

CUG 1995 Spring

Proceedings

103

Modeling Serverized UNICOS on the T3E Architecture

Bruce Schneider,

Cray Research, Inc., System Performance and
Analysis Section, Eagan, Minnesota

Introduction

The UNICOS operating system is being reorganized into a
microkernel based modular distributed operating system called
UNICOS/mk. This serverized UNICOS is intended to support
the T3E massively parallel system. Running a distributed oper-
ating system on a distributed architecture offers many complex
performance challenges. This presentation details three areas of
the system we are modeling to gain a better understanding of
their associated performance. The three areas of focus are: T3E
interconnect, SCX channel and UNICOS/mk I/O.

T3E Hardware Network Interconnection

One of the lowest levels of communication is the T3E hard-
ware interconnection network. This interconnection network
provides communication among the PE’s. The network is a 3D
torus with possible partial planes. The speed of this interconnect
could have an impact on a number of performance concerns.
We created a model of the network interconnection with the
purpose of looking at a number of potential concerns.

One area of concern was if the network overhead would
affect the possible placement of UNICOS/mk servers. Portions
of the distributed operating system can be spread across
multiple PE’s. This implies that there is a potential for large
system communication occurring between PE’s. There was a
concern about the overhead of communicating between servers
residing on various PE’s and if the placement of these servers
on individual PE’s would have an impact upon performance.
Related to server placement was the concern if the SCX I/O
location could be affected due to network overhead.

The message load generated by the operating system for
communicating among the PE’s was of interest. The message
load on the interconnect was looked at by generating a number
of message scenarios where PE’s sent control packets to other
PE’s. Messages were sent from: a single PE to all PE’s, all PE’s
to a single PE, all PE’s to all PE’s, all PE’s to the nearest
neighbor PE, all PE’s to a PE neighbor two hops away, and etc.

One outcome of the model was to verify the hardware
routing table information and optimization. Actual routing table
information was used in the model and by running the model,
blips would have occurred if the tables were not correct.

Another area of use for this model was as a low level compo-
nent of the UNICOS/mk I/O model. Since I/O involves a large
number of PE to PE communication, the network overhead
should be factored in.

The preliminary results of this modeling showed that the
hardware message latencies are not a factor in sever or SCX
placement. The overhead of the network is minimal no matter
the distance or number of hops associated with the message.
Also, the system interprocessor communication calls do not
significantly impact network load. The amount of PE to PE
communication occurring occupies a very small percentage of
the total network bandwidth available. The available bandwidth
on the network is more than capable of handling data transfers
along with the PE to PE system communication.

SCX Channel

The SCX channel is based on a pair of unidirectional,
counter-rotating rings. SCX performance is of major concern
since it is the channel by which all communication from the
mainframe to peripherals is made. The SCX channel provides a
great deal of flexibility, both in how systems are connected, and
how data transfers are performed. This same flexibility,
however, significantly complicates the performance model.
Multiple transfers, involving multiple clients, can be simulta-
neously active on the same channel. The performance of a given
transfer is affected not only by the topology and other transfers
active on the channel, but by several factors specific to the
transfer in question: which node is mastering the transfer, the
speeds of the client ports involved, and whether the transfer is
being performed using reads or writes.

The model we are creating is analyzing the performance
based upon: traffic patterns and routing, transfer size, client port
speeds and client service rates. The goal is to make sure the
SCX channel is capable of handling all the data and communi-
cation traffic needs of any possible customer workload. The
model should also be able to aid in determining the appropriate
SCX configuration for various sizes and numbers of periph-
erals.

UNICOS/mk I/O

On the software side, I/O is one of the most critical perfor-
mance characteristics of a system. Because of this, we areCopyright © Cray Research Inc. All Rights Reserved

104

CUG 1995 Spring

Proceedings

modeling the software I/O path to look for potential system I/O
bottlenecks. The goal is to investigate I/O performance and
scaling on a distributed operating system. As the number of
PE’s increase, can the current I/O implementation and the NC1
filesystem support the I/O demands? We have the basic model
completed and are running software I/O design alternatives
through the model to look for ways to improve I/O perfor-
mance.

The model uses I/O path trace information from the
UNICOS/mk running on the T3D MPP. We validated the model
by comparing an actual T3D I/O test run to a modeled run. The
modeled results showed an error of less than 10% compared to
the actual run. This low margin gave us confidence in the ability
to do design prediction. We then took the T3D timings and
extrapolated to the T3E. From there, we have run a series of

“what if’s” related to design ideas. Example I/O design ideas
include: having all the I/O servers on one PE, splitting the I/O
servers onto multiple PE’s and creating multiple I/O servers.
We have looked at performance if some of the I/O communica-
tion overhead was decreased. In all cases we have been able to
predict performance of design ideas without having to actually
spend man-months implementing code.

Summary

Putting a serverized UNICOS operating system onto a
massively parallel system presents many challenges related to
performance. The above examples are just some of the areas we
have focused on. We are working to build the highest possible
performance into the design of the system by modeling key
aspects of the system.

