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ABSTRACT: 

 

A general method is presented for load balancing an application over a given
number of Massively Parallel Processing (MPP) or Symmetric Multi-Processing (SMP) nodes

 

when

 

 a function can be found which represents the amount of time (compute work) required for
program completion as a function of the data domain.  The method determines which data needs
to be distributed to each node (i.e. determines the domain decomposition) such that each node
finishes at precisely the same time.   The procedure reduces the load balancing problem to one
of finding this function for a given application.  

 

1 Introduction 

 

Increasingly complex problems are being solved on parallel
processors, such as Symmetric Multi-Processors (SMPs) and
Massively Parallel Processors (MPPs).  Decomposing the
domain of a program, i.e. assigning the data associated with the
program to the processors which will be running the program, is
not always trivial.  For instance, load balancing becomes a
problem when the amount of compute work assigned to the
processors is not equal, so that some processors are forced to be
idle while they wait for other processors, the ones with too much
work, to catch up with them at synchronization points within the
program.  If the amount of compute work associated with a
given datum in the domain of the program is constant, then the
load balancing problem becomes easier because the program
becomes load balanced when equal amounts of the domain are
distributed to the processors that are available.  However, when
programs have variable amounts of compute work for different
parts of the domain, another method for distributing the work
amongst the processors must be found to minimize the amount
of idle time.  

This paper describes a method for distributing a program’s
domain so that it will be perfectly load balanced when a function
can be found which represents the amount of compute work (or
time) required as a function of the data domain.  The second
section of this paper describes the theory on which this proce-
dure is based.  The third section describes practical details of
implementation by application of the method in one dimension.
Section four generalizes the method to heterogeneous nodes.
The fifth section discusses the application of this method to the

multi-dimensional case, and section six discusses the possibility
of automating this method by incorporating it into a code paral-
lelization tool.  Section seven summarizes conclusions.  The
appendices discuss the conditions under which Newton’s
method is guaranteed to converge, since this method can utilize
Newton’s method (if the function is differentiable).

 

2 Theory 

 

     The basic method is described using the following defini-
tions:  

        N

 

p

 

 is the  number of  processors (nodes),

        

 

x

 

 is the  program's data domain,
        

 

x

 

i

 

 is the lower bound of the portion of 

 

x

 

 allocated

to node i, which is also the upper
bound of node i-1,

        t(

 

x

 

) is the function representing the
cumulative time required for
solution as a function of domain 

 

x

 

,
        TT is the total time, the total amount of time

required for program completion, and 

 

        x

 

max

 

 is the maximum value of 

 

x

 

 for this run of the

program
        i is the node number, 0 <= i < N

 

p

 

     In this treatment:  

 - t(

 

x

 

) is exact.  The closer t(

 

x

 

) approximates reality,
    the better the load balancing efficiency should be. 
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 - Communication time is not taken into account. 
 - "Program" can be defined as any task executed
    between synchronization points.

     With these definitions the procedure is now described: 
     In order to perfectly load balance an application across N

 

p

 

nodes, each node must do exactly the same amount of work, i.e.,
finish it's task in the same amount of time TT/N

 

p

 

.  In order to

utilize this method a cumulative time function t(

 

x

 

) is needed to
map the amount of time consumed by the program as a function
of the domain 

 

x

 

 (generally the grid space over which the program
is iterating).    For simplicity the one dimensional case is consid-
ered here, and the multi-dimensional case is discussed in Section
V.

     Each node can be allocated an equal amount of the work
(time).  As depicted graphically in Figure 1, this is equivalent to
subdividing the t-axis into equally sized adjacent regions of size
TT/N

 

p

 

.  A root finding method can then determine the 

 

x

 

i

 

 coordi-

nate corresponding to the region end points, as shown below.  By
definition, in the one-dimensional case, assuming t(

 

x

 

) is exact,
TT = t(

 

x

 

max

 

) = t(

 

x

 

Np

 

).  Assigning each processor the same slice

of work 
(TT/N

 

p

 

), t(

 

x

 

i

 

) = i * TT/N

 

p

 

, or, for  0 <= i <= N

 

p

 

,

t(

 

x

 

i

 

