

CUG 1996 Fall

 Proceedings

259

HTML Forms Data Processing Tool

Dale Clark

and

 Jayashree Harikumar

, Arctic Region Supercom-
puting Center, University Of Alaska, Fairbanks

ABSTRACT:

Online forms have extensively increased the degree of interaction between users
on the World Wide Web, through HTTP. However the tools for creating forms and interpreting
the resultant data are relatively primitive. At the Arctic Region Supercomputing Center (ARSC)
we have developed an HTML Forms Data Processing Tool to help us process our online appli-
cations and other survey data. The interface consists of two parts, a general purpose form data
preprocessor to decode embedded constraints to the submitted form data and an administrative
tool to process the resultant data. The data preprocessor is designed to return to the user an
annotated form with error advice in the event of an error, and the administrative tool is designed
to store relevant user data to the database.

Introduction

The ARSC Web server is established to serve as a single
source of information to the users. One particular service that
ARSC provides through its Web server is our online account
application form. The ease of use of these online application
forms has made the forms popular with ARSC account appli-
cants but introduced two problems in its wake: (1) the need to
enter the submitted data into ARSC's database and (2) interpret
erroneous or incomplete form data and give the user a chance to
correct the data at the time of submission.

CGI applications handle submitted form data with some
preprocessing capabilities but do not inform the applicant of
errors at the time of submission. To address the above issues,
the HTML Forms Data Processing Tool or

FPT

(Form
Processing Tool) was created. FPT can (1) encode contraints
for the form creator, (2) decode constraints applied to desig-
nated form fields to inform users and form designers of missing
or erroneous data, and (3) enter user data into the ARSC data-
base.

Design Considerations

Requirements

Special purpose applications can be written to target special
fields in individual forms but this type of ad hoc approach
involves duplication of effort and requires reworking of code
whenever the targeted form is modified meaning the duplication
of substantial amounts of code. To avoid duplication of effort
FPT is designed to meet the following requirements:

• preprocess the output from any arbitrary form

• check forms for "errors of form’

• check forms for ‘errors of content"

• inform users of errors via the same form with errors flagged
below the actual data submitted

• provide a mechanism to resubmit data forcibly (essential if
the user considers the data to be correct and the error mes-
sage erroneous)

• return the data submitted by the user to the form owner in a
machine readable format (email) and human readable recon-
structed form

• inform the form owner of possible errors in user data

• inform the form owner of possible errors from preprocessing
the data

• enter the data into a database

Additionally it was required that the tool do no harm to the
owner's environment, either from malice or misadventure. To
extend the tool's practical utility, it was suggested that the tool
be implemented in a highly portable language, use a Graphical
User Interface (GUI) and provide a facility for creating new
forms thus allowing the user of this tool to specify, at the time
of creation of each new form field, the constraints to be placed
upon it.

Design

FPT is a three part tool. Tool 1 creates HTML forms and
embeds within them constraints against each form input field.
Tool 2 collects user data, applies the constraints embedded by
the tool 1 to the data, and communicates the results to the form
user and the form owner. Tool 3 transfers accepted form data
into a database. Tool 1 by definition is a HTML editor and tool
3 is a site-dependent tool designed to meet the needs of the data-

260

CUG 1996 Fall

 Proceedings

base employed to store the data. At ARSC tool 3 is written using
AppleScript.

