

172

CUG 1995 Spring

 Proceedings

Scaling Solaris for Enterprise Computing

Drew McCrocklin

, Cray Business Systems, San Diego, CA

ABSTRACT:

Cray Business Systems chose the Solaris/XDBus platform to develop the Cray
Superserver 6400 (CS6400), which is today’s largest Symmetric Multi-Processing (SMP) server.
Our strategy was to leverage most of the system design and implementation from outside vendors,
and to focus our engineering resources on adding value to a base design. We have scaled the
hardware interconnect and Solaris operating system to support 64 processors and 16 gigabytes
of memory. We added a System Service Processor which supports numerous RAS features, and
added a tape subsystem and a math library that are based on widely-used UNICOS features.

1 Choosing our technology leverage

In November 1991, Cray Research and Sun Microsystems
entered into a technology partnership to leverage their comple-
mentary strengths across the broader marketplace. As a result of
that partnership, Cray formed the Cray Business Systems Divi-
sion to develop a Solaris/SPARC platform that was scaled
larger than Sun’s own platforms, and to take the product into
markets new to Cray Research. The goal of our division is to
develop unique products using primarily leveraged technology.
Our plan is to build only the components of the system that
provide unique added value.

1.1 Solaris/SPARC strengths

We received four main benefits from the use of Sun’s
Solaris/SPARC technology base:

1.

The most applications

. Solaris has the largest installed base
of any Unix, and has a catalog of over 9,000 native applica-
tions.

2.

The best multi-processor Unix

. Sun Microsystems has sold
the most multiprocessor systems of any vendor. SunSoft has
aggressively threaded Solaris in support of Sun’s multipro-
cessor systems, which scale up to 20 processors.

3.

An openly available Unix

. Sun Microsystems has estab-
lished a separate company, SunSoft, which has the mission
of supplying the Solaris operating environment to the indus-
try.

4.

An interconnect chipset

. Sun Microsystems and Xerox de-
signed the XDBus interconnect chipset for medium and large
servers. Sun decided to develop products using only one or

two buses, even though the XDBus chipset could handle four
buses.

Figure 1: Solaris/SPARC strengths

1.2 Our value-added strategy

We focused our engineering developments in three areas:

1.

Pushing the performance envelope of symmetric multi-
processing

. We implemented the CS6400 using all four of
the XDBuses. We designed the centerplane ASICs necessary
to drive the four XDBuses across a bigger system, and in-
creased the bus clock from 40 MHz to 55 MHz. With this
nearly three-fold increase in memory bandwidth to 1.3
Gbytes per second, we scaled our system size up to 64 pro-
cessors — the most of any SMP system.

2.

Improving system availability and serviceability

. The
CS6400 is built out of a small number of component types
which can be configured in parallel to minimize the impact
of most system failures. We added the ability to dynamically

Solaris

Largest volume Unix Leading SMP Unix

Open availability from
SunSoft

The best SMP
interconnect chipset

Copyright © Cray Research Inc. All Rights Reserved

CUG 1995 Spring

 Proceedings

173

reconfigure the CS6400’s hardware and software without
needing to reboot. We added a service processor to manage
the dynamic reconfiguration, and to support diagnostic activ-
ity concurrent with system operation.

3.

Adding Cray UNICOS software functionality

. Tape is a
traditional Unix weakness, so we chose to add the function-
ality of the UNICOS tape management system to Solaris. We
also optimized the LibSci numerical library for the CS6400
to establish it as a standard for high-performance num-
ber-crunching on SPARC systems.

Figure 2: Our value-added.

2 Solaris’s kernel modularity

Solaris is a multi-platform Unix operating system that is
available on several generations of SPARCs, the Intel X86, and
soon on the PowerPC. SunSoft uses one code base for all of
these platforms. Their goal is to ensure application portability
and compatibility between all Solaris platforms. They must
ensure that there is only one set of Solaris application interfaces,
and one set of functional interfaces to be used by users and inde-
pendent software vendors.