) - i * TT/N

 

p

 

 = 0 (

 

1

 

)

     So determining the domain 

 

x

 

i

 

 that processor i should work

on has been reduced to finding the roots of the function t(

 

x

 

i

 

) - i

* TT/N

 

p

 

, and the domain of node i will then be [

 

x

 

i

 

, 

 

x

 

i

 

+1

 

].  Note

that each node can determine it’s domain independently of the
other nodes, so that only two calls to a root finding routine are
required on each node.  To ensure there is no overlap of the
domain on the nodes, a node’s domain can be defined as [

 

x

 

i

 

,

 

x

 

i

 

+1

 

- ], where  is the smallest machine representable change in

 

x

 

.  If equation (1) can be solved analytically for 

 

x

 

, then this
explicit formula for 

 

x

 

 can be used to distribute the domain 

 

x

 

across N

 

p

 

 nodes.  This could possibly be implemented with High

Performance Fortran version 2 (HPF2) user defined distribution
functions.  If this function is reasonably well-behaved, then
Newton's method can be utilized to find the part of the domain
that a given PE should work on to achieve good load balance.  If
possible, the analytic form for t’(

 

x

 

) can be used, otherwise t’(

 

x

 

)
can be determined with a discretezation such as 
t'(

 

x

 

) = dt/d

 

x

 

 = (t(

 

x

 

+d

 

x

 

)-t(

 

x

 

))/d

 

x

 

 
(but care must be used in the choice of d

 

x

 

 here). 
     Once t(

 

x

 

) and t'(

 

x

 

) have been found, it is straightforward to
use the Newton-Raphson Method to rapidly determine 

 

x

 

i

 

exactly, assuming the behavior of these functions is reasonable
(i.e. t(

 

x

 

) is continuous and differentiable).  If the function’s
behavior is not reasonable, then another method, such as the
secant or bisection method, can be utilized to find the roots.
Newton’s Method is preferred because of it’s superior conver-

ε ε

 

gence properties, since this domain distribution algorithm
constitutes overhead for the program.  As shown before this will
require a maximum of 2 t(

 

x

 

) evaluations per step of Newton's
Method (t(

 

x

 

) and t(

 

x

 

+d

 

x

 

)).  See Appendix A for a discussion of
the convergence of Newton’s method to the root.

     If t(

 

x

 

) is not known a priori, then good results may be
obtained by curve fitting an appropriate well-behaved function
to sample timings.  The t(

 

x

 

) function has at least one constant
which must be determined empirically because every computer
has different performance characteristics that will affect t(

 

x

 

).
Fortunately, this constant divides out (this is shown in the
example at the end of section V).  Writing t(

 

x

 

)=A*t

 

ref

 

(

 

x

 

), where

A is the machine dependent constant, and knowing that
TT=t(

 

x

 

Np

 

), Equation (1) can be divided by A to get a generic,

portable equation which can be solved for 

 

x

 

i

 

:

t

 

ref

 

(

 

x

 

i

 

) - i * t

 

ref

 

(

 

x

 

max

 

)/N

 

p

 

 = 0

Thus only the form of t(

 

x

 

) is required to use this method.

     Figure 2 depicts the amount of compute/idle time for a
sample program run, which motivates the definition of a
measure of a program’s load balance.  The Load Balance Ineffi-
ciency (L

 

I

 

) is defined to be:

  L

 

I

 

 = (T

 

max

 

 - T

 

avg

 

)/T

 

avg

 

 * 100  

 

(2)

 

and the Load Balance Efficiency (L

 

E

 

) to be:

 L

 

E

 

 = 100 - L

 

I

 

 

 

(3)

 

where T

 

max

 

 is the maximum time to completion for any

node  in the partition and 
         T

 

avg

 

 is the average time to completion for all

nodes in the partition. 