The primary design decision to error-check on arbitrary form
data involved a detailed design of tool 2. FPT needs to receive
both its data and its constraints externally, constructing a virtual
special purpose preprocessor based upon the expressions
contained within the constraints supplied to it. To do so data and
constraints need to be coordinated. Data is entered into a form
by a person sitting at a terminal and the data has no existence
outside of the brower's memory. Constraints, on the other hand,
are carefully created and stored in a non-volatile manner. No
assumption is made about the form user with respect to these
constraints. As only name=value pairs are returned to FPT, the
link to the constraints appear as such a pair, in a hidden form
field. To permit the user creating the form and FPT have access
to the constraints, the constraints are embedded in the form. This
reliably associates the data with the constraints and guarantees
their mutual arrival. Constraints were appended to the name
attribute of input field. This provided tight binding of the
constraint to its intended field, and made simpler the job of form
reconstruction, as the number of fields involved was just the
original number of fields; none needed to be added. For security
reasons FPT does not write files. All data generated is returned
as a stream. With respect to the form user, the natural means for
communication was through HTTP. The user had initiated this
communication through HTTP, and it was easy to extend this to
a dialog. With respect to the form owner, it was decided to use
SMTP, or email. Communication with a remote form owner was
easy, and at ARSC it was a simple matter to design an applica-
tion to read emailed data directly into a database, or to wherever
destined. Facility to import an existing form, and add to it from
a set of predefined constraints is provided.

Implementation Language

FPT performs the following major tasks: pattern matching to
decide whether data submitted by a form user satisfies
constraints against its form specified by the form owner, and
expression evaluation to decide whether a given data input item
submitted by the user satisfies an expressed relationship with
other input items as specified by the form owner. These expres-
sions are read in and executed at run time. Document fetching:
FPT receives no input other than URL encoded name=value
pairs. To return as output a variety of reconstructed forms. FPT
fetches form blanks through the HTTP protocol, and involves
tasks common to every Web client such as setting up a socket,
binding and connecting to it and document rebuilding. FPT
takes data submitted by a form user and reinserts this data, along
with possible error messages, into a blank form for use in recon-
structing the user's form. The first two tasks each require that
FPT be able to read in and execute at run time arbitrary regular
and general expressions. Hence FPT is written in Perl. Perl was
selected for the pattern matching and document rebuilding tasks.
Its capacity to read in at run time arbitrary expressions and trap
otherwise fatal errors when evaluating them made it ideal for the
expression evaluation task, and finally, the provision by Perl of

its own socket-handling procedures makes easy the implementa-
tion of document fetching.

Targeted Platforms

FPT interfaces both with Web clients and with Web servers.
With respect to Web clients, FPT was required to generate docu-
ments capable of being displayed correctly and attractively
across a wide range of clients ranging from simple char-
acter-based browsers to sophisticated multimedia browsers. To
promote portability only HTML tags that are a part of the HTML
2.0 standard are used for documents generated by FPT. FPT
requires web servers to be CGI 1.0 compliant so files such as
FPT are executed, rather than simply returned. FPT consults
these seven environment variables: 1. Http_referer, 2.
Remote_host, 3. Request_method, 4. Query_string, 5.
Script_name, 6. Server_name, 7. Server_port. Five of these
seven are checked by FPT only in the event that certain
name=value pairs are missing in the form data it receives. After
error-checking submitted form data FPT attempts to reconstruct
the form as it appeared to the user at the time of submission. To
do so, FPT fetches a blank copy of the form, since only the data
has been submitted to it. The URL of the form is usually
embedded in a hidden form field named 'FormURL'. If this
value has not been set by the form owner, FPT looks to see if
HTTP_REFERER has been set. The HTTP_ prefix of this envi-
ronment variable indicates that this is a value set by the client,
not the server, and yields the URL of the document on display
when the submit button was pressed; i.e., the form URL. Not all
clients set this value. Mosaic, for instance, does not set it for
forms. If the form owner has not supplied the form URL, and if
the HTTP_REFERER value has not been set, FPT proceeds
without the blank form, working just with the form data. Like-
wise, the other four of these five non-essential environment vari-
ables are consulted for assistance only when needed, and their
absence dies not cause FPT will fail. As for the other two envi-
ronment variables, Request_Method And Query_String, it is
necessary that at least one of these has been set. For method
POST, Request_Method needs to be set to POST, so that FPT
knows to look to STDIN for its input. For method GET,
Query_String needs to be set, as the input will then be found
there.

