Sorting on the Cray T3D

Brandon Dixon, University of Alabama, Tuscaloosa, Alabama, and
John Swallow, Davidson College, Davidson, North Carolina

ABSTRACT: In this paper we study the sorting performance of the CRAY T3D on a variety of
sorting tasks. Our problems range from that of sorting one word per processor to sorting the
entire memory of the machine, and we give efficient algorithms for each case. In addition, we
give both algorithms that make assumptions about the distribution of the data and those that
make no assumptions. The clear winner, if data can be assumed to be uniformly distributed, is
amethod that we call a hash-and-chain sort. Thetimefor thisalgorithmto sort 1 million words
per proccessor over 64 processorsis less than two seconds, which compares favorably to about
four seconds using a 4-processor CRAY C90 and about 17 seconds using a 64-processor

Thinking Machines CM-5.

1 INTRODUCTION

Sorting integers is an easily understood and well studied
problem that is aways a natural choice when examining the
performance of a new computer system. We developed sorting
algorithms particularly suited for the CRAY T3D pardlel
computer and evaluated the performance of the machine on
several different sorting tasks. Our problems ranged from
sorting one integer per processor to sorting all of the available
memory of the machine, which is currently about 180 Million
words. Our goal is both to be able to sort integers quickly and
to gain insights into the efficient use of the T3D.

Sequentia sorting algorithms have been extensively studied
since the 1950's and 1960's. Our primary reference for sequen-
tial sorting algorithmsis Knuth [K]. Wewill assume knowledge
of some standard sequential sorts discussed in Knuth, such as
Quicksort, Radix sorts, and Radix-Exchange sorts.

Parallel sorting algorithms have been of particular interest
since 1968 when Batcher developed the bitonic sorting algo-
rithm [K]. This sort requires (9(Iog2 n) time using n processors.
His algorithm gives afixed set of comparisons, called a sorting
network, that can be easily implemented on aparallel computer.
In 1983, Ajtai, Komlos, and Szemeredi gave a sorting network
requiring ©(log n) time using n processors [AKS]. This algo-
rithm istheoretically optimal, but from apractical point of view
the hidden constants in the O-notation are far too large to
produce useful agorithms. Reif and Valiant proposed a more
practical O(log n)-time randomized algorithm for sorting,
known as flashsort [RV]. Many other parallel sorting algo-
rithms have appeared in the literature, including parallel
versions of radix sort and quicksort [B], and parallel merge sort

24 CUG 1995 Spring Proceedings

[C]. An extensive paper on implementing sorting algorithms on
the Connection Machine CM-2 appearsin [BLMPSZ].

2 MACHINE DESCRIPTION

The CRAY T3D is a paralel computer comprised of 128
DEC Alpha processors running at 151 Mhz with a network
connecting them in a 3-D toroidal configuration. Each Alphais
a 64-bit RISC processor that has its own memory, and all
processors have the capability to read from and write to the
memory of any other processor. For this paper, the memory of
each processor was 2 MW, about 1.6 MW of which was avail-
able to the user. Each processor of a CRAY T3D is equipped
with a direct-mapped data cache of 1,024 words, and loads and
stores are done in 4-word cache lines.

There are several other machine-specific capabilities on the
T3D. Each Alpha processor can request several types of
memory operations by setting certain high bits in the memory
address. These capabilities include a read-ahead mode, which
improves sequential local memory reads, and non-cached reads,
to permit other memory locationsto reside in the cache. For the
purposes of this paper wetook advantage of only the read-ahead
mode for memory references. Several functions are supported
by the interconnection network. One is that of shared memory
reads and writes, which we will cal, in accordance with the
names of their C functions, "shmem get" and
"shnmem put ". Another capability is to perform a hardware
barrier among al processors. Thisbarrier isimplemented using
a flag bit on each processor, such that when a processor
executes abarrier command, it setsits barrier bit and waits until
all processors barrier bits are set before proceeding. Once all
processors reach the barrier, the barrier bits are cleared. There

isalso aprovision to wait until all remote memory writes have
completed by waiting for all acknowledgments from remote
processors to be received; this command will be called a
net_quiet. Finaly, the function “memory barrier” flushes the
buffer which holds data to be stored or transmitted; this verifies
that the data has been written to local memory or has entered the
interconnection network. For the rest of this paper, a “barrier”
will refer to the execution of these operations in the following
sequence: memory barrier, net_quiet, hardware barrier; this
barrier insures that al remote memory operations have been
compl eted.