The L

 

I

 

 indicates how much computer time was wasted due to

load imbalance as a percentage of the total amount of time (T

 

avg

 

)

that a perfectly load balanced program would have taken.  Each
node is idle from the time it finishes it’s work until T

 

max

 

.  There-

fore, in the example depicted in figure 2, the L

 

I

 

 can be seen as

the ratio of the area above the bar graph and below the line from
(0,T

 

max

 

) to (N

 

p

 

-1,T

 

max

 

), (which is also the area of the rectangle

bounded by (0,T

 

avg

 

) and (N

 

p

 

-1,T

 

max

 

)), to the area of the entire

rectangle bounded by (0,0) and (N

 

p

 

-1,T

 

avg

 

) (T

 

max

 

=89.92 in

Figure 2).  A high load balancing efficiency (~100%) indicates a
program has good load balancing characteristics, i.e., fills most
of the rectangle with useful work. 
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3 Implementation Example 

     As an example, consider the modified Sieve of
Eratosthenes prime number program given in Appendix C,
which finds all prime numbers between 1 and MAXN.  The orig-
inal program distributed a range of MAXN/Np integers to each

node, but the resulting load imbalance was severe.  Figure 2
shows the load imbalance graphically for a 32 node run with
MAXN=32,000,000 and a linear distribution of the integer
domain x to each node (i.e. each node was assigned a range of
1,000,000 integers).  By looking at the change in time between
sample points (nodes), we can see that the amount of time
required by node 0 for program completion is significantly
smaller than the amount required for node 31 (22.2 seconds
versus 89.9 seconds).  Thus  node 0 is idle 75% of the time.  This
indicates there is a large load imbalance here.  Calculating the LI

and LE using equations (2) and (3):

Tavg=2055.52/32=64.24

LI=(89.92-64.24)/89.92=28.56%

LE=100-LI=71.44%

Since 28.6% of the run time is wasted with a linear distribu-
tion of domain x, it is reasonable to ask:  

How can the range of integers be allocated to each node for
the prime number search, such that each node will finish simul-
taneously?
     An approximate function for the density of prime numbers 
in the range of integers [2,n] was given by Legendre as:

 n/(ln(n)-1.08366);  for n>2.

Inspection of the algorithm in Appendix C shows that the time 
spent in the main inner loop of the program is bounded by the 
square root of n, but only runs to the end of this loop when n is 
prime.  Therefore the cumulative time function is expected to 
look like  

where A is a machine dependent constant, and x is the upper
bound on the range of integers for the program.

     A curve fit of the last equation to actual program timings
on a Cray T3D, gave the cumulative time function (see Figure
4):

 (4)
where   A=3.9098E-7

t x( ) A
x

1.5

x( )log 1.08366–
-----------------------------------------⋅=

t x( ) A
x

1.43

x( )log 1.08366–
-----------------------------------------⋅=

A more accurate t(x) would not use a constant power (1.43)
for x, but good results were obtained with this simplification
since the power is almost constant.

Defining r=1.0/(ln(x) - 1.08366) to simplify notation, and
taking the derivative with respect to x of (4):

 (5)
     Having an analytic formula for t'(x) allows us to use

Newton's method more efficiently since we require only one
ln(x) evaluation instead of 2 for each step of Newton's method.
A was determined by solving equation (4) for A and then substi-
tuting known values for x and t(x) (determined from sample
timings), as in

     The range of numbers each node should work on can now
be determined using two calls to Newton's Method to find xi and

xi+1, where i is the node number, for 0 <= i <= Np, with f(x) =

t(x) - i * t(xmax), and 

f’( x) = t’(x).

     Here the theorem given in Appendix A can be utilized to
guarantee Newton’s Method will converge when the initial
guess is in the interval (6, ).  First xL and xU are determined

from the theorem’s given conditions.  Writing out the equations
(in addition to (4) and (5)):

f(x)   = t(x) - i*TT/Np

f’( x)  = t'(x)  =  t(x)/x*(1.43-r)
f’’( x) = t’’( x) = (t(x)*r/x+t’(x)*(.43-r))/x