To make it possible for independent hardware vendors to add
support for new platforms, SunSoft has split the Solaris kernel
into two portions. They develop most of the kernel, which is
independent of platform. The vendors develop the low-level
parts of the kernel that are nearest the hardware, and thus are
platform-specific. The division between these parts of the
kernel is called the Kernel Binary Interface (KBI). Sunsoft’s
goal is to maintain this interfaces across multiple platform
implementations and releases. Figure 3 shows how the Kernel

Binary Interface divides the kernel into the dependent and inde-
pendent portions.

Figure 3: Platform-independent and dependent parts of the
kernel.

SunSoft develops and tests the platform independent
module, and releases the platform-dependent module for a
reference platform. As an independent hardware supplier, we
develop and test our platform-specific module for the CS6400,
and deliver it to SunSoft. They validate that our module is an
accurate Solaris implementation, and ship a CD-ROM
containing binary for all the supported Solaris platforms.

The goal is for Solaris on the CS6400 to be the same Solaris
as is supplied by Sun Microsystems for its own hardware prod-
ucts. Independent software vendors can then be confident that
once they qualify their product on one Solaris platform, that it
is qualified on all SunSoft-supported platforms. The CS6400
will be supported by the standard Solaris distribution from
SunSoft beginning with Solaris 2.5. Cray’s value-added
features will then be available for installation as extensions to
the standard Solaris base.

3 Enabling large systems

One of our main efforts was modifying Solaris to make it run
well on a 64-processor system with very large physical and
virtual memory spaces.

Maximize development
leverage

Push the SMP envelope

Improve RAS

Add CRI software
value

Cray Super-
server 6400

Memory man-
agement

Traps &
interrupts

Low-
level
DMA

Prom / ker-
nel interface

Clocks

Debugger
support

Kernel profiling

Panics

RPC subsystem

I/O subsystem
(STREAMS, etc.

Process & thread
management

Security
subsystem

Networking
subsystem

File system
support

Platform-specific module Kernel Binary
Interface

Platform-independent module

174

CUG 1995 Spring

 Proceedings

3.1 Enabling 64 processors

Scattered through the kernel were constants that had to be
increased to reflect a larger maximum system, such as the
maximum possible number of processors, SBuses, and boot-
buses. We examined all the macros which manipulated bit sets
representing individual processors, and expanded the variables
from unsigned long to unsigned longlong to contain 64 bits.

3.2 Enabling large memory

The fundamental problem we had in supporting large phys-
ical and virtual memory sizes is that stock Solaris maps the
kernel address space into the top 512 Mbytes of each 4 Gbyte
user context. This mapping speeds system calls, since address
spaces do not have to be switched, but it limits the kernel virtual
address space to 512 Mbytes.

Our problem was that large CS6400 systems ran out of
virtual memory space to hold the tables necessary to manage
physical and virtual memory spaces. Solaris was designed to
handle conditions where it ran out of physical memory — a
condition common on small workstations — but it did not
handle well running out of virtual memory, a condition that
does not typically occur in systems with less than 4 Gbytes of
physical memory.

Room for more physical memory structures

. Solaris
requires 60 bytes of page structures to represent each 4 Kbyte
page of physical memory. As the space needed for these page
structures is increased, the

segkp

 segment, which is used to map
kernel stack space for lightweight processes, is reduced. Using
unmodified Solaris, machines that have a large physical
memory are limited in the number of processes they can
support. At 16 Gbytes of physical memory, 240 Mbytes are
required for page structures, so that there is no kernel space left
for lightweight-process kernel stacks.

Figure 4: Extended kernel space for large memory.

Room for more virtual memory structures

. Solaris
requires 26 bytes of anonymous structures for each page of
virtual space. For 64 Gbytes of virtual space (a 4:1 ratio over a

16 GB physical memory), 416 Mbytes of kernel space is
required, which is far too much for the available 512 Mbytes of
kernel address space.

