

CUG 1995 Spring

 Proceedings

157

Batch Scheduling:
A Fresh Approach

Nicholas P. Cardo,

Sterling Software, Inc., Numerical Aerodynamic
Simulation Facility, NASA Ames Research Center, Moffett Field, CA

ABSTRACT:

The Network Queueing System (NQS) was designed to schedule jobs based on lim-
its within queues. As systems obtain more memory, the number of queues increased to take ad-
vantage of the added memory resource. The problem now becomes too many queues. Having a
large number of queues provides users with the capability to gain an unfair advantage over other
users by tailoring their job to fit in an empty queue. Additionally, the large number of queues be-
comes confusing to the user community. The High Speed Processors (HSP) group at the Numer-
ical Aerodynamics Simulation (NAS) Facility at NASA Ames Research Center developed a new
approach to batch job scheduling. This new method reduces the number of queues required by
eliminating the need for queues based on resource limits. The scheduler examines each request
for the necessary resources before initiating the job. Also additional user limits at the complex
level were added to provide a fairness to all users. Additional tools which include user job reor-
dering are under development to work with the new scheduler. This paper discusses the objec-
tives, design and implementation results of this new scheduler.

With increasing memory and cpu capacities, alternative
batch job scheduling mechanisms are needed. The method of
taking first come first served and not examining current system
utilization has become outdated. The time has come to investi-
gate improvements in batch scheduling.

1 Purpose

A new batch scheduler has been designed to address short
comings of existing scheduling options and implement
enhancements that benefit the user community.

Better handling of large and multitasking jobs provide for
improved throughput. The ability to handle these jobs has been
built into the scheduler and reduces any manual intervention
required.

Another change is the scheduling of jobs based on submit
limits rather than by queue limits. This provides the ability to
schedule jobs better and reduce turnaround time. Improved
system utilization can also be gained by scheduling based on
job requirements.

The ability to submit large numbers of jobs has also been
added. This will allow a user to load the system for overnight,
weekend or holiday work. Not only does this add flexibility to
the user but also allows the system to contain enough jobs to
keep from going idle.

The implementation would also reduce the number of queues
required to sustain the user load. A minimal queue configura-

tion is necessary to reduce the chances of queue gaming and
general confusion.

2 Objectives/Requirements

The objectives/requirements of the new batch scheduler
include:

1. Minimal NQS modifications.

2. Minimal queue configuration.

3. Easily supported.

4. Customizable.

5. Usable on all HSP systems.

6. 0% Idle

7. Minimal Swapping

8. Regular Scheduling of Large Jobs

9. Good Throughput for Debug Jobs

10.Regular Running of MT Jobs

11.High Priority Jobs

12.Equality between Small and Large User Groups

13.Additional Utilities

158

CUG 1995 Spring

Proceedings

2.1 Minimal NQS modifications

By minimizing the number of local modifications to NQS,
there would be less of a chance of introducing conflicting code
into NQS. It is possible for a local modification to conflict with
a Cray released fix. Also, modifications to NQS are compli-
cated and time consuming due to the complexity and size of
NQS.

2.1.1 User Exits

User Exits were introduced at UNICOS 8.0. The premace
behind them is to provide entry points into key parts of
programs. This provides the capability of adding functionality
to programs without having to modify source code. Another
benefit to using these is ease of sharing code with other sites,
including binary only sites.

The batch scheduler design first attempted to utilize User
Exits. The library

/usr/lib/libuex.a

 contains all the
user exits. When NQS is built,

libuex.a

 is included as one of
the libraries. User exits are provided at the following locations
within NQS:

• NQS daemon packet. Allows sites to add functionality
when a packet arrives.

• NQS destination ordering. Allows sites to control the order
of pipe queue destinations within NQS.

• NQS job selection. Allows sites to determine if the request
chosen by NQS should be started. The order in which
requests are started by NQS can be customized.

• NQS job initiation. Allows a user exit before job initiation.

• NQS job termination. Allows a user exit after job termina-
tion.

• NQS

qmgr

 command. Allows additional functionality
when a

qmgr

 command is going to be processed.

• qsub directives. Allows user exits before the first

#QSUB

directive, on

#QSUB

 directive, and after the last

#QSUB

directive.

• NQS startup. Allows the user to perform processing during
the NQS startup.

