What Every Administrator Should Know Before Trying To
Set Up a ShareHierarchy in the UDB

Kathlean C. Zinnel, Cray Research, Inc., 655-F Lone Oak Drive,

Eagan, Minnesota 55121

ABSTRACT: Ninety percent of reported Fair Share Scheduler problems are actually caused by
unclear Share hierarchy definitions in the User Data Base. Fair Share Scheduler behavior is deter-
mined by information contained in the "Inode" table. Information passed to the kernel when creating
Inodes comes from the User Data Base. The "shrtree" command was created to "visualize" what Inode
chains will look like after instantiation so that administrators can verify if political goals are clearly
defined. Several planning stages facilitate Share hierarchy implementation. Guidelines are presented
for deciding if share-by-user-id or share-by-account-id is the correct choice for your site.

INTRODUCTION

The UNICOS Fair Share Scheduler (FSS) prevents users, or
groups of users, from stealing more CPU cycles than they are
entitled to consume when thereisno idletime. Turning on FSS
for thefirst timeisnot assimple as setting aflag. Political goals
must be expressed through User Data Base (UDB) information.
Inappropriate UDB structure could result in Inode chains that
cause pathologica FSS behavior. Having worked with a
number of sitesrecently to get them up and running with FSSin
share-by-account-id mode, this papers offers suggestions for
making the transition smooth and painless; both for system
administrators and their user base.

UNICOS code for Fair Share existsin many different places.
Run-time data needed for CPU alocation decisions reside in
kernel structures called the Inode table (Inode signifies limit
node) and the share constants (sh consts) structure. Each
processis attached to a particular Inode chain which determines
the CPU alocation policy applied to the process. CPU ticksare
the currency used to determine which Inodes are deserving, or
not, of having the CPU resource alocated to their attached
processesin the near future. Lnode configuration is determined
from UDB information. With a share-by-uid mode of opera-
tion, aminimum Inode chain consists of the Root Inode pointing
to aresource group Inode which pointsto auser-id Inode. Under
share-by-account-id mode of operation, aminimum Inode chain
consists of the Root Inode pointing to a resource group Inode
which points to a shareholder Inode. In both modes, processes
are attached to theterminal (user-id or shareholder) Inodesonly.
Under share-by-account-id mode of operation, processes from
different user-ids can be attached to the same shareholder Inode.

Of the approximately 100 fieldsin each UDB record, only 8
are concerned with FSS hierarchy definition: uid, shflags,

Copyright © Cray Research Inc. All Rights Reserved

182 CUG 1995 Spring Proceedings

resgrp, shares, acidg[], shusage, shcharge, and shextime. The
user-id (uid) field isthe basic identifier of each UDB record and
must be unique. Administrators define entitlement through
resource group (resgrp), account-id (acidg[]), and share
(shares) fields. System administrators should be aware that
user-ids, resource groups, and account-ids all share the same
namespace. At each level, the shares value determines how to
allocate parent resource group entitlement among sub-groups.
Long-term usage history for individual users, and groups of
users, is aso kept in the shusage, shcharge, and shextime UDB
fieldsand preserved across system startup. Thesefieldsare used
to initialize the |_usage and |_charge fields when an Inode is
created. L_charge is the long term accumulated costs and
awaysincreases unlessthe shchargefieldinthe UDB iscleared
by an administrator. L_usage isthe decaying accumulated costs
and can increase or decrease based on the usage decay rate set
with shradmin. When an Inode is created, |_usage is created
from shusage after first decaying thisvalue according to the last
logout time stamp in shextime. A UDB permbits flag
(PERMBITS_ACCTID) alows the holder to newacct to any
account-id which is useful when testing share-by-account-id.