Security Considerations

Web servers commonly allow users to execute CGI applica-
tions, thereby opening the possibility that weaknesses in their
design can cause them to be exploited for purposes other than
those for which they were designed. CGI applications derive
their usefulness by returning to the client a virtual document
tailored to the client's request. This tailoring is generally guided
by data supplied by the client. Vulnerability arises when the
application naively executes a command supplying this data as
arguments. For example: consider the string argument system
("/bin/echo $ENV{'QUERY_STRING'}"); While this
command is intended to echo submitted data back to the client,
it can cause damage if the value of QUERY_STRING is:

CUG 1996 Fall

 Proceedings

261

Gotcha! \n rm * First "Gotcha!" is returned, followed by an
attempt at file deletion. FPT is expressly designed to accept
external snippets of Perl code. It is this facility, for accepting and
applying at run time arbitrary external regular and general
expressions for use in generating customized constraints and
error messages, that makes FPT of general utility, rather than a
special purpose handler for only certain known forms. By
design, FPT writes no files; data is returned to the form user
through HTTP, and to the form owner through SMTP (email).
With respect to the form user, an FPT failure means time wasted
preparing, entering, submitting the data, and loss of data itself.
To the form owner, an FPT failure means being deprived of
receiving data intended for him. However, an errant or mali-
cious snippet of imported code, when executed by FPT, has the
potential for inflicting upon the form owner all the damage that
the owner could inflict upon himself. In light of potential
damages, FPT is designed to permit only the importation and
execution of code read in from a companion file, named fpt.aux,
and only when that file resides in the same directory as FPT and
has in common the same owner as FPT. To deal with code
supplied by FPT's owner, and therefore assumed to be of benign
intent but which may possess syntax errors to cause a run time
error, the eval function in Perl is used. Code which is eval'd is
executed as a little Perl program within the context of the main
Perl program. Any run time errors are trapped, in which case
control is simply returned to the main program. Use of the
fpt.aux file thus provides secure access to auxiliary code and is
also a convenient means for supplying this code. Regular
expressions can be relatively short but general expressions may
be of arbitrary length and complexity. To embed such expres-
sions within a form field's name attribute is awkward and use of
fpt.aux file helps. The fpt.aux file provides a convenient place
to gather together reserved characters in HTML, such as "<",
">", and "&". For users unable or unwilling to create such a file,
FPT supplies sixteen built-in constraints consisting of regular
expressions for use in specifying certain commonly occurring
data types. Upon failure by FPT, the server returns an error
message to the user. The user in such a case would usually be
able to return to the form, but the data within it exists only in the
browser's memory and display. None of the browsers in the FPT
test suite offer any facility for saving this data to disk, or even
for printing it.

Constraint Types and Formats

The fpt.aux file, is designed to function as a repository of
expressions to be used in applying constraints and generating
error messages. fpt.aux is a list each item of which has the
following format: LABEL: CONSTRAINT EXPR: ERROR
MS EXPR: The 'LABEL:' tag supplies a name to be associated
with the constraint and error expressions following it. The label
name must be unique with respect to other listed labels, and must
also be a single valid Perl word (letters, digits, and the under-
score). The 'CONSTRAINT EXPR:' tag supplies a Perl expres-
sion for use in evaluating submitted form data associated with a
label. One of two types of expressions may be used: a regular

expression against which the associated data input item is
matched; or arbitrary Perl code to be eval'd as an expression. A
return value of zero indicates failure of the form data to satisfy
the constraint placed upon it. The 'ERROR MS EXPR:' tag
supplies a Perl expression for use in generating an error message
in the event an error in the data submitted by the user failed to
satisfy the constraint placed upon it. This Perl expression may
be arbitrary Perl code to be eval'd, or may be just plain text. The
'ERROR MS EXPR:' tag is optional; if not present, FPT will
supply a default error message.