• NQS shutdown. Allows the user to perform processing
during the NQS shutdown.

• Job submission.

A major effort was required to port existing modifications in
NQS to a new release. This increases the length of time before
the new release can be released into production. By utilizing
user exits, the scheduling portion of NQS can be modified
without actually modifying NQS. This would reduce the effort
necessary to port mods to new releases of NQS and UNICOS.

The investigation into the utilization of User Exits revealed
weaknesses that were not able to be overcome. In particuliar,
they seemed to only provide a mechanism for augmenting oper-
ations on existing parameters and functionality. The introduc-
tion of new command line arguements and the altering of key

internal functions were not possible. This approach was aban-
doned.

2.1.2 Modifications

Modifications would now be required to add new function-
ality to NQS. Although most modifications were minor, there
did exist a more complicated portion. The addition of user
complex limits needed to be added to NQS in a way that would
make upgrades easy. When possible, new functions being
added to NQS were placed at the end of source modules. Rather
than insert additional code into existing functions, the insertion
of a function call was made. This simplified upgrade efforts
tremendously. The port from UNICOS 8.0.2 to UNICOS 8.0.3
took under 2 hours.

2.2 Minimal Queue Configuration

The objective is to provide a queue configuration with a
minimal number of queues. This simplifies job submission,
maintenance and adds equality to jobs, regardless of job size.

Figure 1 shows the previous queue configuration.

As can be seen, there are 27 regular production queues. This
is in addition to system maintenance and special access queues.

Under the new scheduler, the queues can be greatly simpli-
fied. Figure 2 shows the new queue configuration after imple-
mentation of the new batch scheduler. Previously the queues
were arranged by memory and cpu limits. One queue will be
used for each of multitasking, large memory multitasking,
deferred, debug, and regular batch jobs. Scheduling will no
longer be based on queue limits but rather the actual requested
limits of the job. Previously, a 130MW request would have

Figure 1, Existing Queue Configuration

dbg64M_300s
dbg256M_300s
q32M_20m
q64M_20m
q256M_20m
q10M_4h
q32M_4h
q64M_4h
q128M_4h
q256M_8h

dfr10M_2h
dfr24M_2h
dfr48M_2h

mt128M_600s
mt256M_600s
mt512M_1200s
mt128M_40m
mt256M_40m
mt512M_80m
mt768M_80m
mt128M_8h
mt256M_8h
mt512M_8h
mt768M_8h
mt900M_1200s
mt900M_16h
mt768_1200s

defer

(default)

mt

CUG 1995 Spring

Proceedings

159

been queued in the 256MW queue. Under the new batch sched-
uler, the 130MW request will not be scheduled as 256MW. By
scheduling based on requested limits, memory can be more effi-
ciently utilized, a better job mix can be obtained, and a greater
throughput achieved.

2.3 Easily Supported

The scheduling algorithm is able to initiate jobs with the goal
being to keep the system as busy as possible without causing a
degradation in service. It is also able to run multitasking and
large memory jobs throughout the day. The main objective is
that this scheduling system should be self sufficient and require
as little manual intervention as possible.

Although the previous goals were very similar, the differ-
ences are with how multitasking and large jobs are handled.
Under the previous setup, multitasking jobs typically required
manual intervention and usually only ran during non-prime
time hours. The difference is to attempt to schedule large and
multitasking jobs around the clock.

2.4 Customizable

Although there exists a goal to use the same batch scheduling
system on both C90 systems, it is recognized that there are
differences in the machines. The new batch scheduler allows
parameter changes to customize the scheduling algorithm to
work best on each system.

These customizable parameters deal with specific policies of
the respective systems as well as hardware configuration differ-
ences. Customizable parameters include memory, job size, run
limits, and system utilization rates. Some parameters would be
configurable through

qmgr

, the NQS queue manager.
An example of a memory difference is, what is considered to

be a large job on one C90, would be considered a small job on
the other. This is due to physical hardware differences between
the two systems. In the current configuration, one C90 has
128MW while the other has 1024MW of memory. The job
selection algorithm is configurable to work with either system.

Additionally, scheduling parameters are easily changed. A
configuration file is maintained and can be altered at any time.
The scheduler will reread the configuration file when it receives
a SIGHUP signal.