Large memory fix

. Our approach to implement large
memory is a separate kernel context that leaves the first 512
Mbytes of kernel virtual address space still mapped to all user
contexts. During start-up, we relocate non-pageable kernel data
structures to an extended kernel address space. The data struc-
tures affected include physical memory maps, page structures,
page hashtables and memory management unit tables. These
structures are accessed by only a handful of routines. Our
change frees up substantial virtual address space for the

segkp

segment and more importantly, makes

segkp

's size independent
of memory size. Additionally we have added algorithms that
reclaim and manage the use of the kernel heaps in response to
running out of virtual memory, in addition to those present to
handle physical memory pressure.

3.3 Managing large numbers of processors

We added processor partitions to allow flexibility in work-
load management. Partitions allow a system administrator to
split up the disjoint parts of a workload between groups of
processors so that resources are predictably divided among
users. Historically this capability was provided in the processor
scheduling algorithms with the goal of guaranteeing a certain
percentage of each processor to specific workloads. In a cached
system with many processors, such as the CS6400, it is much
more efficient to dedicate a percentage of the processors to a
workload than to dedicate a percentage of

each

 processor to a
workload. Space sharing is more efficient that timesharing.

Figure 5: Example of processor partitioning.

The system administrator can set up the partitions, giving
them access permissions and symbolic names, and assigning
processors and attributes to them. He then assigns particular

4 GB
Extended

kernel address
space

3.5 GB user
spaces

Physical and virtual
page structures

0.5 GB kernel
P

ECAD

P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

Time-
sharing

Memory

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

Memory

P
P

P
P

P
P

P
P

Mem-
ory

Data-
base

CUG 1995 Spring

 Proceedings

175

process sets to run in particular partitions, or allows users to
choose their own partitions from among those for which they
have permission.

The processors in a partition give priority to the processes
assigned to that partition. Optionally, idle processors can
temporarily borrow processes from other partitions, and can
loan processes to idle partitions. A partition can be set up to
service SBus I/O interrupts, or it can just compute.

The system administrator can execute the partitioning
commands dynamically, or can use scripts to partition the
CS6400 system during the boot process. She may choose to
assign specific processes, such as the NFS server and client
daemons, to run in a specific partition. Users may assign them-
selves to specific partitions as they log in, or may be automati-
cally assigned to partitions based on their user ID or upon
partition loading.

We at Cray Business Systems engineering have chosen to
divide our CS6400 server into two eight-processor partitions:
one for integrated circuit design and simulation, and the other
for general timesharing. This split keeps either set of users from
hogging the machine’s resources. Later this year, the ability to
control the amount of memory used by each partition will be
added.

4 Tuning large systems

Solaris as we receive it from SunSoft is tuned to the level of
20 processors. This section gives some example cases where we
had to make modifications to scale Solaris for larger systems.
Some of these problems have been fixed in later releases by
SunSoft. In general, Solaris has scaled better with each release
as bottlenecks are removed from the parallel kernel code.

Figure 6: Splitting an address mapping lock.

4.1 Lock splitting to speed-up page creation

We made a significant performance improvement by split-
ting one of the locks that was used in the Hardware Address
Translation (HAT) layer. For each physical page there is a
linked list of structures that represent the virtual addresses
mapped to that physical page. Each time the Hardware Address

Translation layer needed to manipulate that linked list, it had to
acquire a global lock used for all physical pages.

We split that global lock into an array of 1,024 locks that we
hashed into based on the physical page structure. This made a
significant performance improvement during the start-up, page-
faulting and exit flows for a process — which was especially
important in workloads where processes were rapidly created
and destroyed.

4.2 Cache collisions in the idle loop

Idle loop processing

. As the Solaris kernel boots, it dynam-
ically allocates a structure for each configured processor. A
field in each structure denotes how many runable threads are on
that processor’s run queue. During the idle loop each processor
first examines its own count

field, and if zero, it then examines
all of the other processor’s counts

looking for work to do. The
dispatcher increments a processor’s count when it places a
thread on a run queue.