We fix some notation concerning programs on the T3D. A
tick will denote one clock cycle. We will denote by N the
number of processors used in a program; N is constrained to be
a power of 2. The individual processors we will dencte by
Po. .. PN-1, and, for pseudo-code, mype _num will denote the

processor number, so mype_num on Pj will bei.

We point out that our run times are given generally for a
single piece of C code optimized for running on 64 processors
with a very large data size. For many fewer or many more
processors, or much smaller data sizes, other methods would
undoubtedly do better. We give run times for a variety of data
sizes and number of processors for comparison, and in each run
the dataiis fairly random and well distributed. We made efforts
to optimize our use of the data cache, but since our code wasin
C, we undoubtedly faced instruction and data cache misses
which good assembly subroutines could avoid. We did,
however, use a version of C developed by Bill Carlson at the
Supercomputing Research Center, and we note that his AC
compiler typically gained 30% over the released CRAY C
compiler.

3 SORTING ONE INTEGER PER
PROCESSOR

The problem begins with one integer stored at each of the N
processors of the machine, and the goal is to finish with the
integer at Pg smaller than that at P1, the one at P1 smaller than

that at P2, and so on.
We studied two different algorithms to solve this problem.

The first method that we tried was chosen because of its ease of
implementation. The algorithm has three basic steps:

1. From each Pj, send the data element to array locationi at Pg.
2. Sort the array at Pg.
3. From Pq, send array element i to Pj for all i.

While this method is far from asymptotically optimal, we
had some hope that because this is such a small, special caseit
might be the fastest solution. Our preliminary results showed,
however, that our second method was a clear winner, even with
these small data sizes, and thus no more effort was put into opti-
mizing this method.

Our second idea for the one word problem was to use a
sorting network. A sorting network is a fixed compar-

ison-exchange sequence that is guaranteed to sort any input
permutation. Because the number of data elements for this
problem is N, always a power of 2, a natural choice is to use
Batcher's Odd-Even merge sorting network. The network
consists of (logN) (1 + logN)/2 rounds, and in each round
selected pairs of processors compare and exchange their data.
Although the asymptotic complexity of Batcher's method isO(N

log2N) comparisons, the number of rounds is close to optimal

when sorting 2K elements for small k. What follows is a
pseudo-code description of Batcher's algorithm and a discus-
sion of our implementation. For a complete description and
analysis of sorting networks and Batcher's method see Knuth.

Let N be the number of processors, which is the number of
data elements, and d, p, g, and r be integer variables. In
pseudo-code Batcher's algorithm is the following.

let g =N/ 2
while (p > 0)
let g =N/ 2, d=p, and r = 0;
repeat
if mype_nunx(N-d) and
(mype-num & p) = r then
send your data to
processor mype_num+d
wait for the data from
processor mype_num+d
keep the smaller of the data itens;
otherw se if nype_num >=d and
(mype_numd) & p =r then
send your data to
processor nype_numd;
wait for the data from
processor nype_numd;
keep the larger of the data itens;
let d =9g-p, q=q/ 2, and r = p;
until p > q;
let p=p/ 2;
end.

The major concern inimplementing this algorithm isinter-
processor synchronization; the program must insure that every
processor waitsfor the dataword from its partner on aparticular
round. One strategy isto synchronize by executing barriers. On
agiven round of the repeat...until loop, every processor which
sends aword of data insures that its data has been received by
executing a barrier after the send. Since al processors must ex-
ecuteabarrier, we havethosethat areidle also execute abarrier.
Since the overhead to execute abarrier islarge compared to the
timeto send one word to another processor, this method dramat-
ically increases the run time.