Trandating Political GoalsInto UDB Entries-
Stagell

» Writedown political goalsfirst

» Circulate among user base to set expectations
» Match resource group namesto political unit
» Each resource group subdivides next level

» Categorize every UDB entry asto affiliation

Upon starting the process of configuring the UDB for FSS,
it is very important to write down political goals. Figure A
depicts a Share hierarchy on amachinethat is primarily used by
developers. To ensure that developers work takes precedence
over other work, the top level "Users" resource group has been

subdivided into " SoftDev", "CCN", and "Mktg"resource groups
with 60%, 20%, and 20% of the machine, respectively. Once
machine entitlement goals have been expressed in words, time
must betaken to circulate the hierarchy design for review by the
various political units. A participatory review process helpsto
set correct user expectations for what system behavior will be
after FSSisturned on.

LNODE CHAIN EXAMPLE

100 Com p .18
.06
100Analysts

FigureA

When selecting names for the resource group and share-
holder (another way of referring to account-id) UDB entries,
think about how they will look in the shrmon or shrview
display. Groupsof users are represented by resource group and
acid UDB entries. Nameswhich convey political affiliation are
useful because everyone will be looking at these displays
initially to verify what is happening. Categorize every UDB
entry as to political affiliation on paper first; this eases the
process of trandating these relations into UDB values for
resource group and acid list.

The relative machine share, i.e. entitlement, given to a
particular Inode in a chain isafunction of the number of shares
(UDB field shares) given to that particular Inode divided by the
sum of all the shares of all the Inodes who have the same parent
Inode, i.e. resource group. This group shareratio isthen multi-
plied by the share ratio of the parent Inode to calculate entitle-
ment. Common practice for assigning shares seems to be
permitting the political unit represented by a particular resource
group to choose the numbers used for shares for the next lower
level of resource groups or acids. Another hint borne of expe-
rience is to design a balanced Share hierarchy such that the
depth of all possible Inode chains for users are within one level
of each other. This keeps the variation among the relative
machine share (entitlement) for each terminal Inode within the
same order of magnitude.

Tranglating Political GoalsInto UDB Entries -
Stagell

» Decide whether to base Inode chain by uid or acid

» Select uid range for resource groups and shareholders

» Make copy of UDB filesin local directory

» Use-p option of udbgen & udbsee to prepare directives

Structure of the UDB for FSS really depends upon which
mode of operation, share-by-uid or share-by-account-id, is
selected. Under share-by-account-id, a single user may have
processes running under different Inodes. Again using Figure
A, assume user xyz does system admin work for CCN occasion-
ally, runs demos sometimes for Marketing, but mostly does OS
development. When user xyz logs in, hisher default acid
(acidg[0]) will be used to create shareholder Inode OS which is
under resource group SoftDev. Any work submitted will run
under thisInode chain, unless user xyz newacct's to SysAdm or
Demos which are also in user xyz's acid list in the UDB. Work
submitted after anewacct to SysAdm runs under the CCN Inode
chain and has a lower machine share entitlement than OS.
Work submitted after a newacct to Demos runs under the Mktg
Inode chain and has a higher machine share entitlement than
SysAdm. The gsub "-A" option can aso be used to specify
under which shareholder (account-id) Inode a batch job should
run.

With share-by-uid, only one user runs under the terminal
Inode in a chain and the newacct command does not change
Inodes. In thismodeit isthe resgrp field in the user UDB entry
that is used when a user logs in, rather than the default acid list
entry (acidg0]), for creating an Inode chain. Under
share-by-uid operation, amisbehaving user can be controlled by
setting the users shares UDB field to zero with shrdist without
impacting other users. Share-by-uid mode is appropriate when
the desired level of control is an individua user.
Share-by-account-id mode is best suited when control by
project is preferred.

UDB entries for resource groups and shareholders (acids)
share the same uid namespace as the entries for users who actu-
aly log in. There must be a unique uid number allocated for
each resource group and shareholder as well as for each user.
When setting up a share-by-account-id hierarchy, there are
often acids used by accounting that are the same number as the
uid of auser login entry. The solution to this problem as shown
by Example 1, isto start the resource group and sharehol der uid
numbering sequence at a high value, in this case 8000, but not
so high as to exceed sysconf (SC UID_MAX). Mapping all
existing acid and resource group numbersto the new numbering
sequence as 8000 + old-number solves the uid namespace
problem but often requires some changes to accounting reports.

