.69M

B31 : Vector Memory Write : 149.56M

 It proves that a 0 MFlops code can be well vectorized
anyway.

We recommend our users to always consider the metric
MFLOPS with the Average Vector Length (Avl=T7,see 2.3)
which considers all the vector operations detailed in the counter
group 3 and not only the additions and multiplications.

Another solution would be to create a new metric resuming
the mathematic vector operations better than MFlops called
MVops (Million of Vector OPeration per second) which would
be the sum of B24 to B29. In the above example the MFlops are
0 but the MVops would be 757.31 MVops.

4.4 What HPMFLOP cannot do

It can only study vectorization. It is a shame that such a tool
does not record some very important information such as the
following because it would be useful in a post mortem evalua-
tion of an application:

• Maximum memory used.

• System time.

• Elapsed time.

• Multitask speedup.

This tool cannot check if a poor performance code hogs the
memory. It is a big concern because we would like to focus on
such a code first. This information is usually given by the Job
Accounting (JA) and can be found later with the CRI CSAJREP
tool.

5 STATISTICS

The percentage of recorded hours is around 66%. A lot of
hours are not recorded mostly due to the value of the environ-
ment variable HPM_MT we have chosen (see 4.1) to avoid the
lowest CPU time runs.

Figure 1:

Comparison between hours computed and recorded by
HPMFLOP during the year 1996.

The IDRIS C90 overall performance has progressed signifi-
cantly to reach 300 MFlops this year. It is interesting to notice
that the C90 average performance almost reaches the peak
performance of its predecessor the CRAY-YMP (330 MFlops
peak). Furthermore, Figure 2 shows seasonal performance vari-
ations probably due to the CPU time allocation made in June and
December. This type of graph can help to study the performance
evolution after a programming environment (cf77 to f90) or an
operating system (Unicos 7 to Unicos 9) upgrade .

.

Figure 2:

MFlops weighted average at IDRIS on C9X.

There are very few codes over 600 MFlops. The large number
of codes between 400 and 600 Mflops is due to the use of the
CRAY scientific library (LIBSCI). The significant number of
hours under 100 Mflops is a result of some poorly vectorized
codes but also to well vectorized codes for which MFlops is not

CUG 1996 Fall

 Proceedings

163

the approriate metric. The variety of thematics dealted with on
our C9X explains the diverse performances obtained

.

Figure 3:

Performance shape at IDRIS/CNRS on C9X by 50
MFlops sections.

6 SUMMARY

The main advantage offered by HPMFLOP is the absence of
overhead. This allows us to use it to dump systematically all user
program performances thus eliminating the need to benchmark
all codes.

The tool we have developed with the selected metrics detailed
in this paper enables us to focus on the poorest codes and in quite
a lot of cases, also provides valuable clues as to why an applica-
tion is performing so poorly. Furthermore, with this tool, we
have carried out a vectorial performance assessment for a lot of
scientific projects over the whole year. This assessment is used
by the scientists who are in charge of distributing the
IDRIS/CNRS computing resources to determine the annual CPU
time allocation of all the scientific projects.

As HPMFLOP was only installed in october 1994, it is quite
difficult to assess precisely how much we have gained from it
but we are already pleased to note an improvement. Our main
expectation was not only to increase the C90 overall perfor-
mance but also to gain on

human

 efficiency by providing IDRIS
and all users with a useful tool.

7 Acknowledgements

I would like to thank Nina Suvanphim and Philippe Tesson
from Cray Research France, Claude Mercier and Jean-Marie
Teuler from IDRIS for assisting me with this paper. Last but not
least, my special thanks to Jean-Philippe Proux, Raphael
Medeiros and Hervé Delouis from IDRIS, who helped me in
developing this tool.

8 URL

http://www.idris.fr/docs/docu/publication/CUG_fall_96/hpmflop.html

http://www.idris.fr/docs/docu/publication/CUG_fall_96/hpmflop.ps

164

CUG 1996 Fall

 Proceedings

Figure 4: HPM output with the 32 basics counters (B0 to B31). The underlined value have to be recalculated from them.