2.5 Usable on all HSP’s

In order to minimize the impact on support staff, the same
scheduler is utilized on both C90 systems with configuration

changes to fit that system. This reduces the need to maintain
separate modifications on both systems for NQS.

2.6 0% Idle

By not keeping enough jobs running, or by having the wrong
job mix, idle time can occur. Ideally, by scheduling the job mix,
and by keeping an optimum number of jobs running, idle time
should be less than 4% and optimally 0%. The scheduler
initiates jobs so that the system does not end up with a poor mix
of jobs (ie., too many large jobs). In addition, no noticable
degradation in interactive performance has been observed.

2.7 Minimal Swapping

By running too many large memory jobs, swapping will
increase and system overhead will be incurred. This in turn
causes idle time on the system.

Swapping is controlled in three ways.

1. There is limit how much total memory batch jobs are
allowed to consume.

2. The size of a large job and the limit on how many can run
simultaneously are configurable.

3. The swap-in rate is constantly monitored. A configurable
parameter exists to set what is considered an acceptable
swap rate.

2.8 Regular Scheduling of Large Jobs

By carefully controlling the job mix, large jobs can run at
regular intervals. This will improve overall turnaround time for
large memory jobs. A minimum of one large memory job will
always be attempted to keep running. A maximum number of
large memory jobs to run is configurable.

2.9 Good Throughput for Debug Jobs

For the most part, debug jobs are small and fast. The debug
queue will operate as an unscheduled queue. That is, the queue
will have small run and memory limits. Additionally there is a
limit for the total memory used by all jobs running in the debug
queue. This will provide constant flow for debug jobs while
keeping them from severely impacting the system.

2.10 Regular Running of Multitasking Jobs

Multitasking is encouraged to achieve high performance in
solving computational problems. To accommodate this, a
mechanism for running multitasking jobs throughout the day is
being incorporated into the scheduler. During prime time hours,
these jobs may be restricted to a limited number of cpu’s and
memory. Large mulitasking jobs are only run during non-prime
time hours.

A parameter has been added to the

qsub

 command which
allows the user to specify the number of cpu’s required. This
would allow scheduling of the job effectively since the full
requirements are known. When a process is evaluated for initi-
ation, the number of cpu’s required is taken into consideration.

By knowing the number of cpu’s required for the job before
the job starts, it becomes possible to predict contention for
cpu’s. For example, knowing that a job will require 16 proces-

Figure 2, New Queue Configuration

debug
batch

dfr

mtask
mtasklg

(default)

mt

160

CUG 1995 Spring

Proceedings

sors would be used as an indicator when to run the job. A job
requiring only 2 cpu’s can be scheduled much easier than a 16
cpu job. By only connecting to 2 cpu’s, there is minimal conten-
tion for the cpu. Whereas if 16 cpu’s were required, there will
be cpu contention if the job is run at the wrong time.

2.11 Processing of High Priority Jobs

There will always be a need for high priority jobs. Currently
the use of special queues for high priority work is done.
Although the new scheduler will not eliminate the requirements
for special queues, a way to flag a job as high priority is being
investigated. This would allow high priority jobs to run in the
same queues as other jobs. By running special jobs in the same
batch queue, job scheduling can be performed on the special
jobs. Currently, special queues are enabled and jobs start as they
are submitted. By marking the job as next to run it may provide
for a better performing system.

2.12 Equality Between Small and Large User Groups.

In an effort to insure equality between large and small user
groups, the new scheduler utilizes a three state scheduling
process. Batch jobs will flow through three states - the

pending

state where all jobs enter, the

queued

 state where only jobs
eligible to be selected for running exist, and the

running

 state
for jobs in execution.

Under normal conditions, the following rules apply.

• Each user would be allowed to have a configurable number
of jobs eligible to run (queued).

• Each user would be allowed to have a configurable number
of jobs submitted (pending), but not yet eligible to run.

• Each state would be managed as FIFO.

However, if not enough jobs exist and the system will take
idle time, the rules for selecting jobs and moving jobs between
the states would expand to prevent idle.

A batch job would move from being

pending

, to being able
to be selected for running (

queued

), to actually

running

. These
queue states provide a way for a user who has no running or
queued jobs to move ahead of another user’s pending job when
the other user already has queued jobs. It also provides a way
for users to stack jobs for weekend runs so that the system
doesn’t run out of jobs.