All necessary input to udbgen for adding Share hierarchy
definitions to the UDB can be prepared without modifying the
live system. This must be done as root and with sysadm privi-
lege if running security. First copy /etc/udb, /etc/udb.public,

CUG 1995 Spring Proceedings 183

System Group System
Lv Name ID Share Share Usage Status Flags
0 _ROOT_ 0 100.0% 100.0% 1000% G 40000
i Bkgrnd 8311 5.0% 5.0% 00% G 40000
2 Batts 5098 50% 100.0% 00% A 1000000
1 CCN 8354 20.0% 20.0% 63% G 40000
2 Serv 8001 5.0% 25.0% 26% A 1000000
2 SysAdm 8373 10.0% 50.0% 03% A 1000000
2 Syssup 8388 5.0% 25.0% 34% A 1000000
1 Mktg 8381 10.0% 10.0% 598% G 40000
2 Country 8359 0.2% 2.3% 02% A 1000000
2 Cust_a 8361 9.0% 90.1% 0.0% A 1000000
2 Cust_b 8362 0.1% 0.9% 00% A 1000000
2 Demos 8367 0.2% 2.3% 0.1% A 1000000
2 Int] 8374 0.2% 2.3% 00% A 1600000
2 TechOps 8390 02% 2.3% 00% A 1000000
1 SoftDev 8386 45.0% 45.0% 237% G 40000
2 Cust_c 8363 3.5% 7.8% 00% A 1000000
2 Cust_d 8364 35.3% 78.4% 00% A 1000000
2 Netdev 8383 0.9% 2.0% 0.1% A 1000000
2 Userint 8394 0.9% 2.0% 00% A 1000000
2 Users 8395 0.9% 2.0% 6.1% A 1000000
2 Xydev 8397 3.5% 7.8% 17.1% A 1000000
1 System 8389 20.0% 20.0% 102% G 40000
2 Admin 8306 15.0% 75.0% 03% A 1000000
2 Ce 8355 5.0% 25.0% 1.7% A 1000000
1 Unknown 8393 0.0% 0.0% 0.0% GlZs 40000
2 unknown 12 0.0% 0.0% 0.0% AINclZs 1000000

Example 1: Shrtree display of SHAREBY ACCT Hierarchy.

/etc/acid, and /etc/group to aprivate directory. (If UNICOS 8.3,
also copy the /etc/udb_2 directory and its contents.) Prepare an
initial udbgen input directives file by executing "udbsee -p. -a
-fupdate,shflags,resgrp,uid,shares,acids > local”. By changing
theresgrp and acidg[] fieldsin thelocal file and using "udbgen
-p. local", the local UDB will be modified. (Initial udbgen
directives for new entries should begin with create instead of
update.) The shflags field is O for a user, 40000 for a resource
group, and 1000000 for a shareholder (i.e.acid) entry.

The "shrtree -p. -F ..." command was created in order to
verify whether the desired political structure has been imposed
on the local UDB. Examples 2. & 3. show first the shrtree
output from analyzing the UDB on machine "hot" and second
the use of "shrtree -f" and a grep to find the UDB entry causing
areally bad error. Errorsflagged by shrtree can be corrected by
modifying the local file of udbgen directives and repeating the
process until shrtree reports the local UDB is free from errors.
Some manual editing of /etc/acid may be required to eliminate
spurious account-id definitions.