CUG 1996 Fall

 Proceedings

165

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

A) IDRIS/CNRS NETWORK

FD
D

I

C
R

A
Y

O
ct

ob
er

 1
99

6
:

C
R

A
Y

Y
M

P4
I

IB
M

 R
S6

00
0

V
id

éo

R
E
N
A
T
E
R

3
4

M
b
/
s

C
94

C
R

A
Y

C
98

FR
O

N
T

 E
N

D

C
R

A
Y

E
M

A
SS

D
A

TA
-

T
O

W
E

R

H
iP

PI

sw
itc

h

 C
38

30

 T
3D

T
3E

(2
56

 P
E

s)
(3

2
G

o
m

em
)

IB
M

 R
S6

00
0

C
38

30

St
or

ag
eT

ek
44

00

 C
O

N
V

E
XC

lu
st

er

Fi
le

s
se

rv
er

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

B) PRINCIPLE AND REALIZATION

❏ Idea: to store automatically in a file at the end of
an execution the HPM1 record in order to find later
any resumé of the vectorial performances of any
execution.

❏ Characteristics: historic, automatic and Post-
mortem log of vectorial performance execution.

❏ First operation on YMP:

☞ You just have to replace:

hardref=trbk by:
hardref=_hpmdumpg,trbk

☞ in the system files:

/lib/segdirs/def_ld and
/lib/segdirs/def_seg

❏ HPM counters are saved automatically if execu-
tion time < 600 seconds and if you link your object
modules with the preceding options.

1. Hardware Performance Monitor

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

HPMFLOP
PERFORMANCE MONITOR ON

YMP AND C90 AT IDRIS

CNRS - IDRIS

Etienne GONDET: gondet@idris.fr

INSTITUT DU DEVELOPPEMENT

ET DES RESSOURCES

EN INFORMATIQUE SCIENTIFIQUE

166

CUG 1996 Fall

 Proceedings

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

C) WHAT WAS THE MOTIVATION?

❏ "Benchmark" in real production conditions

❏ A lot of Cray users each year. About :

☞ 400 projects

☞ 1600 user accounts

❏ Each user has several programs and any pro-
gram can have different types of input data.

☞ For example: g94 can do different tasks such as
SCF, frequencies, CI,

❏ Own-information-access for IDRIS users.

❏ Toolbox to help analyse various types of inci-
dents for user support.

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

D) HPMFLOP RECORD FORMAT:

❏ ON C9X

hpmg date_time PID UID ecutable_name ... + the 32 HPM
basic counters (CPU Inst ...)

hpmg 785514293 96236 28355 emi2d2u.out 5998811552474
985605882535 4571073567462 5666241564 7681277450230
3253937907422 208605379 132153160 193288686358
389613224565 1651159610813 11334513276 1575882625950
9305084285 1858103170835 158118452521 35994311303
59145072703 407226847454 352914884 99294507402
123302358424 7406389956 25283325769 798091237929
217985995902 1367451907711 2903783524315 3828310832400
215349090299 4702064158717 2943951796293

☞ From this basic information, you can reproduce
the entire HPM from the CPU seconds to the last
information: l’AVL2.

❏ ON YMP

hpmg date_time PID UID executable_name ... + The 8 HPM
basic counters (CPU Inst ...)

2. Average Vector Length

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

E) BASIC COUNTERS OF HPM ON A YMP

❏ HPM on YMP only gives one of the 4 HPM blocks.
That is the difference with the C90 which gives the
4 blocks at the same time:

☞ Group 0 : Main block.

☞ Group 1 : Instruction hold issue.

☞ Group 2 : Instruction types.

☞ Group 3 : Vector operation types.

❏ Each block has 8 basic counters.

❏ Main block:

Group 0: CPU seconds : 3.24 CP executing : 540228141

Million inst/sec (MIPS) : 50.28 Instructions : 162981187

Avg. clock periods/inst : 3.31

% CP holding issue : 54.90 CP holding issue : 296597851

Inst.buffer fetches/sec : 0.00M Inst.buf. fetches : 2099

Floating adds/sec : 15.73M F.P. adds : 50983161

Floating multiplies/sec : 15.69M F.P. multiplies : 50870999

Floating reciprocal/sec : 0.00M F.P. reciprocals : 1

I/O mem. references/sec : 0.00M I/O references : 0

CPU mem. references/sec : 47.26M CPU references : 153179347

Floating ops/CPU second : 31.42M

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

F) THE 32 BASIC COUNTERS OF HPM ON C9X

CPU seconds : 36.347 CP executing : 8723484782 = B0
Million inst/sec (MIPS) : 51.52 Instructions : 1872762914 = B1
Avg. clock periods/inst : 4.66
% CP holding issue : 69.40 CP holding issue : 6054307103 = B2
Inst.buffer fetches/sec : 0.50M Inst.buf. fetches : 18165134 = B3
Floating ops/sec : 357.09M F.P. ops : 12979314669
Vector Floating ops/sec : 356.32M Vec F.P. ops : 12951435508
CPU mem. references/sec : 294.21M actual refs : 10694025583 = B4
 avg conflict/ref : 0.11 actual conflicts : 1171758275 = B5
VEC mem. references/sec : 286.89M actual refs : 10427906984
B/T mem. references/sec : 3.44M actual refs : 125112791
I/O mem. references/sec : 0.47M actual refs : 17034972 = B6
avg conflict/ref : 0.36 actual conflicts : 6084804 = B7

