

182

CUG 1995 Spring

 Proceedings

What Every Administrator Should Know Before Trying To
Set Up a Share Hierarchy in the UDB

Kathlean C. Zinnel

, Cray Research, Inc., 655-F Lone Oak Drive,
Eagan, Minnesota 55121

ABSTRACT:

Ninety percent of reported Fair Share Scheduler problems are actually caused by
unclear Share hierarchy definitions in the User Data Base. Fair Share Scheduler behavior is deter-
mined by information contained in the "lnode" table. Information passed to the kernel when creating
lnodes comes from the User Data Base. The "shrtree" command was created to "visualize" what lnode
chains will look like after instantiation so that administrators can verify if political goals are clearly
defined. Several planning stages facilitate Share hierarchy implementation. Guidelines are presented
for deciding if share-by-user-id or share-by-account-id is the correct choice for your site.

INTRODUCTION

The UNICOS Fair Share Scheduler (FSS) prevents users, or
groups of users, from stealing more CPU cycles than they are
entitled to consume when there is no idle time. Turning on FSS
for the first time is not as simple as setting a flag. Political goals
must be expressed through User Data Base (UDB) information.
Inappropriate UDB structure could result in lnode chains that
cause pathological FSS behavior. Having worked with a
number of sites recently to get them up and running with FSS in
share-by-account-id mode, this papers offers suggestions for
making the transition smooth and painless; both for system
administrators and their user base.

UNICOS code for Fair Share exists in many different places.
Run-time data needed for CPU allocation decisions reside in
kernel structures called the lnode table (lnode signifies limit
node) and the share constants (sh_consts) structure. Each
process is attached to a particular lnode chain which determines
the CPU allocation policy applied to the process. CPU ticks are
the currency used to determine which lnodes are deserving, or
not, of having the CPU resource allocated to their attached
processes in the near future. Lnode configuration is determined
from UDB information. With a share-by-

uid

 mode of opera-
tion, a minimum lnode chain consists of the Root lnode pointing
to a resource group lnode which points to a user-id lnode. Under
share-by-account-id mode of operation, a minimum lnode chain
consists of the Root lnode pointing to a resource group lnode
which points to a shareholder lnode. In both modes, processes
are attached to the terminal (user-id or shareholder) lnodes only.
Under share-by-account-id mode of operation, processes from
different user-ids can be attached to the same shareholder lnode.

Of the approximately 100 fields in each UDB record, only 8
are concerned with FSS hierarchy definition:

uid

,

shflags

,

resgrp

,

shares

,

acids[]

,

shusage

,

shcharge

, and

shextime

. The
user-id (

uid

) field is the basic identifier of each UDB record and
must be unique. Administrators define entitlement through
resource group (

resgrp

), account-id (

acids[]

), and share
(

shares

) fields. System administrators should be aware that
user-ids, resource groups, and account-ids all share the same
namespace. At each level, the

shares

 value determines how to
allocate parent resource group entitlement among sub-groups.
Long-term usage history for individual users, and groups of
users, is also kept in the

shusage

,

shcharge

, and

shextime

 UDB
fields and preserved across system startup. These fields are used
to initialize the l_usage and l_charge fields when an lnode is
created. L_charge is the long term accumulated costs and
always increases unless the

shcharge

 field in the UDB is cleared
by an administrator. L_usage is the decaying accumulated costs
and can increase or decrease based on the usage decay rate set
with shradmin. When an lnode is created, l_usage is created
from

shusage

 after first decaying this value according to the last
logout time stamp in

shextime

. A UDB permbits flag
(PERMBITS_ACCTID) allows the holder to newacct to any
account-id which is useful when testing share-by-account-id.

Translating Political Goals Into UDB Entries-
Stage I

• Write down political goals first

• Circulate among user base to set expectations

• Match resource group names to political unit

• Each resource group subdivides next level

• Categorize every UDB entry as to affiliation

Upon starting the process of configuring the UDB for FSS,
it is very important to write down political goals. Figure A
depicts a Share hierarchy on a machine that is primarily used by
developers. To ensure that developers work takes precedence
over other work, the top level "Users" resource group has beenCopyright © Cray Research Inc. All Rights Reserved

CUG 1995 Spring

 Proceedings

183

subdivided into "SoftDev", "CCN", and "Mktg"resource groups
with 60%, 20%, and 20% of the machine, respectively. Once
machine entitlement goals have been expressed in words, time
must be taken to circulate the hierarchy design for review by the
various political units. A participatory review process helps to
set correct user expectations for what system behavior will be
after FSS is turned on.

When selecting names for the resource group and share-
holder (another way of referring to account-id) UDB entries,
think about how they will look in the shrmon or shrview
display. Groups of users are represented by resource group and
acid UDB entries. Names which convey political affiliation are
useful because everyone will be looking at these displays
initially to verify what is happening. Categorize every UDB
entry as to political affiliation on paper first; this eases the
process of translating these relations into UDB values for
resource group and acid list.