Cache collisions in the idle loop

. The SuperSPARC has a
direct-mapped cache which is divided into 8192 cache blocks
that are 256 bytes long. Memory locations map into the cache
using the upper 24 bits of their virtual addresses, modulo the
2-MByte cache size. When the counters

from several processors
randomly mapped into the same cache block, they displaced
each other in the cache, causing several cache misses per idle
loop. We noticed heavy bus utilization on partially-loaded
systems, where the idling processors consumed enough band-
width to reduce performance of busy processors by 1/3.

Eliminating the cache collisions

. Our solution was to insure
that idle processors spin on a single data structure that is known
to fit in the cache without mapping conflict. We created an array
with a counter for each processor, and spaced the counters out
into separate cache blocks.

Figure 7: Eliminating cache collisions.

4.3 Cache thrashing during buffer copying

We observed a speed-up of only 2.4x when using four Asyn-
chronous Transfer Mode (ATM) fiber-optic links to transfer

Lock

Mapping lists
for M pages:

Before:
one lock

After:
1024 locks

Lock 1

Mapping
lists for
M/1024
pages:

Page

Page

Page

Page

Page

Page

Lock
1024

Mapping
lists for
M/1024
pages:

Page

Page

8191

0

Before:
counters spread

randomly

After:
counters mapped

sequentially

no collisions

Cache block
mapping

some collisions

176

CUG 1995 Spring

 Proceedings

data between two CS6400s. Our investigation showed little
evidence of flow-control problems, or kernel lock contention.

We found the most processor intensive portion to be copying
data from the user buffer to a system-level streams buffer.
When the I/O from a given stream buffer was completed, the
stream buffer was placed back into a global pool of buffers for
further use by the system. The next stream initiating a transfer
would allocate another buffer from this same global pool, and
begin the copy from the user buffer to the stream buffer.

We did bus traffic measurements and discovered that the
store-miss rate doubled, and the store-invalidation rate quadru-
pled when going from one to two ATM streams. With four
streams running in parallel, there was a 75% chance that a new
buffer would still be resident in another processor’s cache.
Figure 8: shows how a given cache block of data would swap
back and forth between the caches of two processors as they
recycled buffers from the same global pool.

Figure 8: Cache ownership thrashing caused by sharing a buffer
pool.

To avoid this needless swapping of cache-block ownership,
we used the processor’s ID to give each stream its own buffer
pool. Solaris 2.4 supports a buffer allocation scheme that allows
buffer pools to grow and shrink as demand for system resources
changes — which made the creation and management of
multiple pools quite reasonable.

Our tuning improved the four-stream bandwidth from 32 to
47 MBytes per second, an increase of 46%, resulting in a
parallel speed-up of 3.4x. The curve is shown in Figure 9:.

4.4 TLB missing due to small pages

The Memory Management Unit (MMU) of the Super-
SPARC supports three page sizes: 4 Kbytes, 256 Kbytes, and 16
Mbytes. Stock Solaris supports only the small 4-Kbyte size. The
SuperSPARC has a 64-entry Translation Lookaside Buffer
(TLB) which caches recent address translations. With 4 Kbyte
pages, only 256 Kbytes of virtual space can be accessed without

a TLB miss, which is only 1/8th the size of the 2-Mbyte cache
of the SuperSPARC.

Figure 9: TCP bandwidth using multiple ATM links.

Programs with a working-set size between 256 Kbytes and 2
Mbyte suffer TLB misses even though their all their data has
been cached. We chose to support the 256 Kbyte page size,
which allows accessing a 16 Mbyte space without a TLB miss.
The large page size benefits programs that intensively reference
large cache items. For example, we measured a 30% improve-
ment in the performance of calculating 16K FFTs when using
large pages. The data all fits in cache, but suffered TLB misses
with small pages.

Figure 10: Larger page size for greater TLB reach.