2.13 New Utilities

As part of the new scheduler, new utilities have been devel-
oped.

2.13.1 Job Reordering Tool

The user community has been requesting a tool that would
allow them to reorder their jobs. A new tool,

qorder

, was
created to provide the ability to reorder jobs. The reordering
preserves queue locations, but moves requests into new posi-
tions.

qorder

 works by taking advantage of an external scheduler
that can process a reordering request. When the scheduler
receives a reorder request, all the users jobs in the particular

queue are found. A link list is used to manipulate submit times
to perform the reordering. Internally to the

nqsdaemon

, the
modify request routines were modified to support a new limit.

qorder

 uses the

inter

 routines for sending a

PKT_MODREQ

packet to the

nqsdaemon

. The packet contains the new time
as an

interw32i

 parameter. In order for the reordering to
fully take affect, it was necessary to call

bsc_spawn()

 with
a new level. The new level for

bsc_spawn()

 caused a scan
of the queues and a recalculation of priorities without
performing job initiation. By looping through all queued
requests for that user, the reordering could be completed.

2.13.2 Resource Utilization Report

A program has been developed which produces a report of
all batch jobs processed. In the report, the requested limits for
memory, cpu time, and SRFS are displayed along with values
for what was actually used. This provides the administrators
with the necessary information for improving jobs and system
tuning.

2.13.3 bstop

Since the scheduler runs as a system daemon, a clean way of
terminating it is necessary. The program

bstop

 sends a shut-
down request to the scheduler so it can exit cleanly. Another
way of terminating the scheduler is to send it a

SIGSHUTDN

signal.

3 New Design

The new batch scheduler will be based on categorizing a job
into one of three states:

pending

,

queued

 and

running

. As jobs
are submitted they enter the

pending

 state. Jobs will move to the

queued

 state provided the users job will fit into configurable
limits. The batch system will select jobs from the

queued

 state
to run.

There are two components to the the new batch scheduler.
The first is built into NQS. This component controls the flow of
jobs from

pending

 to

queued

. The second component is a sepa-
rate process which constantly monitors and evaluates the

Running

Queued

Pending

Figure 3

< queued limit
for user

< running limit
for userrunning limit

queued limit

met for user

met for user

CUG 1995 Spring

Proceedings

161

system. It will then determine if it is safe to start another batch
job. If it is safe to start another job, it will select jobs from the

queued

 state.

3.1 NQS Priority

The NQS input queue priority will be modified to include
additional resources to be taken into consideration when setting
a jobs priority.

3.1.1 Existing NQS Priority

The basic scheduling priority algorithm for NQS as released
by Cray Research is based on the time in queue, requested cpu
time, fair share, and requested memory. Currently on both C90
systems, the requested cpu time, requested memory, and fair
share parameters to the equation are disabled in the priority
calculation. This means that the priority is based on the length
of time the job is in the queue, effectively FIFO on a per queue
basis.

 priority =
((now - state_time) * Time_wt) -
(rcpu * Cpu_wt) - (rmem * Memory_wt)

Fair share usage is calculated into the priority at a separate
stage in the calculation.

The parameters of the equation are:

now

Current time in seconds.

state_time

Time in seconds when the job was queued.

Time_wt

Weighting factor for time in queue.

rcpu

Requested CPU time.

Cpu_wt

Requested CPU time weighting factor.

rmem

Requested memory.

Memory_wt

Requested memory weighting factor.

3.1.2 Modified NQS Priority

A request enters the pending state upon submission to NQS
with

qsub

. The request will then migrate to the queued state
and then finally begin execution.

Each

queued

 job will be assigned a valid intra-queue priority
based on weighting factors assigned to system resources. The
existing priority equation will be expanded to include additional
resources in the priority calculation. These additional resources
would include the number of requested cpus’ and special job
status. The memory, number of cpu’s, and special weights are
used to give a higher priority to larger memory, multi-tasking,
or special high priority jobs.

 priority =
((now - state_time) * Time_wt) -
(rcpu * Cpu_wt) + (rmem * Memory_wt) +
(ncpus * Ncpu_wt) +
(special * Special_wt))

The parameters of the equation are:

now

Current time in seconds.

state_time

Time in seconds when the job was queued.

Time_wt Time in queue weighting factor.
rcpu Requested CPU time.
Cpu_wt Requested CPU time weighting factor.
rmem Requested memory.