The relative machine share, i.e. entitlement, given to a
particular lnode in a chain is a function of the number of shares
(UDB field

shares

) given to that particular lnode divided by the
sum of all the shares of all the lnodes who have the same parent
lnode, i.e. resource group. This group share ratio is then multi-
plied by the share ratio of the parent lnode to calculate entitle-
ment. Common practice for assigning

shares

 seems to be
permitting the political unit represented by a particular resource
group to choose the numbers used for

shares

 for the next lower
level of resource groups or acids. Another hint borne of expe-
rience is to design a balanced Share hierarchy such that the
depth of all possible lnode chains for users are within one level
of each other. This keeps the variation among the relative
machine share (entitlement) for each terminal lnode within the
same order of magnitude.

Translating Political Goals Into UDB Entries -
Stage II

• Decide whether to base lnode chain by uid or acid

• Select uid range for resource groups and shareholders

• Make copy of UDB files in local directory

• Use -p option of udbgen & udbsee to prepare directives

Structure of the UDB for FSS really depends upon which
mode of operation, share-by-uid or share-by-account-id, is
selected. Under share-by-account-id, a single user may have
processes running under different lnodes. Again using Figure
A, assume user xyz does system admin work for CCN occasion-
ally, runs demos sometimes for Marketing, but mostly does OS
development. When user xyz logs in, his/her default acid
(

acids[0]

) will be used to create shareholder lnode OS which is
under resource group SoftDev. Any work submitted will run
under this lnode chain, unless user xyz newacct's to SysAdm or
Demos which are also in user xyz's acid list in the UDB. Work
submitted after a newacct to SysAdm runs under the CCN lnode
chain and has a lower machine share entitlement than OS.
Work submitted after a newacct to Demos runs under the Mktg
lnode chain and has a higher machine share entitlement than
SysAdm. The qsub "-A" option can also be used to specify
under which shareholder (account-id) lnode a batch job should
run.

With share-by-uid, only one user runs under the terminal
lnode in a chain and the newacct command does not change
lnodes. In this mode it is the

resgrp

 field in the user UDB entry
that is used when a user logs in, rather than the default acid list
entry (

acids[0]

), for creating an lnode chain. Under
share-by-uid operation, a misbehaving user can be controlled by
setting the users

shares

 UDB field to zero with shrdist without
impacting other users. Share-by-uid mode is appropriate when
the desired level of control is an individual user.
Share-by-account-id mode is best suited when control by
project is preferred.

UDB entries for resource groups and shareholders (acids)
share the same

uid

 namespace as the entries for users who actu-
ally log in. There must be a unique

uid

 number allocated for
each resource group and shareholder as well as for each user.
When setting up a share-by-account-id hierarchy, there are
often acids used by accounting that are the same number as the

uid

 of a user login entry. The solution to this problem as shown
by Example 1, is to start the resource group and shareholder uid
numbering sequence at a high value, in this case 8000, but not
so high as to exceed sysconf (_SC_UID_MAX). Mapping all
existing acid and resource group numbers to the new numbering
sequence as 8000 + old-number solves the

uid

 namespace
problem but often requires some changes to accounting reports.

All necessary input to udbgen for adding Share hierarchy
definitions to the UDB can be prepared without modifying the
live system. This must be done as root and with sysadm privi-
lege if running security. First copy /etc/udb, /etc/udb.public,

Figure A

184

CUG 1995 Spring

 Proceedings

/etc/acid, and /etc/group to a private directory. (If UNICOS 8.3,
also copy the /etc/udb_2 directory and its contents.) Prepare an
initial udbgen input directives file by executing "udbsee -p. -a
-fupdate,shflags,resgrp,uid,shares,acids > local". By changing
the

resgrp

 and

acids[]

 fields in the local file and using "udbgen
-p. local", the local UDB will be modified. (Initial udbgen
directives for new entries should begin with create instead of
update.) The

shflags

 field is 0 for a user, 40000 for a resource
group, and 1000000 for a shareholder (i.e.acid) entry.

The "shrtree -p. -F ..." command was created in order to
verify whether the desired political structure has been imposed
on the local UDB. Examples 2. & 3

.

 show first the shrtree
output from analyzing the UDB on machine "hot" and second
the use of "shrtree -f" and a grep to find the UDB entry causing
a really bad error. Errors flagged by shrtree can be corrected by
modifying the local file of udbgen directives and repeating the
process until shrtree reports the local UDB is free from errors.
Some manual editing of /etc/acid may be required to eliminate
spurious account-id definitions.