Hold issue condition % of all CPs actual # of CPs
Waiting on A-regs & access : 7.26 633593793 = B8
Waiting on S-regs & access : 3.43 299081771 = B9
Waiting on V-registers : 27.72 2418222991 = B10
Waiting on B/T-registers : 1.97 172277900 = B11
Waiting on Functional Units : 43.59 3802863252 = B12
Waiting on Shared Registers : 0.02 1590265 = B13
Waiting on Memory Ports : 6.75 588604460 = B14
Waiting on Miscellaneous : 3.01 262362964 = B15

(octal) instruction type inst./CPUsec actual inst. % of all insts.
(000-004)Special : 0.63M 22766829 = B16 1.22
(005-017)Branch : 2.18M 79344161 = B17 4.24
(02x,030-033)A Register : 29.12M 1058293002 = B18 56.51
(034-037)B/T Memory : 0.21M 7810320 = B19 0.42
(040-043,071-077)S Register : 1.70M 61851944 = B20 3.30
(044-061)Scalar Integer : 1.65M 59829294 = B21 3.19
(062-070)Scalar Floating-Point : 0.77M 278791611 = B22 1.49
(10x-13x)Scalar Memory : 3.88M 141005808 = B23 7.53
(140-177)All Vector : 11.39M 413982395 22.11

= MIPS - sum of groupe2
type of vector operation ops/CPUsec actual ops
Vector Logical : 0.10M 3600073 = B24
Vector Shift/Pop/LZ : 1.08M 39329738 = B25
Vector Integer Add : 0.01M 394786 = B25
Vector Floating Multiply : 109.65M 3985415816 = B27
Vector Floating Add : 246.67M 8966019659 = B28
VectorFloating Reciprocal : 0.00M 33 = B29
Vector Memory Read : 161.70M 5877440650 = B30
Vector Memory Write : 125.19M 4550466334 = B31

Average Vecor Length for all Operations : 56.58 = sum of groupe3 / All vector instruction

CUG 1996 Fall

 Proceedings

167

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

G) FORMULA TO REBUILD A C90 HPM

❏ Goal: to be able to complete the missing parts of
HPM from an HPMFLOP record.

❏ Formulae for missing information on C90:

☞ Vector Floating ops/sec = Vector Floating (Multiply + Add + Reciprocal)3

☞ Floating ops /sec = Vector Floating ops /sec + Scalar Floating_Point4

☞ VEC mem. reference/sec = Vector Memory (Write + Read)5

☞ avg conflict/ref = actual conflicts / VEC mem. references/sec

☞ B/T mem ref/sec=CPU mem ref/sec - VEC meme ref/sec - Scalar Mem6

☞ All vector instruction = MIPS - sum of counter group 2

☞ Avl = sum of counter group 3 / All vector instruction

3. In Counter group 3
4. In Counter group 2
5. In Counter group 3
6. In Counter group 2

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

H) METRIC IDEAS

❏ Why not imagine your own (:-best-:) indicators:

☞ A = Vector Floating Add

☞ M = Vector Floating Multiply

☞ IBFS = Instruction Buffer Fetch / Sec

☞ MIPS = Million Instruction Per Seconds

❏ What do the following indicators mean?

☞ A / M

☞ (A - M) / (A + M)

☞ VEC memory references / FLOPS

☞ FLOPS / INST

☞ MIPS / IBFS

☞ FLOPS/IBFS

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

I) RESTRICTIONS ON HPMFLOP

PROS

❏ HPM/HPMFLOP results are objective.

❏ HPMFLOP does not have any effect on execution
time.

❏ HPMFLOP is automatic and easy to implement.

CONS

❏ What HPMFLOP/HPM cannot indicate :

☞ Memory used.

☞ System time.

☞ Elapsed time.

☞ Multitasking speedup.

In fact the accounting information (ja).

❏ These information can be found later by
CSAJREP.

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

J) REAL CASE: LATTICE-GAS

168

CUG 1996 Fall

 Proceedings

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

K) CRON, SCRIPTS ET HPMI

❏ Every night we process the raw log to make it
understandable.

❏ For each months, we keep 2 logs:

☞ the raw log

☞ the processed log.