Memory_wt Requested memory weighting factor.
ncpus Requested number of CPU’s.
Ncpu_wt Requested number of CPU’s weighting fac-

tor.
special Job requires special access.
Special_wt Special jobs weighting factor.

Additional weighting factors can be added to the equation as
they are identified. Each factor must be a positive integer
between 0 and 1000000. Setting a factor to 0 turns off
weighting for that resource.

The existing factors can be set through qmgr with the SET
SChed_factor command. This interface has been expanded
to permit other resource factors to be set through the qmgr
interfaces. The new qmgr commands needed to implement this
are:
SET SChed_factor Ncpu
SET SChed_factor High_priority

To accomplish this, two packet types were added. These are
PKT_SETSCHPRIWT and PKT_SETSCHNCPUWT. Appro-
priate functions were added to qmgr to send these packets to
the nqsdaemon.

3.2 Pending Jobs
As jobs are submitted to NQS via qsub, they enter the

pending state. The production queues batch and mtask, are part
of a queue complex. Pending jobs are held up on queue complex
level limits before they can proceed to the queued state.
Pending jobs are identified by a status of Qc* where * is a letter
representing the limit that has been reached. In place of the
priority number, pending jobs will have 0 displayed for their
priority.

For each resource being limited in the queued state, a new
status is required.

Status Description

QcM Memory limit reached
QcT CPU time limit reached
QcJ Jobs limit reached.

Figure 4.0 shows how each status for the resource limits is
obtained. A job must pass the check for each resource before it
is permitted to enter the queued state.

memory
limit

reached

CPU
limit

reached
limit

reached

jobs

Y YY

N

N

N

QcM QcTQcJ

Figure 4.0, Complex User Limits

162 CUG 1995 Spring Proceedings

The implementation of Complex User Limits was accom-
plished by adding a function call to a new function
complex_user_limits(), in the module nqs_bsc.c
to the function complex_limits(). The logic for the new
limits is to scan the input for every queue and build a linked list
in priority order for all jobs for a particular user. For all jobs not
passing the limits, the submit time is set to the current time. This
forces all jobs being held in the pending state to appear at the
end of the input queue. As jobs are released into the queued
state, their priority will increase over time.

3.3 Queued Jobs
Jobs move from the pending state to the queued state

according to predetermined criteria.

3.3.1 Limiting Resources
A user is permitted to have as many jobs in the queued state

that would keep the user from exceeding configurable limits.
Each user has the same amount of resources in the queued state.
Resource limits are placed on memory, CPU time, and the
number of jobs in the queued state. These limits provide the
ability of keeping a single user from dominating the queues as
well as to increase fairness between users.

Three new limits were required in order to allow qmgr the
ability to set the complex user limits. These limits are:
NQS_LIM_USERMEM Set complex user memory resource

limit
NQS_LIM_USERCPU Set complex user CPU resource

limit
NQS_LIM_USERJOB Set complex user job resource limit

The addition of these limits allowed for the use of the func-
tions setcomlim() and setcomquota() for setting the
limits. By utilizing existing routines, modifications were mini-
mized.
qmgr is used as the interface for setting any of these config-

urable limits. Three new qmgr commands were required for
setting the new complex level limits. These are:
SET COMplex USER_Cpu_limit
SET COMplex USER_Job_limit
SET COMplex USER_Memory_limit

In addition to adding new qmgr commands, one command
needed to be changed due to uniqueness conflicts with the new
commands. SET COMplex User_limit was changed to
SET COMplex USER_Limit.

3.4 Additional Changes
In order to support the new features being added to NQS,

both qsub and qmgr commands for NQS needed to be updated.

3.4.1 qsub
Three changes were required to qsub in order to support the

new scheduling environment.

1. Number of CPU’s.

2. High priority jobs.

3. Default job limits.

The first new parameter is for specifying the number of cpus
required for a multitasking job. A new command line param-
eter, -n ncpu, was added so that a user can specify the number
of cpus required for the job. This is used for scheduling
purposes only. The possibility exists that the user may specify a
different value on the command line then the user does in their
scripts.

