

116

CUG 1995 Spring

Proceedings

Improving Recoverability by Utilizing DMF

Nicholas P. Cardo,

Sterling Software, Inc., Numerical Aerodynamic
Simulation Facility, NASA Ames Research Center, Moffett Field, CA

ABSTRACT:

The Cray Data Migration Facility (DMF) can be utilized to improve system re-
coverability after fatal failures. The High Speed Processors (HSP) group at the Numerical Aero-
dynamics Simulation (NAS) Facility at NASA Ames Research Center have developed utilities to
take advantage of DMF to reduce recovery time from a database or filesystem loss. By taking dai-
ly snapshots of the databases and archiving them without stopping DMF, recovery time from a
database loss is reduced. Throughout the day, files are forced to become dual resident. Since the
data resides on DMF managed tapes, it is only necessary to backup the inode, not the data. On
our 150GB filesystem, this caused a reduction in backup time from 8 to 12 hours down to under
2 hours and a reduction in tapes from over 50 down to under 10. This allows us to have a more
accurate representation of the filesystem on tape. Also, these short backups allow for faster re-
covery time when filesystems need to be remade. This paper will discuss how these utilities work
and how they are utilized to reduce our down time during a fatal catastrophe.

Cray Research’s Data Migration Facility has become an inte-
gral part of many high performance computing centers. An area
of concern at the NAS facility is the ability to recover the DMF
databases and the ability to perform an accurate restore of the
large migratable filesystems. In addition to accuracy, the mean
time to recovery was an important driving factor.

1 Database Backups

Over the course of a day, thousands of files can be altered.
Some files may have been deleted while others updated. In
either case, a database update is made to reflect the change in
the file. Additionally, the transaction of updating the database is
appended to a journal file.

1.1 Standard Recovery

The journal file can be applied to an old copy of the database
in an attempt to bring it up to date. The process to complete this
is:

dmdump dmdbase.dat > oldtxt

dmdjournal -t oldtxt -j oldjrnl -o newtxt

dmdbase -c newtxt

However, if the last database backup is a month old, there are
a lot of journal entries to apply to the database. This is a time
consuming process which increases the down time. A better
approach would be to make database backups on regular inter-
vals, thereby keeping the journal files small.

1.1.1 DMF 2.0 Solution

At this and earlier releases, the only way to start a new
journal file is to restart DMF. With a large database, this was
taking almost 25 minutes to complete. This outage was not
acceptable and a new solution sought.

A new utility,

dmaudit

, was introduced at this release. The

dmdaemon

 was updated to support the functions of this utility.

dmaudit

 works by sending a request to the

dmdaemon

 to
make an accurate copy of the databases. A small local modifi-
cation was made so that another local command,

dmsnap

,
could send a request to the

dmdaemon

 to snapshot the data-
bases as well as start a new journal file.

The local modification of 27 lines, provided the capability of
obtaining an accurate copy of the databases as well as start a
new journal file without having to restart DMF. Eventually,
design SPR 78731 was opened with CRI.

A problem arose where every so often the

dmdaemon

 would
hang. The problem was traced to some signal processing code
within the daemon. By adding the local modification, the
existing DMF problem became visible. SPR 66232 was opened
against this problem and a fix provided by CRI.

1.1.2 DMF 2.1 Solution

The concepts presented to CRI in SPR 78731 were begin-
ning to be implemented. At this release, a new journal file is
automatically started for each day. This solved the problem of
having to restart DMF in order to start a new journal file.
However, there still remained the need for a command to
initiate the safe duplication of the DMF databases. The locally
developed command

dmsnap

 is still needed at this release.

1.1.3 DMF 2.2 Solution

All the components for making a safe backup of the data-
bases as well as the restarting of journal files are now in place
and delivered with DMF. A new command,

dmsnap

, was
introduced at this release and will cause the

dmdaemon

 to
safely snapshot the databases. The journal file is automatically
restarted at midnight. This provides a journal file that represents

CUG 1995 Spring

Proceedings

117

the activities of a single day. All this can be accomplished
without interrupting production operation.

1.2 Performing the Database Backup

Ideally, the database backup and the start of the new journal
file should coincide with each other. Since the new journal file
starts at 00:00 each day, the database backup should also be
performed at 00:00 each day. This provides an accurate copy of
the database with a relatively small journal file to apply in the
event of a catastrophe.