We have discontinuities in all functions when 
ln(x)-1.08366=0 (ln(x)=1.08366, so x~=2.96). 
Likewise, t’(x) is discontinuous at x=0, and t’(x) > 0 when 1.43 
> r, or x > 5.94744.  t’’(x) > 0 when 

r+(1.43-r)*(.43-r) > 0, or r2-.86*r+.61>0, which is positive 
whenever r is positive, i.e. when x > 2.96.
Therefore the conditions of the theorem are met  when x > 
5.94744, thus it is safe to set  xL = 5.95, and 

xU = , to be the bounds of the x interval where Newton’s 

Method is guaranteed to converge.
For the purposes of this program, we only need to know that
x>=5.95 to ensure Newton’s Method will converge, and this is
checked in the code.  With MAXN in the millions or billions, as
is normal, the smallest initial guess for Newton’s Method
(x=MAXN/N p) should never come close to x=6.

t ′ x( ) A r x⋅ 0.43
1.43 r–( )⋅=

A t x( ) x( )log 1.08366–

x
1.43

----------------------------------------- 
 =

∞

∞
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Timing results for xmax=228 on 16 PEs of a Cray T3D are

shown in Figure 5.  In this run Tavg=1494.0 and Tmax=1507.9,

so that LI=0.93%, and LE=99.07%, i.e. this decomposition is

0.93% slower than a perfectly balanced decomposition.  This
inefficiency is caused by the deviation of the actual timings from
the timings predicted by Equation (4).  The overhead time
required to do the domain decomposition (Newton's Method)
was a maximum of 0.000265 seconds for all nodes, or 0.000018
% of the total program run-time.  Hence most of the wasted
program run-time (0.93%) is caused by the deviation of the
curve fitted t(x) from the actual t(x).

4 Heterogeneous Nodes 

If the work is distributed amongst heterogeneous nodes, a
similar procedure can be utilized so long as the relative perfor-
mance of the various nodes is known and is constant over the
entire domain (i.e. the ratio of timings on the various heteroge-
neous nodes for a given range of the domain is constant).  Given
the following definitions, we can derive a formula for distrib-
uting work amongst two different processor types.

      tint   = Time interval assigned to all nodes,

      N1   = Number of type 1 nodes,

      N2   = Number of type 2 nodes,

      T1    = Total Time contribution from type 1 nodes

             = N1 * tint,

      T2    = Total Time contribution from type 2 nodes

             = N2 * tint,

      Neff = N1 + N2,

      R    = Ratio of type 1 node timings to type 2 node
timings over the same interval of x.
R is assumed to be constant.

      TT  = Total Time for a program to run on one type
1 node = t(xmax) = t(xNp),

      Tall  = Total Time for a program run on both type 1

and type 2 nodes.

Given N1, N2, R, and TT as data then an equal amount of

work (time tint) is assigned to all (N1 + N2) nodes. This distrib-

utes the work so that all nodes finish simultaneously, parti-
tioning the t-axis into (N1 + N2) intervals of size tint.

Tall = T1 + T2  = N1 * tint + N2 * tint = (N1 + N2) * tint, 

and writing out the expression for TT we can see that by the defi-
nition of R:

TT = T1 + R*T2 = N1*t int + R*N2*t int 

       = (N1 + R*N2)*t int, or 

tint   = TT/(N1 + N2*R)  

Now Tall = (N1 + N2) * tint 

              = (N1 + N2)/(N1 + N2*R) * TT

and equation (1) becomes, 
with t(x) as defined on type 1 nodes:

for type 1 nodes, 0 <= i <= N1:

t(xi) = i * Tall/Neff,  or   t(xi) - i * tint = 0,

and for type 2 nodes, since t(x) was defined on type 1 nodes, 
we must scale it by 1/R, i.e. for N1 < i <= Neff:

t(xi)/R = t(xN1) + i * Tall/Neff, or, 

since  T1 = t(xN1), tint = Tall/Neff,

t(xi)/R - T1 - i * tint = 0.

For instance, suppose the work is distributed among 7 type 1
nodes and 4 type 2 nodes, and the type 1 nodes execute the
program in 3 times the amount of time type 2 nodes would
require.  Figure 3 shows this example for the case that the
program takes 100 seconds to run on 1 type 1 node, and then
tint  = TT/(N1+N2*R) = 100/(7+4*3) =  5.26 seconds

Tall  = (N1+N2) * tint    = (7+4)*5.26  = 57.89 seconds

T1   = N1 * tint             =       7*5.26  = 36.84 seconds

T2   = Tall - T1           = 57.89-36.84 = 21.05 seconds

The speedup (relative to running the program on 1 type 1
node, assuming no communication costs) on 11 type 1 nodes
would be 11 fold.  With the 4 faster type 2 nodes, the speedup is
100/5.26 = 19.0.  In general, the speedup is N1+N2*R.