5 Improved availability and serviceability

Reliability, availability, and serviceability are dominant
concerns of all large-system customers. As systems become
bigger, the impact of downtime expands exponentially —
whether it is a commercial customer running an on-line data-
base, or an engineering organization running circuit simula-

Processor 1 Processor 2

Get cache
block from

owner

store miss
invalidated

store missinvalidated

Get cache
block from

owner

●

●

●

●

■

■

■

■

0

10

20

30

40

50

60

1 2 3 4

M
eg

ab
yt

es
 p

er
 s

ec

ATM streams

Before

After

Linear

64 x 4KB pages = 256 KB TLB reach

2 MB cache size

256 KB
page

CUG 1995 Spring

 Proceedings

177

tions. The RAS philosophy of the CS6400 is to provide a system
that is kept available a very high percent of the time through the
configuration and use of functionally redundant components.
The availability of the system is enhanced by the ability to
dynamically reconfigure the software and hardware and to
service the hardware while the system is still operating.

The CS6400 is implemented from many parallel copies of a
relatively small number of different component types. There
can be up to: 16 power supplies, 64 processors, 64 memory
modules, 8192 SIMMs, 16 SBuses, and 64 SBus interfaces.
When one of these components fail, the system will automati-
cally not use the bad component, and rapidly reboot to resume
system operation. The failed component can be replaced later
while the system is operational. Optionally redundant hardware
(a form of spares) can be configured to be used as extra capacity
until needed to replace failed units.

Figure 11: System Service Processor.

5.1 System Service Processor

To improve availability and serviceability, we added a
System Service Processor (SSP) which provides intelligent and
known-good diagnostic support. The software of the System
Service Processor directs the testing and booting of the system,
the dynamic reconfiguration and hot swapping of system
components, and the diagnosis of hardware concurrently with
system operation.

The System Service Processor is a SPARC workstation,
configured with local disk, a CD-ROM drive, and an Ethernet.
It is connected to the hardware through a special JTAG inter-
face, which is a separate back door path to all of the ASICs in
the system. It uses the JTAG path to diagnose and configure the

machine, to monitor the health of the system, and to collect
error information in the case of a failure.

The System Service Processor runs a set of software which
includes the

hostmon

 daemon, an open boot executive, kernel
debugger, configuration and bring-up executables, and a heart-
beat monitor. It uses the Ethernet to interact with the main
Solaris system in the CS6400, and optionally, up to two
domains, which are self-contained single-board systems (See
Section 5.5).

5.2 Hostview

Hostview is a graphical-user interface (GUI) based applica-
tion that runs on the System Service Processor and provides
control over the CS6400. Hostview provides the following
actions to the main system, and the domain systems.

• Power the CS6400 host on and off.

• Dynamically reconfigure the boards within the CS6400,
logically attaching or detaching them from the operating
system, resetting them, and running diagnostics on them.

• Dynamically reconfigure system boards as independent
domains, which operate as a separate environment from the
main CS6400 system. A domain can carry its own workload
and has its own log messages file.

• Configure the system using Power-On Self Test and boot
Solaris.

• Start console windows.

• Access log message files.

• Edit the blacklist file to enable or disable hardware compo-
nents.

Figure 12: shows an example Hostview main screen. The
graphic is a top view of the system, which in this case has 12
system boards. Boards 8 and 9 are shown without a line
connected them to the centerplane, meaning that they have been
isolated into their own domains. Each processor is represented
by a colored square, which indicates the state of each processor:
running, blacklisted, or not configured. A small icon inside each
square shows what is running: a diamond indicates Solaris.

Hostview can be run remotely from any networked
X-Windows device, and a command-line version is available
for remote operation over dialup lines.

5.3 Power On Self Test

Power-On Self Test (POST) runs under System Service
Processor control at start-of-day, reboot, and after a panic. First,
each processor checks itself, its cache and its interfaces to the
XDBuses. This initial phase is executed from memory located
on the BootBus, rather than from main memory, as the XDBus
is not yet enabled. Next, the bus interfaces are tested. Finally,
the XDBus is turned on and the system is tested as a whole,

Control
Board

System
Boards

Power
Supplies

Proc

Voltage and
temperature

JTAG
to the Sys-

tem Service
Processor

Ethernet

JTAG bus

178

CUG 1995 Spring

 Proceedings

starting with memory units and I/O units. Operational units are
noted.

Figure 12: Example Hostview main screen.