Tranglating Political Goals Into UDB Entries-
Stagelll

* Apply toreal UDB and turn on NOSCHED

184 CUG 1995 Spring Proceedings

» Watch Inode creation with shrview/shrmon
» Coordinate new account processing
» Make modifications until satisfied

When ready to observe live Inode creation, apply the
prepared list of udbgen directives in the local file to the real
UDB by executing "udbgen loca" without the "-p.". Using
"shradmin -F ..", set Share scheduling flags including
NOSCHED, to desired configuration. For example, setting
SHAREBYACCT, ADJGROUPS, and NOSCHED reguires
executing "shradmin -F 032". Although it is possible to turn
FSS on on-the-fly, shutdown to single user state is recom-
mended. After turning on FSS with "shradmin -F ..", the
shrview and shrmon commands provide the capability for
monitoring Inode creation. There will be some user processes
remaining attached to the Root Inode for a while after turning
on FSS. When jobs that were running under the Root Inode
when FSS was turned on complete, processes should be
attached to termina Inodes only. While testing FSS, the
shrdaemon should also be brought up to ensure harvesting
Inodes. At normal system startup, shrdaemon and shradmin
entries in the /etc/config/daemons file configure FSS automati-
caly.

DISPLAY OF SHARE TREE

UDB path: DEFAULT

Analyzed: By UID

Format: Groups only

Maxgroups: 4

Node: ALL

Group Count: 8

Account Count: |

User Count: 1656

Warnings: 37

Errors: 2

Warning Count: 1 (Nc) Group has no references

Warning Count: 12 (Rl) User referenced ROOT directly

Warning Count: 23 (Zs) User has zero shares

Warning Count: 1 (Zs) Group has zero shares

Error Count: 1 (Ng) User referenced missing group

Error Count: 1 (Ng) Group does not exist but is used

System Group System

Lv Name ID Share Share Usage Status Flags
0 _ROOT_ 0 100.0% 1000% 100.0% G 40000
1 _ERROR_ 8363 0.0% 0.0% 0.0% AlNglZs 0
1 System 8389 0.8% 0.8% 0.0% G 40000
i Users 8395 7.6% 7.6% 633% G 40000
2 CCN 8354 0.2% 3.0% 37% G 40000
2 Mktg 8381 0.2% 3.0% 2617 G 40000
3 Demos 8367 0.0% 1.3% 00% G 40000
2 SoftDev 8386 0.2% 3.0% 214% G 40000
2 Unknown 8393 0.0% 0.0% 0.0% GINc 40000

Example 2: Shrtree display of SHARE-BY -UID Hierarchy.

Procedures must be put in place to maintain the FSS hier-
archy in the UDB. Personnel responsible for setting up new
accounts must be educated as to the rules for assigning usersto
resource groups and initializing acid lists. A frequent situation
that results from the resgrp UDB field being left zero when a
new user account is created is that the new user logs in and
becomes entitled to 50% of the machine. Needless to say the
new user is happy but other users experience a marked drop in
responsiveness. Example 4. shows how to find these "Root
linked" users with the shrtree command. When making modifi-
cations to correct Share hierarchy definition problems in the
UDB, it isimportant to remember that processes created under
an erroneous Inode chain must fully exit the system and the
Inode harvested before a new Inode chain can be created that
shows the effect of the UDB changes.

Selecting FSS Parameters To Effect Policy-
Crucial Shradmin Parametersfor Tuning

After removing the NOSCHED flag with shradmin, FSSwill
begin to affect process priorities. It is reasonable to expect a

period of tuning experiments to select an appropriate combina
tion of shradmin parameters before achieving desired FSS
behavior. Of the approximately 20 shradmin parameters, there
are 4 that should NOT be left set at their default settings (Table
1). Most important is the "-K" parameter which controls how

Table 1: Shradmin Parameter s Requiring Adjustment

Parameter Description Value Crucial
{-K) Usage decay rate (seconds) 3600.0 MINIMUM

L {-U) Max usage 1.0e+14 > 8 CPUs
-Y) Minimum group share 0.75 ADJGROUPS
(-G) Max groups 4 _ROOT_+3

long "usage" will be remembered. At the default setting of 60
seconds, there exists no usage history for FSS to consider when
adjusting process priority. At a minimum, the "-K" parameter
should be set to 1 hour (3600 seconds) for normal FSS opera-
tion. Based on information from sites running FSS, typical "-K"