Generalizing to M types of nodes, when the following data is
given:

N1, N2, ... , NM, 

R1(=1), R2, ..., RM, (all time ratios are relative to type 1 

nodes), and 
TT = t(xNeff) 

       = t(xmax) 

       = Total Time for a program run on one type 1 node.

Then
Neff     = N1+...+Nj+...+NM

speedup = (N1+N2*R2+...+Nj*Rj+...+NM*RM) 

(Relative to 1 type 1 node run)
tint        = TT/speedup 

Tall        = Neff * tint

Tj         = Nj * tint



24 CUG 1996 Fall  Proceedings

NSUMj = N1+...+Nj, NSUM0 = -1

TSUMj  = T1+...+Tj, TSUM0 = 0

and for type j nodes, NSUMj-1 < i <= NSUMj:

t(xi)/Rj = TSUMj-1 + i * Tall/Neff, or 

t(xi)/Rj - TSUMj-1 - i * tint = 0.

5 Multi-dimensional Domain

     The following section outlines general conditions that must 
be satisfied by a load balanced program when the domain is 
multi-dimensional.

Definitions:
1)  "Volume" is the data domain that is distributed over all of 

the processors in a partition of Np nodes. This "Volume" is 

n-dimensional.  The notation here attempts to remain 
consistent independent of  the number of dimensions in V.

2)  "Surface Area" is that part of a node’s data domain that is 
adjacent to other nodes domains.  The dimensionality is 
one less than that of the "volume".
     Applying the method of sections III and IV to multiple

dimensions is complicated by the fact that t(V) is a cumulative
function.  When generalizing to multiple dimensions, it is not
known how to accumulate the time since this is application
specific, i.e. depends upon how the data is distributed over the
nodes. In HPF terminology, it depends upon whether the data is
distributed in a cyclic, block, or degenerate fashion.  Therefore
this study concentrates on the sum-invariant part of the problem,
which is defined as the time density (ρ), since it represents the
amount of time contributed for each datum, i.e. for each volume
element (voxel).   Time density is the change in time for the
change in volume represented by a given voxel (datum).  Thus,
the time density function can be defined similarly to other
density functions, as a limit

Appropriate parts of the code can be timed to determine the
amount of time required per datum as a function of the datum’s
placement (coordinates) in V.  The timing data can be modeled
by curve-fitting continuous real functions to discrete time
samples, where these samples indicate the change in time for a
given change in V.  In this way a model of the time density func-
tion ρ(V) is obtained.  In one dimension (i.e. in sections II-IV)
ρ(V)=t’( x).  The amount of time contributed per datum is known,
and so the problem of partitioning the domain is reduced to
determining how to sum the curve-fitted ρ(V) to get the appro-
priate sum (TT/Np from Equation (1)) for a given node while

ensuring all of the domain is distributed over V.  
     In general adding more voxels (more domain V) increases

the time to program completion.  If we restrict ourselves to

ρ X( ) time∆( ) V∆( )⁄
V 0→∆
lim=

nondecreasing t(V), i.e.  t(xb)>=t(xa) whenever xb>xa for all

dimensions of V, then ρ(V)>=0 for all V.  Therefore, since a
function which is non-negative and continuous (this is the
"well-behaved" criteria mentioned earlier) on a given region S of
V has a volume defined by:
, 

it is seen that the integrals and the intervals can be arbitrarily
subdivided without risk of cancellation since ρ(V) is nonnega-
tive. 

     The time required for program completion for a given
region S of V is the sum of the discrete time samples in interval
S, which can be modeled as the sum of the curve-fitted ρ(V) over
region S. 
In general a load balanced program should satisfy: 

where 
   ρ(V) = Time Density function,
   SS    = all V in this program run,
   TT    = Total Time, the sum of ρ(V) over SS,
   Si     = the region of V assigned to node i,

   0 <= i < Np.