The System Service Processor configures the system using
only fully-functional components, including assigning
addresses to memory banks. Then the system is booted and
status is reported by the System Service Processor. Bad compo-
nents are not logically configured, and may be serviced at a later
time.

5.4 Dynamic reconfiguration

On most Unix servers, removing a board for service requires
that the system be shut down. We added

dynamic reconfigura-
tion

 and

hot swap

 to the CS6400, which permits the system to
be serviced while remaining operational. Dynamic reconfigura-
tion and hot swap allow a system board to be logically detached
from the operating system, then physically removed and then
later reinserted, and finally logically reattached — all concur-
rent with system operation, and without requiring a
power-down and reboot.

The dynamic reconfiguration software is a combination of
host software and software on the System Service Processor.
The System Service Processor communicates using remote
procedure calls to a daemon running on the CS6400. This
daemon communicates with the CS6400 Solaris kernel. The

Hostview interface provides an interactive program to guide the
System Administrator or Field Engineer through the logical
detach and attach steps.

Dynamic reconfiguration and hotswap is accomplished in
five steps, as shown in Figure 13:.

1.

Detach the bad board

. The operator requests that a system
board be logically detached. The kernel flushes all the pro-
cesses, swaps out the user pages, and physically remaps the
kernel pages away from the board — which logically detach-
es the board from the system.

2.

Hot remove the bad board

. The service provider attaches a
5-volt power cord to the board, and pushes a button indicat-
ing that he is ready to remove the board. The System Service
Processor requests the kernel to quiesce Solaris. All XDBus
activity must cease for a few seconds. The operator removes
the board, and pushes a button indicating that he is done. The
System Service Processor tells the kernel to resume normal
Solaris execution.

3.

Hot insert the new board

. The service provider attaches a
5-volt power cord to the board, and pushes a button indicat-
ing that she is ready to insert the board. The System Service
Processor requests the kernel to quiesce Solaris. All XDBus
activity must cease for a few seconds. The operator inserts
the board, and pushes a button to indicate she is done. The
System Service Processor tells the kernel to resume Solaris.

4.

Debut the new board

. The System Service Processor runs
Power On Self Test on the board. This tests the board, con-
figures it, and leaves it enabled on the centerplane. Debuting
the board requires Solaris to quiesce for a brief period so that
the connection between the board and the rest of the system
can be checked to ensure that the rest of the system will not
be harmed by the new board.

5.

Attach the new board

. The operator requests that the kernel
begin using the inserted board. The kernel adds the new
board’s resources into the system.

5.5 System domains

System domains are a well-known feature in the mainframe
world. They provide the ability to run a separate instance of the
operating system on a part of the hardware that is isolated from
the rest of the system. For the CS6400, domains are created by
isolating a single system board from the rest of the CS6400
system. This board can be used as a completely independent
Solaris system.

Domains add to the availability of the CS6400 by creating a
separate environment for safely bringing up and testing new
software. A domain may be used to test and debug new
mission-critical application software, or to break-in a new
Solaris release without impacting production users. Because a
domain is physically isolated from the XDBus, software and
hardware errors inside the domain cannot affect the rest of the

0

6

7

4

5

3

14

15

12

13

5

22

23

20

21

7

30

31

28

29

9

38

39

36

37

11 13 15

62

63

60

61

1

0

3

2

9

8

11

10

33

32

35

34

41

40

43

42

49

48

51

50

57

56

59

58CB

0 2 4 6 8 10 12 1416

Front side

Back side

File Edit Control Config Terminal View Info Help

A power
supply

A system
board

A processorA domain

Menu

Buttons

Centerplane

CUG 1995 Spring

 Proceedings

179

system. Equally, errors in the remaining portion of the system
will not affect the domain.

Figure 13: Dynamic reconfiguration.

Because each domain is its own computer system, it must
have appropriate peripheral and network connections. Each
domain must be configured with a disk to boot from, a network
connection, and sufficient memory and disk space to accom-
plish the intended task. Because a domain is limited to one
board, there is a maximum configuration of four processors per
domain. There is an overall limit of two domains, in addition to
the main CS6400 system.