A script was written that executes the

dmsnap

 command
and copies the databases to tapes stored in our robots.

1.3 Summary

This solution gives us the luxury of having an accurate copy
of the DMF databases on tape while keeping the size of the
journal files to recover from small. The process greatly mini-
mizes the down time due to a catastrophic database loss. At
worst case, the copy of the database used for recovery would be
24 hours. As an added safety precaution, 7 days worth of data-
bases are kept in robotic storage and are automatically cycled
through.

2 Reducing Filesystem Backups

Performing filesystem backups are an important aspect of
recoverability. The ability to accurately restore the filesystem is
the key to recoverability. As filesystems grow, so does the
length of time to perform a filesystem backup. Since it is not
practical to shutdown to single user mode to perform system
backups, a way of keeping the filesystem backups short is
needed.

2.1 Short Backups

Short backups can be defined with two characteristics. The
first is the length of wall clock time to produce the backup and
the second is the amount of physical secondary media used for
the backup.

Our 150 gigabyte filesystem has approximately 1 terabyte of
data managed by DMF. It would require 50 - 60 3490E tapes
and 8 - 12 hours to complete the backup. Due to the long dura-
tion of performing the backup, upon completion the backup was
no longer an accurate representation of the filesystem. Over the
course of 8 - 12 hours, the filesystem can drastically change.
Also, the use of 50 - 60 tapes for one filesystem introduces
potential logistical problems with the management of the tapes.
Additionally, the length of time to perform a restore is depen-
dant on two factors, the number of files and the number of tapes
to read. The length of time to restore from 50 - 60 tapes was just
too long, increasing down time.

2.2 Goals

A task was created to address the problem of performing
backups on large filesystems. For an accurate backup of a large
volatile filesystem, it was determined that the backup should
complete within 2 hours. Also, for improved recoverability, the
number of tapes would need to be reduced. Assuming 7 minutes

per tape in streaming mode, this would limit the dump to under
18 tapes.

The task focused on a way to off-load the large amounts of
data normally backed up manually on a nightly basis, onto
DMF. Three requirements were formalized

1. The backup should complete in under 2 hours.

2. On-line resident files would still be on-line.

3. Not affect normal production processing.

The general idea is that to the users, there would appear no
change in the residency of their files. This meant that force
migrating the filesystem and using dmfill was not acceptable.

2.3 Design

The conceptual design was a straightforward process of
creating a list of files to migrate, migrate the data to tape, then
unmigrate the same files.

2.3.1 Creating Migration List

Some filtering was necessary for the creation of the migra-
tion list. The program

dmmighit

 was designed to scan the
inodes of a filesystem and produce a list of files, based on inode
information, to be migrated. Since an inode scan is used, the list
could be produced within 4 minutes. Because normal produc-
tion could not be impacted, any file currently being used could
not be migrated. Also, since the file would end up on-line, eval-
uating

.keep

 files would not be necessary. As a result, the
following guidelines are used for the selection of files to
migrate. Any file meeting all the rules will be migrated. The
selection rules are:

1. The file must be

S_IFREG

.

2. The size of the file must be greater than or equal to

MIN_DM_SIZE

.

3. The file must not have a handle.

4. The file must not have been accessed in the last hour.

5. The file must not have been modified in the last hour.

6. The owner must be a valid user.
Enough information needed to be written to the migration

list to allow for proper migration and unmigration of the file.
The entry in the migration list is:

uid|gid|device|inode|generation|size

The information produced from

dmmighit

 can be passed
on to the next step, migration.

2.3.2 Migrating the Data

The migration process is actually two steps. The first step is
to verify that the entry read from the migration list is still valid.
The second step is to send an actual migration request to the

dmdaemon

.
The system call

dmofrq

 works two sets of command argu-
ments. If the command argument is specified in lower case
letters, then it is expecting to have a pathname supplied as the

118

CUG 1995 Spring

Proceedings

file pointer argument. If the command is specified in upper case
letters, then the file pointer argument is the structure

dm_dvino

 which contains the device and inode number for
the file. By using the command “S” (status) with

dmofrq

, it is
possible to obtain the

stat

 structure for the device and inode
specified. Both the device and inode numbers are available
from the migration list. An example of using dmofrq in this
manner would be:

struct dm_dvino dvi;
struct stat stb;

dvi.dm_dev = device_number;
dvi.dm_ino = inode_number;
dmofrq(&dvi, ’S’, &stb, NULL, 0);

This will return the

stat

 structure for the inode specified by

inode_number

 on the device

device_number

. This
effectively executes the

stat

 system call on a file without
knowing the pathname to the file, only the inode number. This
can be useful in other areas as well, not just for DMF.