Constraint Encoding

 FPT is primarily designed to check form data for errors. This
error-checking is based upon constraints specified by the form
owner. Certain characters within HTML are reserved and
cannot be used within a regular expression without escapement.
In order to avoid having to encode and decode these reserved
characters, and in order to employ a uniform procedure for spec-
ifying both types of expressions, labels are used for regular
expressions also. Labeled constraints are attached directly to the
name attribute of form fields. To distinguish labels from separa-
tors two short groups of characters whose purpose would be
clearly identifiable from their appearance are used. Two groups
were required to distinguish labels for regular expressions from
labels for general expressions, as both may appear attached to a
name. The following input field example, taken from the "Using
fpt.aux" help document, shows how both may be specified:
<input name = "SalesTax[RE]_Dollar?[GE]SalesTaxCode" size
= 5> The name attribute to this input field is 'SalesTax', and has
appended to it labels for both a regular expression ('_Dollar') and
a general expression ('SalesTaxCode'), separated from the name,
and from each other, by '[RE]' and '[GE]' respectively. The
labels themselves are required to be unique, and to consist of a
single valid Perl word. The '_Dollar' label is one of the built-in
labels recognized by FPT, and as with all such built-in labels, it
begins with an underscore in order to reduce the chances of
colliding with a form owner-generated label. For labels corre-
sponding to regular expressions, a trailing question mark signals
to FPT that it is to apply the constraint only when data is present.
For labels corresponding to general expressions, question marks
are not used, as general expressions presume some value has
been entered and are not evaluated otherwise. FPT offers two
modes of operation: a 'standalone' mode and an 'expert' mode.

Standalone mode

Standalone mode, functions without the fpt.aux file, and is
therefore capable of being used remotely. A form owner could
have FPT import his pre-existing form into FPT, and choose for
each input item of his form a constraint drawn from sixteen
built-in data types. Standalone mode requires nothing more of
form owners other than that they have a form. Users do not
need to install any software, nor know any programming.
Access to standalone mode is through FPT's welcome page. The
'UsingFptPrl.html' link on the welcome page returns a
document explaining how to use FPT to customize a form. The

262

CUG 1996 Fall

 Proceedings

document requests seven pieces of information for use in
customizing a form and FPT's actions upon it. The information
requested is:

• Form source URL (required): URL of the form to which the
owner wishes to add constraints required)

• Form owner's email address (required): email address to
which user data should be sent

• Form destination URL: new name for the transformed form
if desired

• Acknowledgement document URL

• Subject line for emailed form data: If left blank, data pairs
are returned to the owner, using default subject lines

• Subject line for emailed reconstructed form: If left blank, the
reconstructed form is returned to the owner, using default
subject lines

• Override button label: label to use for the forcible submit
button

If the submitted items are in good form, FPT fetches a copy
of the specified form, and goes through it replacing the action
URL to its own URL, embedding in hidden fields those items
submitted, supplying a mode code, and replacing all input fields
within the form with a menu widget listing sixteen predefined
data types: Anything, Integer ,Phone, URL Date, Letters, SSAN,
Word, Dollar, Name, State, Year, Email, Number, Text, Zip.
Each type is presented twice, once with a question mark and
once without. Choosing a data type followed by a question mark
indicates that input for that field is optional, but if present should
conform to that type. The data types chosen represent commonly
occurring data types in forms and are limited to sixteen (or thirty
two, with the optional types) simply because it was found that
specifying more than sixteen results in a widget larger than the
default browser window. Each data type is a label corre-
sponding to a regular expression for that type built into FPT.
The transformed form is returned to the form owner with an
explanation of how to proceed. Once the choices have been
made, the owner presses the submit button, which now reads
'transform'. FPT reads in the choices made, fetches the blank
form, and this time goes through the form appending any chosen
data type labels to the name attribute of the associated input
field. The transformed form is then returned to the form owner.
At this point, as the form exists only in the browser's window
and in the browser's memory, it is necessary for the form owner
to save the transformed form to disk if he/she wishes to reuse it.
Once this done, the process is complete. Data entered by any
user of this form will now be sent to FPT for preprocessing,
according to the constraints specified by the owner. Once
accepted, this data will then be emailed to the form owner in the
formats specified.