A second paramter was added for high priority jobs. The
command line parameter, -H, will signify that the job is high
priority. Additional logic is required to perform some authori-
zation checking to make sure the user is allowed to submit high
priority jobs. If a user specifies -H and is not authorized, the job
is rejected at the time of the qsub. If this feature acceptably
provides the full capability of high priority jobs, the special
queues can be eliminated. High priority jobs would now be
scheduled to run. When they are submitted, they will move to
the top of the queue and begin running when resources are
available. Currently, special jobs start immediately and can
adversely affect the system.

If a user fails to specify either per process or per request
limits for cpu and memory, the job receives a default limit of
4MW and 300 seconds. If per process limits are provided, they
are used to set the per request limits. This feature is to
encourage the specification of exact per request limits for batch
jobs.

3.4.2 qmgr
All configurable parameters are set or changed using qmgr.

As previously discussed, new qmgr commands were needed to
set/change the complex level limits and to
set/change new weighting factors.

An additional change was required for the snap command
of qmgr. This command provides the mechanism for taking a
snapshot of the existing configuration of NQS. The new limits
are included in the output produced by the snap command.

4 The Batch Scheduler

A separate program running as a system daemon is used to
actually initiate jobs. This program will monitor the systems
utilization and select jobs for initiation. After selecting a job to
run, the scheduler utilizes the schedule request now
functionality built into the nqsdaemon to initiate a job.

By using a separate daemon for initiating jobs, the ability to
react to changes in system resources quickly is achieved. An
example of this would be the ability to adjust to the increase or
decrease in interactive load.

4.1 System Resources
Several system resources need to monitored to not over

commit systems resources which would adversly affect overall
system performance.

4.1.1 Swap Rate
The swap rate will be based on the last sar interval for the

calculation of the rate. The swap rate is determined by the

CUG 1995 Spring Proceedings 163

number of blocks swapped in per second. Swap rate is obtained
from the si.bswapin field of the structure sa, where si is
the structure sysinfo.

Original efforts attempted to utilize the raw data file to
obtain system information. Timing problems occurred when
reads to the sar file occurred during sar interval updates. The
raw reads were backed out and a forked child was used to issue
a sar command and return the information back to the
schedule via a pipe Then by parsing the strings, the information
could be obtained. An example of using a pipe to retrieve sar
information would be:
sprintf(cmd,”sar | tail -3 | head -1”);
pd = popen(cmd,”r”);
fscanf(pd,”%s %d %d %d %d %d”,
tstamp,&usr,&sys,&wsem,&locks,&idl);
pclose(pd);

4.1.2 Load Average
The definition of load average is the number of processes on

the run queue and those waiting for I/O. On the Cray, all active
processes have a process status of SRUN and those that are
connected to a cpu have a process status of SONPROC. For the
load average calculation, the sum of SRUN and SONPROC
processes will be used. This information is easily obtained by
scanning the proc table. The following example shows how
this information can be gathered.
tabinfo(PROCTAB, &tinfo);
tsize = tinfo.head +

(tinfo.ent *tinfo.len);
tloc = (char *) malloc(tsize);
tabread(PROCTAB, tloc, tsize, 0);
p = (struct proc *)tloc;
for(x=0;x<tinfo.ent;x++) {

if((p->p_stat == SRUN) ||
(p->p_stat == SONPROC))
runq++;

p++;
}
free(tloc);

4.1.3 System Time
The system time calculation will be based on the last sar

interval. This yields the average percentage of system time
across all cpu’s over the last sar interval. System time is calcu-
lated from the percpu[x].unixc field of the structure sa.
The variable x represents individual cpus, so a structure
percpu exists for each cpu in the system.

As described in section 4.1.1, problems were encounted
when attempting to utilize the raw sar data file. Therefore a
child process communicating through a pipe was used as
described in section 4.1.1.

4.1.4 Idle Time
The idle time calculation will be based on the last sar

interval. This yields the average percentage of idle time across
all cpu’s over the last sar interval. Two classifications of idle
time are used, long and short. Long idle reflects idle time of

time. Short idle represents that current snapshot of the system.
Idle time is calculated from the percpu[x].idlec field of
the structure sa. The variable x represents individual cpus, so a
structure percpu exists for each cpu in the system. Short idle
is calcualted by looking at the current processes in the system
and evaluating total processor utilization.

As described in section 4.1.1, problems were encounted
when attempting to utilize the raw sar data file. Therefore a
chile process communicating through a pipe was used as
described in section 4.1.1.