Having the

stat

 structure, some preliminary checks can be
performed before building the daemon request. Two simple
checks are to see if the size of the file has changed or if the
owner of the file has changed. If either of these have changed,
it could indicate that the file is being updated or that the inode
has been reassigned to another user. No action is taken against
any file suspected of being active or changed. The data in the
inode must match the data in the migration list in order to be
considered for migration.

After verifying that the file should still be migrated, a
daemon request can be formulated. The first step is to get the
Media Specific Processes (MSP’s) to use for the backup request
for the

dmdaemon

. To obtain this information, the

dmcom

library function

dmmfunc

 is used. This information is neces-
sary in order to send the request to the

dmdaemon

. The

dmmfunc

 call is as follows:

int nc; /* number of copies */
int pmsp, smsp; /* primary/secondary msp */
int archmed; /* archive media from udb */

dmmfunc(&stb,archmed,nc,&pmsp,&smsp);

The

stb

stat

 structure was filled in from the call to

dmofrq

 to stat the inode as previously discussed.
It is necessary to perform some preliminary processing prior

to sending the request. Having gathered all the information, it is
necessary to construct the migration request. The following
code builds the migration request packet,

mptr

, sends the
request to the daemon and reads replies.

struct migreq *mptr = NULL;
mptr->path[0] = ’\0’;
mptr->devno = dvi.dm_dev = devno;
mptr->inode = dvi.dm_ino = inode;
mptr->gen = gen;
mptr->msp_bitmask = 1 << (pmsp - 1);
if (smsp)

mptr->msp_bitmask |= 1 << (smsp - 1);

mptr->flags = 0;
mptr->pathlen = strlen(mptr->path);
size = (size + BSIZE - 1) / BSIZE;
send_request(DRQ_BACK, mptr,

LMIGREQ(mptr), size, port);
do_some_replies();

When enough data has been sent for migration to fill a tape,
the MSP’s will begin mounting tapes and writing the data to
tape. The process of migrating the files in the migration list is
the sole purpose of the program for the second step,

dmmigput

.

2.3.3 Unmigrating the Data

The process of unmigrating a file is much simpler than the
process of migrating a file. A recall request is constructed and
sent to the daemon for processing. All components for
constructing the recall request are available in the migration list.
The following code segment constructs the recall request and
sends it to the daemon for processing.

static struct dmn_req {
struct recreq recreq;
char buffer[(2 * FILENAME_MAX) + 1];

} dmn_req;

dmn_req.recreq.devno = devno;
dmn_req.recreq.inode = inode;
dmn_req.recreq.gen = gen;
dmn_req.recreq.msp_bitmask = 0;
dmn_req.recreq.flags = 0;
dmn_req.recreq.pathlen = 0;
dmn_req.recreq.path[0] = ’\0’;
send_request(DRQ_RECL,&dmn_req,

LRECREQ(&dmn_req.recreq),0,S_DMP_DMF0);
do_some_replies();

This functionality of recalling migrated data based on the
migration list was built into the utility

dmmighit

. A recall
request is issued for each file in the migration list.

2.3.4 dmmig

A controlling script,

dmmig

, was written to execute the three
steps. The first step is to execute

dmmighit

 to produce a
migration list.

The second step is to execute

dmmigput

 to send backup
requests to the

dmdaemon

 for each file in the migration list.
Since

dmmigput

 is only sending requests to the

dmdaemon

,
it will complete before the MSP’s complete the migration of
data to tape. Because of this, it is necessary to check for when
the request pipe,

dmd.req.pipe

, is empty as well as when all

dmtpput

 processes have completed. Recalling data prior to
this will cause backup requests to be cancelled.

Once the request pipe,

dmd.req.pipe

, is empty and all

dmtpput

 processes have completed,

dmmigget

 can be
executed, which sends recall requests to the dmdaemon. Since
the data should still reside in the .dmpre directory, the data
blocks are just reassigned back to the original inode; no tapes
are mounted. At this point the data blocks reside on both tape
and disk, making the file dualstate. By using the -a parameter on

CUG 1995 Spring Proceedings 119

the dump command, only inode information is dumped for
dualstate files. The end result is that to the user, there appears
no change in the files residency.