Expert mode

Standalone mode was designed to be easy to use, and the
simple data types it provides are sufficient for catching many
common errors of commission, and all errors of omission. But it

has three significant limitations: (1) only data types built into
FPT may be used. If the form owner has input fields for which
none of the supplied types are appropriate, there is no help for it,
(2) regular expressions are the only expressions used in evalu-
ating the form data. This means that only errors of form can be
caught, not errors of content, and (3) only input fields of type
'text' may be error-checked. Other input types, such as checkbox,
radio, and select are unaffected. This is because with these types
choices are presented to the form user, and the resultant value is
binary - on or off - according to whether the choice was selected
or not. Imposition of data types has no meaning with these items.
Expert mode overcomes these limitations, and allows for the
construction and evaluation of arbitrary expressions incorpo-
rating any or all of the submitted data. Expert mode uses a auxil-
iary code file, fpt.aux. Security concerns require that when used
in expert mode both fpt.prl and fpt.aux be downloaded and
installed in the form owner's server cgi directory. This allows
for sophisticated error-checking and for the generation of mean-
ingful and narrowly targeted error messages. However, use of
expert mode imposes two principal requirements upon the form
owner: (1) the file supplying the auxiliary expressions to fpt.prl
should be located in the same directory as fpt.prl, and be owned
by the same owner as fpt.prl, and (2) the form owner should have
a working knowledge of Perl. FPT is a Perl script, and constraint
expressions are eval'd as snippets of Perl code. The ability to
embed arbitrary Perl expressions is only useful to the degree that
one can generate them. Once fpt.prl has been installed, and
fpt.aux either downloaded or created, actual usage of FPT in
expert mode differs from standalone mode in two principal
ways. The chief difference is the use of fpt.aux in òexpertó
mode. fpt.aux supplies to fpt.prl the expressions which the form
owner has created. fpt.aux contains the list of labeled constraints
and list items that must conform to a certain format in order to
be read in by fpt.prl. The second difference is that in standalone
mode FPT performs the actual insertion of labels into the form,
whereas in expert mode if the form owner wishes to supply
labels other than those built into FPT then it must be done manu-
ally, with an editor. Instructions for creating constraints, listing
them in fpt.aux, and appending their labels to form field name
attributes, are given in the document UsingFptAux.html, along
with detailed examples.

Constraint Decoding

FPT is a general purpose forms preprocessor and is used by
specifying its URL for the action attribute in the opening form
tag, as in this example:

<form action = "http://www.arsc.edu/cgi/fpt.prl" method =
"POST"> When a form user presses the submit button, all data
entered into the form field containing that submit button is
collected by the browser, formed into a list of name=value pairs,
URL-encoded into a single whitespace-free string, and
forwarded to the action URL according to the specified method.
Two methods are currently available for returning form data,
'GET' and 'POST'. With method GET, the string is simply
appended to the requested URL. With method POST, data is