4.1.5 Free Memory
The free memory calculation will be based on the last sar

interval. This provides the average amount of free memory. The
calculation of free memory is the total user memory minus the
total user memory used minus the total memory locked. The
structure sa contains all three items.
Field Description
usrmem total user memory
si.umemused total user memory used
si.memlock total user memory locked

As described in section 4.1.1, problems were encounted
when attempting to utilize the raw sar data file. Therefore a
child process communicating through a pipe was used as
described in section 4.1.1.

4.2 Scheduling
The first step is to check NQS. If NQS is not running, then

the scheduler should wait for NQS to start up. A second situa-
tion to check for is whether NQS is up and whether jobs should
be started. The situation exists where NQS is up but we don’t
want to process user jobs. The batch scheduler will not initate
any jobs in any queue that is stopped. Therefore, stopping a
batch queue stops any new job from being scheduled to run in
that queue. Starting the queues will cause the scheduler to
resume normal operation.

The queues are configured as running and enabled but with
a run limit of 0. This allows NQS to start all checkpointed jobs
first at startup. This functionality serves two purposes. The first
is that all jobs that were running continue to run when the
system is restarted. Second, the system can become loaded in a
much shorter time period at system startup.

Deferred jobs are run only when there exist no jobs in the
queued state that can be started. The scheduler will consider all
jobs in the queue state before considering any deferred job.
Also, deferred jobs will only be started if idle time will be
accrued. If the systems resources can support another job but
the cpus are all 100% busy, a deferred job will not be started.

The scheduler takes a different approach to counting batch
jobs. Rather than actually counting the number of running jobs,
it is designed count the number of cpus required. This allows for
multi-tasking jobs to be counted based on the number of cpus
required. When looking at what’s running, it’s not the number
of jobs but rather the number of cpus that’s of concern. A 16
processor job has a greater impact than a 1 processor job. Since
this required the addition of a new command line parameter, an

164 CUG 1995 Spring Proceedings

incompatibility with standard NQS’s was revealed. A method
of adding a new script processed arguement similar to #QSUB
is under investigation.

4.3 Initiating Jobs

There are two methods that can be used to start batch jobs.
The first is fork a process that executes the qmgr command.
The second is to build the ability to start another job into the
scheduler. This second method was chosen. The idea is to
provide a mechanism for the scheduler to issue the command
packet directly to the nqsdaemon. By utilizing the NQS
libraries, it was possible to use the function schedreq() with
the SCHED_NOW option. The return code is then examined to
check job initiation status.

However, there is a side effect to using the NQS library func-
tions. The library routines open the nqsdaemon request pipe
and leave it open. This means that NQS cannot be shutdown
until the scheduler is shutdown.

5 Batch Resource Accounting

In order to track what a user requests versus what a user actu-
ally uses, a “batch resource accounting” file is maintained.
When a batch job terminates, a record is written that contains all
the limits the user requested as well as what the user actually
used. This will allow us to assist the users with tuning their jobs
to run more efficiently in the system. For example, if a user
requests 900MW of /big but only uses 100MW, then the user
can be contacted and the request reduced. This frees limited
resources for other users to utilize.

When a users job terminates, a report on the users resource
requirements is automatically produced at the end of the stdout

file. This would allow us to take a pro-active approach to
helping the user adjust resource requirements appropriately.

6 Lessons Learned

As development progressed, it became apparent that,
although the user exits are a good feature, they weren’t suffi-
cient. More user exits are needed and more flexibility is needed
with exiting ones.

Although the functionality added to NQS is complicated, the
implementation is not complex. Porting to new releases is an
easy task to perform. However, more enhancements to improve
performance and to add greater flexibility could be useful.

The user community has also received a benefit from this
work. Not only has the batch environment been greatly simpli-
fied, but more power has been given to the user to control their
own jobs. The information is always supplied to the user about
resource utilization for a job. This in turn allows the user to
more efficiently submit their job.

By getting accurate information about all jobs, throughput
can be increased for all size jobs. The system resources are fully
utilized by taking advantage of what’s available.

7 Summary

The enhancements made have simplified the queue structure
eliminating confusion amongst the user community. Addition-
ally, by using requested limits as opposed to queue limits for
scheduling, the mainframes can be more efficiently used. The
new command, qorder, was welcomed by the users. The
enhancements made have produced positive results to date.