2.4 Summary
By utilizing dmmig, backups have been successfully

reduced. A full backup of the filesystem typically completes in
under 90 minutes and requires 6 tapes. The shortest backup has
been 45 minutes and 3 tapes. Another benefit was achieved by
utilization of this utility. It is estimated that the control room
staff have gained back 198 man hours each month.

3 Improved Recoverability

The driving force behind both utilities was to improve recov-
erability in the event of a catastrophe as well as reduce recovery
time.

The first utility dmsnap, reduces our recovery time by
making daily snapshots of the databases and storing them on
tape. This not only insured that a current copy of the databases
are available but that they can be restored to full production in
a short period of time. This is due to the fact that only one
journal file needs to be processed. Additionally, this can be
accomplished without impacting regular production. We have
increased our ability to recover from a disaster by keeping seven
days worth of databases on tape. Although it is hoped that the
copies made by this utility are never needed, it is a comfort and
luxury that are easily afforded.

The second utility, dmmig, has proven to be a valuable tool.
Our mean time to recovery has been drastically improved as
well as reducing the impact on staff. It is estimated that the
recoverability of this filesystem was increased by 91%. With a
time savings of 198 man hours per month, the equivalence of 1
person has been gained back over a year. The logistical prob-
lems with maintaining vast amounts of backup tapes has also
been reduced. Since our site makes 2 copies of the DMF data,
an additional margin of safety has been achieved.

The safeguarding of research data is a high priority. The
combination of both utilities provides us with an easy and quick
recovery path. These utilities have strengthened our commit-
ment to providing safe data storage for our user community.

4 Lessons Learned

Although we are safely and effectively running these utilities
in production today, there were obstacles that needed to over-
come.

The dmsnap utility, available with DMF 2.2, raised the
question of when to take the snapshot. The journal files are
automatically restarted at 00:00 each day. By running dmsnap
at 00:01 each day, any updates to the database are confined to 1
journal file. Under heavy DMF activity when the dmsnap is run,
it is possible that the snapshot could be internally delayed by the
dmdaemon. Under this condition, it may be necessary to use 2
journal files to perform proper recovery. But recovering from 2

days worth of journal files is much more beneficial than recov-
ering from a whole months, or more, of journal entries.

Although the design of the dmmig tools is straight forward,
there was a side effect that required resolution. DMF utilizes a
single pipe to communicate to the dmdaemon. As with
dmmctl, it is possible with dmmigput and dmmigget to fill
the pipe causing delays in normal user activity. These delays
can be as long as an hour, making for dissatisfied users. Three
steps were taken to overcome this problem. The utility
dmmighit accepts as a command line parameter, the number
of files to migrate. This reduces the load on the dmdaemon.
Additionally, running dmmig multiple times throughout the
day also reduces the number of requests to process at once. An
analysis of file sizes provided us the means to set
MIN_DM_SIZE effectively. The combination of these steps
reduced the impact of running dmmig. This utility is in produc-
tion on two systems. One system migrates approximately 3000
files each day. The second system migrates approximately 1500
files each day. Both system run dmmig 3 times a day.

5 What Else is Needed

The integration of the dmsnap command gives administra-
tors the ability to obtain an accurate and safe copy of the DMF
databases without stopping DMF. The internal workings of
performing the snapshot will idle DMF activity before actually
copying the databases. Meanwhile, requests can queue up. This
functionality can be harnessed for another application, database
compressions.

If a command were available that worked similar to
dmsnap, database compressions could be performed without
stopping the dmdaemon. The main advantage of this is that
normal production would not have to completely stop. The
basic design would incorporate 4 steps:

1. Idle DMF activity.

2. Compress the databases.

3. Install the compressed databases.

4. Resume normal processing.

This is currently under investigation.

6 Conclusion

Disaster recovery capabilities are never fully appreciated
until disaster strikes. With a good recovery plan and well
planned steps for recovery, the pain and damage can be mini-
mized. With high performance computing, every hour of down
time is an hour per processor of lost computing. Also, lost data
means lost research. Every computing center needs to plan for
a disaster, and hopes it never comes...

