

CUG 1995 Spring

 Proceedings

153

UNICOS/mk: A Distributed Operating System with
Single System Image

Gabriel Broner

, Cray Research, Inc., 655F Lone Oak Dr., Eagan, MN 55121

ABSTRACT:

UNICOS/mk is a modular distributed operating system intended to support future
Cray distributed architectures, including MPP systems, clusters, and hybrid systems. A feature
of UNICOS/mk is that it offers both users and applications the "view" of a single system (Single
System Image or SSI). At the same time, the complexity of dealing with a parallel architecture is
hidden inside the operating system.

1 Introduction

This paper offers a brief high level overview of the architec-
ture of the UNICOS/mk operating system, emphasizing one
aspect of it: its Single System Image. Single System Image (or
SSI) is discussed in three "planes": the user view, the applica-
tion view, and the system view.

The rest of this paper continues as follows: Section 2
contains the overview of the UNICOS/mk system, Section 3
discusses Single System Image and Section 4 offers the conclu-
sions.

2 The UNICOS/mk Operating System

UNICOS/mk is the new operating system developed at Cray
Research. It is a modular distributed operating system,
designed to support the new distributed Cray architectures,
including future Massively Parallel machines and clusters of
machines.

The UNICOS/mk system is compatible with the UNICOS
system [UNIC95], so users and applications need not be aware
of the system's internal changes.

Internally, different from the "monolithic" UNICOS system,
the UNICOS/mk system has been structured as a number of
smaller components or "servers". Each server implements a
well-defined portion of the operating system, which allows for
simpler development and maintenance, and permits to support
distribution in a more natural way. The structure of the
UNICOS/mk system can be viewed in Figure 1.

The

microkernel

 permits abstracting machine dependencies.
It implements memory management, cpu scheduling and
inter-process communication (IPC).

The

Process Manager (PM)

 implements the UNICOS inter-
face. It traps all system calls, it services (by itself) the

process-related ones, and it forwards I/O-related and other
system calls to the appropriate server.

The microkernel and the Process Manager have been origi-
nally adopted from the CHORUS MiX system [CHOR92]. The
Process Manager has been extensively modified to offer the
UNICOS interface (as opposed to SVR4) and to support the
new large-scale distributed Cray architectures (MPPs).

Most other servers have been adopted from the UNICOS
system. For example the File Server contains the UNICOS file
system code. Additional code, which we call the "wrapper",
turns the file system code into a self-contained server.

In a similar way, the Disk Server contains the UNICOS disk
drivers; the Packet Server, the UNICOS IOS/packet communi-
cation; the Socket Server, the UNICOS TCP/IP code; and the
Network Device Server, the networking drivers.

To illustrate how the servers "work together", let's cover a
few UNICOS/mk system calls:

•

getpid

,

fork

,

wait

 and

exit

 are handled by the Pro-
cess Manager (See Figure 2).

Figure 1: UNICOS/mk Architecture.

154

CUG 1995 Spring

 Proceedings

•

sbreak

 is handled by the Process Manager in conjunction
with the microkernel (See Figure 3).

• A disk

read

 is received by the Process Manager, sent to the
File Server, from there to the Disk Server, "down" to the
Packet Server and "out" to the disk in the I/O Subsystem
(See Figure 4).

• A network

send

 goes from the Process Manager to the
Socket Server, the Network Device Server, the Packet
Server, and out to the network via the IOS (See Figure 5).

The UNICOS/mk operating system will run on a variety of
Cray platforms. Figures 6, 7, 8 and 9 show how the system is
laid on a single node system, an MPP, a cluster, and a "hybrid"
system.

3 Single System Image

Single System Image, or SSI, refers to the ability of a
Distributed Operating System to appear to users and applica-
tions as a single-node operating system. The UNICOS/mk
operating system offers the image of a single system to users
and applications, hiding the complexity of the distributed archi-
tecture within the operating system.

Figure 2: Example System Call:

getpid

Figure 3: Example System Call:

sbreak

Figure 4: Example system Call:

read

Figure 5: Example system Call:

send

Figure 6: UNICOS/mk on a Single Node System

CUG 1995 Spring

 Proceedings

155

3.1 Single System Image: The user view

From a user perspective, a distributed hardware platform
running UNICOS/mk appears no different than a single-node
system running UNICOS. Users login to the "system", obtain a
shell and start applications. In reality, these applications can be
running "transparently" on different nodes of an MPP system.
(See Figure 10).

For example if a user types:

ls | grep x

ls

 could run on one node and

grep

on another one. The
output will come to the screen. If the user now types CTL-C,
both processes will be "killed", and if the user types CTL-Z,
both processes will be put in background. Again, from a user
perspective, this is no different than a single-node system.

3.2 Single System Image: The application view

From an application point of view, the UNICOS/mk system
appears no different than the UNICOS system. Applications
running on any of the nodes of the distributed system have the
same view of processes, files, pipes, sockets, etc.

For example, a process can create (

fork

) a child, communi-
cate with it using pipes, access the same files, and send signals
to it, just like if they were on the same node. In actuality the two
processes can be running on different nodes.

Even applications that were not intended to work on a
distributed environment can benefit from Single System Image.
For example 'nmake' is the UNICOS utility used to build appli-
cations. Typically, nmake starts a number of compilations in
parallel to build a large application. Nmake on an MPP system
running UNICOS/mk can potentially start each compilation on
a separate MPP node, taking immediate advantage of the MPP
parallelism. (See Figure 11).

Figure 7: UNICOS/mk on an MPP System

Figure 8: UNICOS/mk on a Cluster

Figure 9: UNICOS/mk on a Hybrid System

Figure 10: Application Running on UNICOS/mk

156

CUG 1995 Spring

 Proceedings

3.3 Single System Image: The system view

The purpose of Single System Image is to make things
simpler for users and applications. It is inside the Operating
System where the complexity of providing the illusion of
running on a single-node system resides.

Single System Image is created by the Process Managers.
From a microkernel perspective, each node is independent of
each other. The Process Managers, on the other hand, cooperate
to create the "illusion" of a single system.

For example, an

exec

 system call can be turned into a
"remote exec" by the Process Manager starting a new process
on a different node. Later, a

kill

 system call to send a signal
to the new process will be turned into a "remote kill" by the
Process Managers. (See Figure 12).

Besides process-related functions, the UNICOS/mk system
offers a unified view of files, pipes, devices and sockets. The
way this is implemented is that all Process Managers talk to the
same root File Server, which implements the "/" file system and
pipes. The root File Server "points" to the same subsequent file
and device servers, providing a common file and device view.
In a similar way, a single Socket Server provides a common

socket view. Any future server distribution (like parallelizing
the socket server) will be done while preserving the image of a
single system.

4 Conclusions

The UNICOS/mk Operating System will support the new
parallel Cray architectures including MPPs, clusters and hybrid
systems.

It is a long-term direction for Cray to provide operating
systems with Single System Image. Single System Image
permits users and applications to take advantage of the new
parallelism without new user procedures or application
changes, as the increased complexity is managed by the oper-
ating system.

References

[CHOR92] Rozier M. et al,

Overview of the CHORUS Distributed Operating
System

, USENIX workshop on Microkernels and Other Kernel Architec-
tures, April 1992.

[UNIC95]

UNICOS

, Cray Research Publication MCPF-2580394, 1995.

Figure 11: Nmake on UNICOS/mk

Figure 12:

Single System Image Implementation of

kill