     In general for the multi-dimensional case, there is one
equation, and M unknowns, where M is the number of dimen-
sions in domain V. There are many application-specific consid-
erations that must be taken into account when determining the
best method for partitioning the data domain, both to minimize
communication between nodes, and to ensure algorithmic effi-
ciency. For example, it is often desirable to minimize the ratio of
the “surface area” of a node's domain to the “volume” of the
node's domain, in order to maximize the amount of computation
done relative to the amount of communication done (this applies
when the boundary “surface area” needs to be communicated).
In this case, the ratio Area/Volume must be minimized for each
Si, where:

Ωi is the boundary of Si,

A complete description of data partitioning methods to
reduce communication time and/or increase algorithmic effi-
ciency is beyond the scope of this paper.  However, these consid-

t V( ) ρ V( ) Vd
S∫=

TT ρ V( ) Vd
SS∫=

TT NP⁄ ρ V( ) Vd
Si∫=

Si
i∀

∪ SS=

Area Ad

Ωi
∫=

Volume Vd
Si∫=
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erations produce other constraints upon the data distribution
model, and constraints such as this can be used to reduce the data
distribution problem to one variable (dimension) and one
unknown.

By far the most common time density function is a constant
amount of work per datum, as represented by ρ(V)=C, C>0, for
arbitrary V.   This can be called a linear (or homogeneous) distri-
bution, and methods for evenly load balancing this distribution
try to ensure each node gets an equal "volume" of V.  In our
generalization the "volume" does not have to be equal, but the
change in time (sum of ρ(V)) assigned to a node should be equal.
In the linear distribution case the change in t(V) is constant (see
Figure 6) for a constant volume, so when the "volume" assigned
to each node is constant, the time is also constant, and therefore
equal.  

To clarify the notation consider a fictitious multi-dimensional
example.  In a program with a 2- dimensional domain in which
ρ(V)=C*(x+y), Np=4, where (x,y) represent the domain that is

being distributed over the nodes.  Let xmax=ymax=20.  Now in

order to reduce the degrees of freedom we decide to break up the
domain into rows, with each row containing work that will take
TT/Np seconds.  Instead of the linear distribution seen in Figure

6, we see the distribution shown in Figure 7.  First we find TT by
summing ρ(V) over the entire domain V:

 so TT=C*8000.

Equating i*TT/Np to the SUM of ρ(V) for a row bounded by x 

in (0,xmax) and y in (0,y):

Now xmax = 20, and TT = C*8000, hence

 or, cancelling C and rewriting,

   10*y2 + 200*y - 8000*i/Np = 0.

TT ρ V( ) Vd
SS∫=

TT C x y+( ) xd yd⋅
0

20

∫0

20

∫=

TT C 2⁄( ) x
2
y y

2
x+( )

0

20

0

20

⋅=

TT
NP
-------- i⋅ C x y+( ) xd yd⋅

0

xmax

∫0

20

∫=

TT
NP
-------- i⋅ C 2⁄( ) x

2
y y

2
x+( )

0

xmax

0

x2

⋅=

TT
NP
-------- i⋅ C 2⁄( ) xmax

2
y y

2
xmax+( )⋅=

C 8000⋅
NP

-------------------- i⋅ C 200 y⋅ 10 y
2⋅+( )⋅=

Solving explicitly for y using the quadratic equation:

   Obviously negative solutions are not desired, 
hence

So for i=0..4, yi = {0, 7.32, 12.36, 16.46, 20}

The fractional remainders here indicate that we will not be
perfectly load balanced, unless we are willing to assign partial
rows to the processors.  This can be termed the "perfection
complex", since it demonstrates the perfection/complexity
(fine/coarse-grained) trade-off, i.e. allowing partial rows would
allow perfect load balance, but would increase program
complexity.