The System Service Processor acts as the system console for
the main instance of Solaris and for each domain. A system
board can be dynamically detached from the system to create a
new domain. Solaris can then be booted up on the domain, and
it is available for immediate use. Each domain has its own
host-id, and operates as a completely separate computer system.
Dynamic reconfiguration attach may later be used to return the
system board used in the domain back to the main CS6400
system.

5.6 Alternate pathing

Alternate pathing provides a mechanism for switching from
one SBus I/O adaptor card to another without disturbing the
processes that are using the connected I/O devices. The primary
goal of alternate pathing is to support dynamic reconfigura-
tion. When a system board is removed, access to the connected
devices needs to be switched to use adapters on other system

boards, if possible. This allows continued system operation
after the system board is removed.

Alternate pathing can allow recovery from failed or failing
adapters by allowing different adapters to be used. It also guar-
antees that a system can boot unattended even if the primary
network or boot disk is not available.

The system administrator defines the physical paths (i.e.,
SBus adapters) that are equivalent, and indicates which path is
the primary path. Alternate pathing creates a

meta-device

 name
for each SCSI adapter path group, and a

meta-network

 name
for each network adapter path group. This meta-name is used
to access one or more physical device or network names, and
remains unchanged regardless of which physical path is used.
By using the meta-names, switching from one path to another
has no impact on the running scripts or applications.

Figure 14: Alternate pathing.

6 UNICOS value-added software

6.1 Cray Tape Management System

Tape support on Unix systems has typically been restricted
to basic read/write functionality. Mainframe and supercomputer
users expect to request a tape and have it mounted by either an
operator or a robotic device. They assume support for standard
ANSI and IBM labeled formats is provided at the system level,
so that security is enforced for all tape accesses.

We added a Tape Management System (TMS) to Solaris that
is modeled after the field-proven UNICOS tape subsystem on
Cray Research’s parallel/vector supercomputers. Applications
can request a tape and have it mounted by either an operator or

2. Hot remove board

P P P P

M M M M

IO

P P P P

M M M M

IO

1. Logically detach board

5. Logically attach board

user pages

kernel pages

flush processors

user pages

kernel pages

add processors to
configuration

Briefly quiesce
the system

3. Hot insert board

4. Debut the board Test operation

Briefly quiesce
the system

SBus
cards

SBus
I/Fs

X
D

B
us

es

Dual ported
SPARC Storage

Array

Ethernet or
FDDI

Fibre
Channel

Primary path Alternate path

180 CUG 1995 Spring Proceedings

a robotics device. Support for standard ANSI and IBM labeled
formats is provided at the system level so that security is
enforced for all tape accesses. Because the tape drives are
managed by the Tape Management System, it is possible to
securely share tape drives, including robotic devices, among all
users on the system.

Figure 15: Tape Management System (TMS).

The Tape Management System is comprised of several
layered components, as shown in Figure 15::

1. A new version of the Solaris removable-media Volume
Manager, with our extensions for tapes, controls the reserva-
tion of drives and mounting of volumes.

2. The label daemon supervises all file access transitions, han-
dles tape marks, and processes all labels.

3. The layered device drivers supervise the normal tape I/Os
and route exceptions to the appropriate daemons for process-
ing.

4. The Cray REELlibrarian tape catalog.

We used the Solaris’s removable media Volume Manager to
insure a smooth fit with the Solaris. Our enhancements include
support for tape, multi-volume tape, multiple drive capabilities,
label processing (specifically IBM and ANSI labels), and an
interface to Cray REELlibrarian tape catalog.

The Cray REELlibrarian communicates with the Tape
Management System to provide a secure, easy-to-use volume
management system combining a complete on-line catalog of

all volume and file information with the management and
control of tape access.

6.2 LibSci numerical library
LibSci is the numerical library supported on all Cray

Research products. It provides over 1,200 routines that are used
for scientific and technical computing, such as solving systems
of linear equations, computing eigenvalue and eigenvectors,
manipulating matrices, solving sparse equations, and filtering
signals and images.