CUG 1995 Spring Proceedings 185

“kcz/cmd/shrtree/shrtree -f Igrep Ng
Error Count: 1 (Ng) User referenced missing group
Error Count: 1 (Ng) Group does not exist but is used

8363
27870

1 _ERROR_
2 n5827

User Entry n5827 Refers To Non-existent Resource Group

udbsee -v n5827 Igrep 8363
resgrp :8363: # uid
Example 3: Using Shrtree to Find Really Bad Errors

parameter values seem to be of two flavors; either 6-8 hours or
3-5days.

If running FSS with the LIMSHARE flag set, consideration
must be given to the shradmin "-U" parameter which specifies
a"ceiling" or "cap" on the amount of usage that will be consid-
ered when calculating process share priority. On machineswith
8 or more CPU's or sites that charge for other things besides
CPU ticks (I1/O, system cals, and especialy memory),
maximum usage (-U) hasto be set higher so that heavy usersdo
not get a"freeride". The "shrview -ds' command can be used
periodicaly to detect "clipping” of maximum usage. The
"Usage:" line of this display showsthe highwater usage for that
sample period next to the value of the "-U" parameter. If the
highwater usage is close to the maximum usage, the shradmin
"-U" parameter should be increased.

If running FSS with the ADJGROUPS flag set, consider-
ation must be given to the "-Y" parameter which specifies at
what point FSS becomes concerned that a resource group is
receiving lessthan itsentitlement. If very close adherenceto the
machine share specified by the resource group Inode is desired,
"-Y" must be set close to 1.0; for example 0.90. The default

“kcz/cmd/shrtree/shrtree -f Igrep Rl

0.0%
0.0%

[e)

0.0%
100.0%

0.0%
0.1%

AlNglZs
UINg

setting of 0.75 says that FSS will not become concerned about
adjusting Inodes unless a group is getting less than 75% of its
entitlement. Last, but not |least, the"-G" parameter specifiesthe
depth of the Share hierarchy; the default setting of 4 only allows
3 levels below "Root". Most sites recently modifying their
UDB to support FSS have been ambitious in defining their
Share hierarchy; more than one site designed a Share hierarchy
requiring 7 levels.

Conclusion

Based on recent experience, the process of designing and
implementing a Share hierarchy in the UDB to support the use
of FSSin acomplex diverse user community is best approached
in stages. Political scheduling goals must be clearly defined
before modifying the UDB. A new Share command (shrtree)
can be used to evaluate UDB Share hierarchy definitions and
point out errors before actually running "live". By following
the process described in this paper, the transition to using FSS
for managing different priority work can be made with relative
ease.

Warning Count: 12 (RI) User referenced ROOT directly

1 root 0
1 jwhite 4401
1 n5828 27871
1 n5829 27874
1 n5830 27875
1 n5831 27876
1 n5832 27877
1 n5833 27878
1 n5834 27879
1 n5853 27913
1 n5854 27914
1 n5855 27915

8.4% 8.4% 0.0% UlR!I 0
7.6% 7.6% 0.0% UlRI 0
7.6% 7.6% 0.0% UlRI 0
7.6% 7.6% 0.0% UlRI 0
7.6% 7.6% 0.0% UlRI 0
7.6% 7.6% 0.0% UlRI 0
7.6% 7.6% 0.0% URI 0
7.6% 7.6% 0.0% URI 0
7.6% 7.6% 0.0% UlRI 0
7.6% 7.6% 0.0% UlRI 0
7.6% 7.6% 0.0% UlRI 0
7.6% 7I§g§ourcé)&%up OU[Rl 0

Example 4: Using Shrtree to Find User Entries With

186 CUG 1995 Spring Proceedings