CUG 1996 Fall

 Proceedings

263

returned through STDIN. There are length limitations imposed
when appending data to a URL and method POST provides a
clean and general mechanism for returning data. FPT accepts
data submitted by either method. FPT passes the data to a simple
routine which decodes the data, and then to another routine for
reconstructing the name=value pairs, at which time any
appended constraint labels are identified and loaded into arrays
separate from the values and unencumbered names. Despite the
fact that FPT writes no files, expires between invocations, and is
totally stateless, it does operate in three modes, triggered by the
presence or absence of key name=value pairs. Two of these
modes are associated with its constraint-embedding function -
preparing a form for transformation, and then performing the
transformation - while the third is its default error-checking
mode, entered into in the absence of these key name=value pairs.
In error-checking mode, FPT first looks to see if there are any
constraint labels other than the built-in constraints. If so, and if
deemed secure, the contents of fpt.aux are read in. In either
event, the actual expressions corresponding to whatever labels
have been encountered are loaded into associative arrays. FPT
then steps through the values array. If a regular expression is
associated with a value, then the value is matched against it,
within the context of an eval, in order to trap any run time errors.
If a general expression is found, it is likewise eval'd. In either
case, a return from eval with value 0 causes the associated error
message expression to be eval'd. If there is an evaluation error,
or if no error expression has been supplied, FPT then generates
a default error expression, which identifies the item found in
error and supplies the expression which failed to evaluate. Once
the values have been exhausted, errors tallied, and generated
error messages loaded into arrays, FPT fetches a blank form for
reconstruction. The name=value pairs also generated by FPT are
designed primarily to be read by scripts, which may then load
this data into a database, or otherwise manipulate the data
without human intervention. When errors in form data are
encountered, FPT returns to the user a reconstructed form in
which the data has been kept intact and errors flagged where they
occurred. Also present (unless the form owner has specifically
disabled this feature) is a forcible submit button, whereby the
user may resubmit his data and bypass error-checking. The
provision of this button spares the user the frustration of
constantly having his data bounced back to him in situations
where the error may lie with the constraint, rather than the data.
For example unanticipated data formats, as with a foreign postal
code for a field expecting a ZIP code. Communication with the
form user is exclusively through HTTP. When data is finally
accepted, either because it was found to be free of errors or was
forcibly submitted, an acknowledgment document is returned to
his browser. In the absence of an acknowledgment document
specified by the form owner, FPT generates and returns a default
acknowledgment. Communication with the form owner is
exclusively through email. This provides a general mechanism
for returning data in a machine-readable form, and allows for
remote operation of FPT. The form owner can receive either the

user's reconstructed form or the decoded name=value pairs, or
both. A number of errors other than those found in user data
may be encountered during this processing. These include fetch
failures, as with problems encountered trying to fetch a blank
form, or an acknowledgment document: constraint failures, as
with ill-formed expressions, or labels for which no corre-
sponding expressions can be found; I/O errors; and others. A bit
vector 32-wide is used to signal the presence or absence of all
errors, and error messages generated are stored in arrays created
for that error type. In the event of errors other than user data
errors, FPT attempts to return what data it can while shielding
the user from error messages generated by conditions beyond his
control. The form owner, however, receives full reports on all
error conditions and messages encountered.

Future Work

The implementation of FPT as a CGI application was the only
choice available at the time FPT was designed. Today,
Java-capable browsers can download snippets of Java code,
'applets', for immediate execution. This means that FPT could be
rewritten as an applet to provide client-side preprocessing, thus
saving valuable bandwidth and improving response time for the
form user.

References

[1]

 Programming Perl,

Larry Wall and Randall Schwartz. O'Reilly and Associ-
ates,

1991

.

[2]

The Tao Of AppleScript

, Derrick Schneider, Hans Hansen, and Tim Holm-
es

,

1994

Appendix

Feline Obedience Academy
Does your cat lack manners?
Enroll him in the following classes to learn these basic commands:

class title cost prerequisite
FOA 101 Come here $30 none
FOA 102 Get off the table $30 none
FOA 201 Fetch me a drink $50 FOA 101

Total Cost:

Bill:

Address:

 Register Now!

 Reset
Fig 1. Demo Form Prior to Transformation

264

CUG 1996 Fall

 Proceedings

Feline Obedience Academy
Does your cat lack manners?
Enroll him in the following classes to learn these basic commands:

class title cost prerequisite
FOA 101 Come here $30 none
FOA 102 Get off the table $30 none
FOA 201 Fetch me a drink $50 FOA 101

Total Cost: Elmer Fudd

Bill: $60

Address: ?(1)

Error #1 Class FOA 101 ‘Come here’ is a prerequisite for:
 Class FOA 201 ‘Fetch me a drink’

Error #2 - Addition error: $30 + $50 = $80 (not $60).

Error #3 - Form is incomplete without an entry for the ‘address’ item.
(in field marked ‘? (1)’)

 Register Now!