❏ HPMI: user command to display hpmflop
information:

☞ RESTRICTIONS: a user can only see his own re-
corded execution performances when they are
over 600 secondes.

☞ USAGE: hpmi -u login [-g groupe] [-a 94]

Date Heure Login Mfs Temps Mips IBFs VMflops Conf/ref Avl Nom
----- ----- ------- ------ ------ ------ ------ ------- ---------- ------ --------
Feb08 12:22 rlab002 20 845 106.77 0.04 13 0.26 5.15 pri1
Feb08 16:26 rlab002 20 841 106.66 0.04 13 0.26 5.15 pri1
Feb17 16:16 rlab002 668 964 30.42 0.01 668 0.07 94.02 ari

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

L) HPMI : Most important values in HPM

CPU seconds : 36.347 CP executing : 8723484782
Million inst/sec (MIPS) : 51.52 Instructions : 1872762914
Avg. clock periods/inst : 4.66
% CP holding issue : 69.40 CP holding issue : 6054307103
Inst.buffer fetches/sec : 0.50M Inst.buf. fetches : 18165134
Floating ops/sec : 357.09MF.P. ops : 12979314669
Vector Floating ops/sec : 356.32MVec F.P. ops : 12951435508
CPU mem. references/sec : 294.21M actual refs : 10694025583
 avg conflict/ref : 0.11 actual conflicts : 1171758275
VEC mem. references/sec : 286.89M actual refs : 10427906984
B/T mem. references/sec : 3.44M actual refs : 125112791
I/O mem. references/sec : 0.47M actual refs : 17034972
avg conflict/ref : 0.36 actual conflicts : 6084804

Hold issue condition % of all CPs actual # of CPs
Waiting on A-regs & access : 7.26 633593793
Waiting on S-regs & access : 3.43 299081771
Waiting on V-registers : 27.72 2418222991
Waiting on B/T-registers : 1.97 172277900
Waiting on Functional Units : 43.59 3802863252
Waiting on Shared Registers : 0.02 1590265
Waiting on Memory Ports : 6.75 588604460
Waiting on Miscellaneous : 3.01 262362964

(octal) instruction type inst./CPUsec actual inst. % of all insts.
(000-004)Special : 0.63M 22766829 1.22
(005-017)Branch : 2.18M 79344161 4.24
(02x,030-033)A Register : 29.12M 1058293002 56.51
(034-037)B/T Memory : 0.21M 7810320 0.42
(040-043,071-077)S Register : 1.70M 61851944 3.30
(044-061)Scalar Integer : 1.65M 59829294 3.19
(062-070)Scalar Floating-Point : 0.77M 278791611 1.49
(10x-13x)Scalar Memory : 3.88M 141005808 7.53
(140-177)All Vector : 11.39M 413982395 22.11

= MIPS - sum of group3
type of vector operation ops/CPUsec actual ops
Vector Logical : 0.10M 3600073
Vector Shift/Pop/LZ : 1.08M 39329738
Vector Integer Add : 0.01M 394786
Vector Floating Multiply : 109.65M 3985415816
Vector Floating Add : 246.67M 8966019659
VectorFloating Reciprocal : 0.00M 33
Vector Memory Read : 161.70M 5877440650
Vector Memory Write : 125.19M 4550466334

Average Vector Length for all Operations : 56.58 = sum of group4 / All vector instruction

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

M) EMAIL RESUME AND ANNUAL ASSESSMENT

❏ Each user account receive every 3 months, the
result of hpmi by electronic mail.

❏ Each year, before thematic program comitee
meetings, we produce an assesment form per
project.

❏ We also resume MASS STORAGE occupied and
BONUS/MALUS relative to memory used and
speedup obtained.

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

N) GRAPHS

Comparison between hours computed and recorded
by HPMFLOP during the year 1996.

❏ The percentage of recorded hours is around
66%.

❏ A lot of hours are not recorded mostly due to the
value of HPM_MT we have chosen.

CUG 1996 Fall

 Proceedings

169

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

MFlops weighted average at IDRIS on C90

❏ The overall performance has progressed signifi-
cantly to reach 300 MFlops this year.

CNRS - IDRIS
HPMFLOP: Carolina CUG 17 of October 1996

Performance shape at IDRIS/CNRS on C9X by 50
MFlops sections.

❏ There are very few codes over 600 MFlops. The
large number of codes between 400 and 600
Mflops is due to the use of the CRAY scientific li-
brary (LIBSCI).

❏ The significant number of hours under 100
Mflops are due to some poorly vectorized codes
but also to good vectorized codes for which
MFlops is not the approriate metric.