The library includes the industry-standard Basic Linear
Algebra Subroutines (BLAS), Linear Algebra Package
(LAPACK), as well as 1D, 2D, and 3D FFT and convolution
routines, random number generators, and matrix transposition
routines. The LibSci routines are callable from Fortran 77,
Fortran 90, and C. CraySoft sells this package for the complete
range of Solaris/SPARC platforms.

We had to re-implement the algorithms in LibSci to match
the characteristics of a cache-based shared-memory architec-
ture.

Figure 16: LibSci performance on the CS6400.

Dual precisions. CS6400 systems support both 32-bit single
precision, and 64-bit double precision. Thus we had to double
the number of routines over the parallel/vector version of
LibSci, which works only in 64-bit precision.

Fast synchronization. Quick synchronization is necessary
to allow relatively small chunks of work to be done in parallel.
Solaris provides a set of synchronization primitives in its thread

TMS commands
Solaris volume

manager

Label
daemon

Cray
REEL-

librarian

Volume
driver

Tape volume
daemon

Managed tape driver

User
space

kernel
space

Device drivers

Exabyte
Autoloader

DAT

9-track3480/90
cartridges

Storage Tek silo

Extended

■

■

■

■

■

▲

▲

▲

▲

▲

▼

▼

▼

▼

▼

●

●

●

●
●

★

★

★

★

★

0

500

1,000

1,500

2,000

2,500

3,000

0 16 32 48 64

64
-b

it
 M

fl
op

s/
s

Processors

■ Matrix-matrix multiply

▲ Hermitian rank 2k update

▼ Symmetric rank 2k update

● Linpack 5000

★ 256, 1K Complex FFTs

CUG 1995 Spring Proceedings 181

library, but they are designed for a coarser grain of parallelism.
As a result, its synchronization times were too slow.

We implemented our own ultra-light weight thread synchro-
nization routines which spin-lock — rather than return to the
operating system — when the threads are closely aligned and
the wait times are very short. We implemented a butterfly-type
barrier using shared memory, whose execution time rises only
logarithmically to 28 microseconds for 64 processors.

Cache blocking. The caches of the SuperSPARC comprise
a 128 Mbytes scratch space which the processor can access at
an aggregate bandwidth of over 28 Gbytes per second. This is
25 times the rate to memory. Reusing cached data is the key to
high performance on the CS6400, as it is on all micropro-
cessor-based systems. We organized the inner loops of the
matrix and FFT routines to reuse data that is already in the cache
as much possible. Typically this means working on groups of
vectors at a time, before moving on to the next set of data.

Blocking is also the key to avoiding strided memory refer-
ences. On the CS6400, data moves to and from memory in
64-byte chunks. Our LibSci algorithms are optimized to take
advantage of the CS6400’s block memory accesses to avoid
wasteful memory access patterns. For example, matrix transpo-
sition is done by breaking up the matrix into 64 byte by 64-byte
tiles that make use of every byte in a cache line, rather than by
reading a contiguous column and scattering it out to a row as
one would do on a vector memory system.

The result of our work is an implementation of LibSci that is
optimized to exploit cached, shared memory, multiprocessing
architectures. Figure 16: shows the multi-processor perfor-
mance we obtained for several 64-bit precision LibSci routines.

7 Summary

SunSoft has made Solaris the environment of choice for
open enterprise computing. SunSoft’s top priority has been
extending the reliability of the Solaris environment. Their other
priorities for new releases include compatibility with previous
releases, increasing performance, and adding features for large
servers.

Our most important task is to guarantee compatibility
between Solaris on the CS6400 and on Sun Microsystems plat-
forms. We also work to improve our performance scaling, to
enhance our reliability, availability, and serviceability features,
and to add new layered features to Solaris that have been proven
in UNICOS to be needed for large systems.

The Cray / Sun partnership has born fruit with the most
powerful symmetric multiprocessing system on the market. The
CS6400 has proven capable of tackling problems that were
previously solvable only on mainframes. We look forward to
developing ever more powerful superservers based on faster
SPARC processors, higher bandwidth interconnects, and the
Solaris networked computing environment.