 Reset
Fig 4. Error handling in Expert Mode

Feline Obedience Academy
Does your cat lack manners?
Enroll him in the following classes to learn these basic commands:

class title cost prerequisite
FOA 101 Come here $30 none
FOA 102 Get off the table $30 none
FOA 201 Fetch me a drink $50 FOA 101

Total Cost: Elmer Fudd

Bill: $60

Address: ?(1)

Error #1 - For the ‘total cost’ field instead of ‘Elmer Fudd’ a dollar
amount is expected with optional decimal point and dollar sign.
Examples: $183.54 1000 $.78 0

Error #2 - For the ‘bill to’ field instead of $60’ a proper name is
expected, meaning a string of letters with optional spaces, periods,
and hyphens.

Examples: J.J. Smith Baker-Baker

Error #3 - Form is incomplete without an entry for the ‘address’ item.
(in field marked ‘? (1)’)

 Register Now!

 Reset
Fig 3. Error handling in Standalone Mode

Feline Obedience Academy
Does your cat lack manners?
Enroll him in the following classes to learn these basic commands:

class title cost prerequisite
FOA 101 Come here $30 none
FOA 102 Get off the table $30 none
FOA 201 Fetch me a drink $50 FOA 101

Total Cost: Dollar

Bill: Name

Address: Anything

 Register Now!

 Reset
Fig 2. Demo Form Undergoing Transformation

LABEL: _Anything
 CONSTRAINT EXPR: \S+
 "Form is incomplete without an entry for the
 \'$Names[$i]\' item. (in field marked '$Values[$i]')"

 LABEL: _Dollar
 CONSTRAINT EXPR: ^\s*\$?\s*(\d+\.?\d*|\.\d+)\s*$
 ERROR MS EXPR:
 $Str = ($Values[$i] =~ m|(\? \(\d+\))|) ? "(marked with '$1')" :
 "instead of '$Values[$i]'";
 "For the '$Names[$i]' field $Str
 a dollar amount is expected, meaning a string of digits with
 optional decimal point and dollar sign.
 Examples: \$183.54 1000 \$.78 0"

 LABEL:_Name
 CONSTRAINT EXPR: ^\s*[-a-z.][-a-z.\s]*$
 ERROR MS EXPR:
 $Str = ($Values[$i] =~ m|(\? \(\d+\))|) ? "(marked with '$1')" :
 "instead of '$Values[$i]'";
 "For the '$Names[$i]' field $Str
 a proper name is expected, meaning a string of letters with
 optional spaces, periods, and hyphens.
 Examples: J.J.Smith Baker-Baker von Neumann"
Fig 5. Sample of Regular Expressions

CUG 1996 Fall

 Proceedings

265

LABEL: DemoPrerequisite
CONSTRAINT EXPR: defined($FormData{'come'})
ERROR MS EXPR: local($NineSpaces) = ' ' x 9;
 "Class NOA 101 ‘Come here!' is a prerequisite for:\n
$NineSpaces Class NOA 201 ‘Fetch me a drink!'"

LABEL: DemoSum
CONSTRAINT EXPR: local($Total);
$Total = $FormData{'total cost'};
$Total =~ s/\s*\$?([\d|.]*)$/sprintf("%d",int($1))/e;
$Total == 30 * defined($FormData{'come'}) +
 30 * defined($FormData{'down'}) +
 50 * defined($FormData{'beer'})
ERROR MS EXPR: local($Class,$Cost,@Stack,$Total);
if (defined($FormData{'come'})) { $Total += 30; push(@Stack,'$30');
}
if (defined($FormData{'down'})) { $Total += 30; push(@Stack,'$30');
}
if (defined($FormData{'beer'})) { $Total += 50; push(@Stack,'$50');
}
if ($#Stack < 0)
{ "No classes selected."; }
elsif ($#Stack > 0)
{
 $Expr = join(' + ',@Stack);
 "Addition error: $Expr = \$$Total (not $FormData{'total cost'})";
}
else{
 defined($FormData{'come'}) && ($Class = "NOA 101") ||
 defined($FormData{'down'}) && ($Class = "NOA 102") ||
 defined($FormData{'drink'}) && ($Class = "NOA 201");
 $Cost = pop(@Stack);
 "Tuition for $Class is $Cost (not $FormData{'total cost'})";}
Fig 6. Sample of General Expressions