6 Automation 

The next possible application (or evolution) of this method
would be towards automated load balancing, i.e. attempting to
eliminate load imbalance as a significant threat to scalability
through the use of an automated parallel programming tool
which incorporates this method in it’s suite of options.  Related
work can be found in [1].  A system can be envisioned wherein
HPF data distribution directives are used in combination with
this tool to develop a time density profile for a given code.  The
first pass through the code determines how much time is spent to
do calculations on a given voxel in the code’s data domain
(arrays).  A time density (ρ) array is thus generated with a dupli-
cate distribution over the processors as the original array(s).  By
having a duplicate distribution for the ρ array, we are ensured
that this processor’s references to the ρ array are local to this
processor.  This ρ array can then be utilized to perform the load
balance algorithm described in Section II of this paper to dynam-
ically refine the distribution of the array associated with this ρ
array over the processors.  Although in general Newton’s
Method could not be used (since an analytic t’(V) is not avail-
able,  but discrete time samples are available), the secant method
could be used.  However, the impact of this ρ array on memory
usage would be quite dramatic, since memory usage would be
doubled for distributed arrays.  This problem could be alleviated
by combining elements of the time density array, e.g. by adding
groups of 5 elements along one dimension of the array to reduce
ρ array memory usage (and timing overhead) by a factor of 5, but
there is an obvious memory to load balance efficiency
(fine/course grained) trade-off here.  The tool would have to
provide the interface to the programmer to allow them to define:
which arrays will be timed, where a pass starts and stops (gener-
ally a synchronization point), and how (and if) a given ρ array
should be "compressed".

Also, if the computational load for individual voxels changes
over time, it may be required to periodically check whether the
program has drifted out of balance.  For instance, by checking
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whether the maximum and minimum node times are more than
a threshold value apart at every 10th pass (timestep), e.g. if
(Tmax-Tmin)/Tavg >10%, then it’s time to dynamically load

balance the code, i.e. to go through the above domain distribu-
tion procedure again.  However, checking this threshold value
requires a global summation, so it cannot be checked often
without incurring excessive overhead.  Likewise, the redistribu-
tion generally requires global communication, and so the
threshold value cannot be set to be too low without incurring
excessive overhead from excessive numbers of redistributions.
The parallel programming tool would have to allow the number
of passes per check and the threshold value to be supplied by the
programmer, to allow them to affect this overhead/load
balancing efficiency trade-off.

7 Conclusion 

A load balancing method for parallel processing programs
has been developed that allows programs that have a computa-
tional load which varies as a function of the data domain to be
load balanced.  This method has been generalized to run on
heterogeneous as well as homogeneous processors (with certain
assumptions).  The method was applied to a problem with one
degree of freedom: the generation of prime numbers in the field
of reals with a modified Sieve of Eratosthenes algorithm.  This
method increased the Load Balance Efficiency of this program
running on 32 nodes from 71% to over 99%.  The same method
has also been generalized to multiple dimensions.

Although any root finding method can be employed in this
method, the superior convergence properties of Newton’s
method strongly favors its use in the implementation of this
method, since the root finding is overhead for the program.  

Incorporating this "functional" load balancing method into a
parallelization tool may allow it to automatically load balance
certain applications across any number of different types of
nodes. 
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 APPENDIX  A : Conditions for the Convergence of 
Newton’s Method

From the programmer’s point of view, an interval of guaran-
teed convergence for Newton’s Method would allow the method
to be used without concern about the method diverging.  Also,
the programmer is attempting to minimize the overhead associ-
ated with this load balancing method, so a quickly converging
method is strongly preferred over slower methods with poorer
convergence properties.  The following theorem can be applied
to determine the interval on which Newton’s Method will
converge.  For further discussion see [2]:  

Let f ε C2[a,b].  If p ε [a,b] is such that f(p)=0 and f’(p) 0,

then there exists δ>0 such that Newton’s Method generates a

sequence {pn} for n=1,..,  converging to p for any initial

approximation 
p0 ε [p-δ,p+δ].

When Newton’s method is viewed as a contraction mapping,
it is found that the function 

determines the rate of convergence.  Thus, for any interval of x
where Q(x) < 1, Newton’s Method will converge to the root for
any choice of an initial guess within this interval.