Translating Political Goals Into UDB Entries-
Stage III

• Apply to real UDB and turn on NOSCHED

• Watch lnode creation with shrview/shrmon

• Coordinate new account processing

• Make modifications until satisfied

When ready to observe live lnode creation, apply the
prepared list of udbgen directives in the local file to the real
UDB by executing "udbgen local" without the "-p.". Using
"shradmin -F ...", set Share scheduling flags including
NOSCHED, to desired configuration. For example, setting
SHAREBYACCT, ADJGROUPS, and NOSCHED requires
executing "shradmin -F 032". Although it is possible to turn
FSS on on-the-fly, shutdown to single user state is recom-
mended. After turning on FSS with "shradmin -F ...", the
shrview and shrmon commands provide the capability for
monitoring lnode creation. There will be some user processes
remaining attached to the Root lnode for a while after turning
on FSS. When jobs that were running under the Root lnode
when FSS was turned on complete, processes should be
attached to terminal lnodes only. While testing FSS, the
shrdaemon should also be brought up to ensure harvesting
lnodes. At normal system startup, shrdaemon and shradmin
entries in the /etc/config/daemons file configure FSS automati-
cally.

Example 1: Shrtree display of SHAREBYACCT Hierarchy.

CUG 1995 Spring

 Proceedings

185

Procedures must be put in place to maintain the FSS hier-
archy in the UDB. Personnel responsible for setting up new
accounts must be educated as to the rules for assigning users to
resource groups and initializing acid lists. A frequent situation
that results from the

resgrp

 UDB field being left zero when a
new user account is created is that the new user logs in and
becomes entitled to 50% of the machine. Needless to say the
new user is happy but other users experience a marked drop in
responsiveness. Example 4. shows how to find these "Root
linked" users with the shrtree command. When making modifi-
cations to correct Share hierarchy definition problems in the
UDB, it is important to remember that processes created under
an erroneous lnode chain must fully exit the system and the
lnode harvested before a new lnode chain can be created that
shows the effect of the UDB changes.

Selecting FSS Parameters To Effect Policy-

Crucial Shradmin Parameters for Tuning

After removing the NOSCHED flag with shradmin, FSS will
begin to affect process priorities. It is reasonable to expect a

period of tuning experiments to select an appropriate combina-
tion of shradmin parameters before achieving desired FSS
behavior. Of the approximately 20 shradmin parameters, there
are 4 that should NOT be left set at their default settings (Table
1). Most important is the "-K" parameter which controls how

long "usage" will be remembered. At the default setting of 60
seconds, there exists no usage history for FSS to consider when
adjusting process priority. At a minimum, the "-K" parameter
should be set to 1 hour (3600 seconds) for normal FSS opera-
tion. Based on information from sites running FSS, typical "-K"

Table 1: Shradmin Parameters Requiring Adjustment

Example 2: Shrtree display of SHARE-BY-UID

Hierarchy.

186

CUG 1995 Spring

 Proceedings

parameter values seem to be of two flavors; either 6-8 hours or
3-5 days.

If running FSS with the LIMSHARE flag set, consideration
must be given to the shradmin "-U" parameter which specifies
a "ceiling" or "cap" on the amount of usage that will be consid-
ered when calculating process share priority. On machines with
8 or more CPU's or sites that charge for other things besides
CPU ticks (I/O, system calls, and especially memory),
maximum usage (-U) has to be set higher so that heavy users do
not get a "free ride". The "shrview -ds" command can be used
periodically to detect "clipping" of maximum usage. The
"Usage:" line of this display shows the highwater usage for that
sample period next to the value of the "-U" parameter. If the
highwater usage is close to the maximum usage, the shradmin
"-U" parameter should be increased.

If running FSS with the ADJGROUPS flag set, consider-
ation must be given to the "-Y" parameter which specifies at
what point FSS becomes concerned that a resource group is
receiving less than its entitlement. If very close adherence to the
machine share specified by the resource group lnode is desired,
"-Y" must be set close to 1.0; for example 0.90. The default

setting of 0.75 says that FSS will not become concerned about
adjusting lnodes unless a group is getting less than 75% of its
entitlement. Last, but not least, the "-G" parameter specifies the
depth of the Share hierarchy; the default setting of 4 only allows
3 levels below "Root". Most sites recently modifying their
UDB to support FSS have been ambitious in defining their
Share hierarchy; more than one site designed a Share hierarchy
requiring 7 levels.

Conclusion

Based on recent experience, the process of designing and
implementing a Share hierarchy in the UDB to support the use
of FSS in a complex diverse user community is best approached
in stages. Political scheduling goals must be clearly defined
before modifying the UDB. A new Share command (shrtree)
can be used to evaluate UDB Share hierarchy definitions and
point out errors before actually running "live". By following
the process described in this paper, the transition to using FSS
for managing different priority work can be made with relative
ease.

Example 3: Using Shrtree to Find Really Bad Errors

Example 4: Using Shrtree to Find User Entries With
Resource Group 0