Alternatively, for the purposes of this discussion, it is known
that t(x) is non-decreasing, so f(x)=t(x)-C is also non-decreasing.
In general t’(x) > 0, since every voxel requires some computa-
tion, so t(x) is strictly increasing.  Hence the following theorem
defines a result relevant to this method (see [3]):  

Let f ε C2[xL,xU].  If xR ε [xL,xU] is such that f(xR)=0, (so

f(xL)f(xU)<0),  and for all x ε [xL,xU], f’( x) and f’’(x) are nonzero

and preserve signs, then Newton’s method generates a sequence

{ xi} for i=0,.., , converging to xR for any initial approxima-

tion x0 ε [xL,xU], so long as f(x0)f’’( x0) > 0.

In fact the f(x0)f’’( x0) > 0 condition can be removed, so long

as f’(x)>0 and f’’(x)>0 over all x ε [xL,xU].

Applications are not guaranteed to have f’’(x) > 0 (since this is 
application dependent), but in general f’(x) > 0 when applying 
this method.
APPENDIX  B : Modified Sieve of Eratosthenes Prime 
Number algorithm using the load balancing method

To find all primes in 1..MAXN, for node i in 0..Np-1,

implement the following algorithm:
1.  All nodes find_primes in 2..SQRT(MAXN), 
     save in prime_low.
2.  Call NEWTON(xi) to find the lower bound of

≠

∞

Q x( ) f x( ) f″ x( )⋅
f ′ x( )2

-----------------------------=

∞



CUG 1996 Fall  Proceedings 27

     integers assigned to each node.
3.  Call NEWTON(xi+1) to find the upper bound of

     integers assigned to each node.
4.  All nodes find_primes in xi..xi+1

5.  Output timings and prime numbers.

Pseudocode for Find_primes in step 1 and 4 is as follows:

DO n=NLO, NHI, 2
   DO ip=3,mxp
      notprime = (mod(n,prime_low(ip))=0)
      if (notprime) goto found
   enddo
  found:
   if (not notprime) then
      nbrprimes = nbrprimes + 1
      prime(nbrprimes) = n
   endif
   mxp = maximum prime index
enddo

Pseudocode for the NEWTON method in steps 2 and 3 is as 
follows:

Call FUNCD(MAXN,TT,Dummy)
TT_PE = TT * i/Np the portion of work allocated up to this PE.

x   = MAXN * i/N p (initial guess is the linear distribution).

Check whether x0 is within bounds
DO J=1,100
   Call FUNCD(x,F,DrF)
   DX = (F-TT_PE)/DrF
   x=x-DX
   if ((-RTNEWT)*(RTNEWT-MAXN)<0) then

print Jumped out of bounds message
exit
endif

   if (ABS(DX).LT.EPSILON) then
NEWTON=x
return
endif

enddo
print NEWTON exceeded maximum number of iterations
end

Pseudocode for the FUNCD call above follows, 
implementing the function f(x) and f’(x) defined in Section 
IV:

P=1.43
r = 1.0/(log(x)-1.08366)

xp = xP

FUNC=A*xp*r
Deriv = FUNC*(P-r)/x
end
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Figure 1 depicts how the time axis is subdivided into equally spaced intervals for an arbitrary t(x) function. This particular 
t(x) is taken from the application described in Section IV, i.e. equation (4).
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Figure 2: Actual timings of the Prime number program described in section IV when x is distributed using the linear 
distribution, wherein each node is given a range of integers of equal length.  The wide variance in time-to-completion for 
this case motivated both the development of this load balancing method and the definition of the LE and LI  measures of 
load balance in section II.
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Figure 3  depicts the heterogeneous node example for a linear function t(x) with the two node types described in Section III.
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Figure 4: Comparison of fitted and empirical results for  the function t(x) of Equation (4)  when both are superposed.
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Figure 5  shows the timing results for MAXN=xmax=228 on 16 PEs of a Cray T3D.

Figure 6  shows one possible data partitioning for a 2 dimensional x distributed across 4 nodes when ρ(x)=C.
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Figure 7   shows one possible data partitioning for a 2 dimensional x distributed across 4 nodes when ρ(x)=C*(x+y).

Figure 8 depicts an interval [xL,XU] with an f(x) satisfying the conditions of Swarz’s theorem.
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