Instead of using barriers to synchronize communication, we
chose to implement our own method of local synchronization
between pairs of processors. Each processor first initializes an
(log N) (1~ log N)/2-long array, one entry for each round of the

algorithm. On the Kt round, let Pj and Pj+q beapair of proces-
sors comparing data. We have Pj send its data to position k in

CUG 1995 Spring Proceedings 25

Pi+d 's array, and then we have Pj+dq busy-wait until the value

of element k of the array changes from the initialized value. In
this manner the processors are not waiting for their sends to be
received by their partners, only that they have received the data
from their partners. This method is significantly faster than
using barriers, and since some processorsare not involvedin the
last few rounds they are now free to begin other tasks earlier
than the other processors, which may be helpful in some appli-
cations. The sole difficulty in coding this method is the
construction of a busy-wait loop on a memory location, since
without explicit indications to the contrary, a compiler will
assume that the memory location cannot change during the
execution of the loop and will set up an infinite loop. We give
the run times for different numbers of processors N in the table
below. Wefind that the run times are approximately 1250 + 195
(log N)(1 + log N)/2 ticks, or 195 ticks per round with some
overhead.

One Integer Per Processor: Table of run times
N [4 [8 [16 [32 [64 [128
Clock ticks | 1787 | 9432 | 3176 | 4208 | 5393 [6680

4 OUT-OF-PLACE METHODS

For the remainder of this paper, the sorting problem begins
with an array of NUMWORDS integers stored at each of the N
processors of the machine and the goa is to finish with a sorted
array at each processor such that no integer at Pgis greater than

any integer at P|, no integer at Pj is greater than any integer at
P2, and so on.

For this section we will restrict NUMWORDS so that the
datafitsin at most half of the memory available to the program.
This permits out-of-place algorithms that store an extra copy of
the data. We studied two algorithms that fall into this category:
a Batcher mergesort and a radix sort. While the Batcher sort
succeeds for all data sets, the radix sort makes the assumption
that the log N high-order bits are uniformly distributed. The
radix sort is morethan twice asfast asthe Batcher mergesort for
large data sets. We note that algorithms for sorting more data,
considered later in this paper, are competitive with these algo-
rithms even for small data sizes.

4.1 TheBatcher Mergesort.

The Batcher mergesort is a merging network, i.e., a fixed
merging sequence among N processorsthat is guaranteed to sort
any input permutation. Each processor begins by sorting its data
using a sequential sort. Then a sequence of 2-processor merges
is executed, where the processors that merge at each round are
those that compare and exchange in the I-word agorithm
described above. Since the sequence is the same, we give
pseudo-code only for the merge, which replaces the line "keep
the smaller (larger) of the data items" in the algorithm for the
one-word sort.

The 2-processor merge begins with each processor having a
sorted array of NUMWORDS integers. When the merge of

26 CUG 1995 Spring Proceedings

processor Pj and Pj+(is completed, the array at Pj contains the
NUMWORDS smallest integers from the two arrays and Pj+(

contains the largest. To achieve this, the processors must
exchange data, and the simplest algorithm is to have Pj send
Pj+d acomplete copy of its data and Pj+g send a copy to Pj as
well. This creates unnecessary communication, however. Since
processor Pj is keeping the small values, it can begin merging
from the small ends of the arrays, and likewise Pj+g can begin
merging from the large ends. Both processors complete when
they have merged atotal of NUMWORDS integers.

Notethat Pj will use the same number data valuesfrom Pj+(
in its merged array as Pj+d uses from Pj. This fact implies that
the extra communication can be eliminated, as follows. When-
ever processor Pj uses a value from its partner, it sends its
partner another value. Pj does not need to inform Pj+d that it
sent the data; we are assured that Pj+d will send another value,
so Pj simply waits to receive this next data element. Of course
the overhead is quitelargefor sending only one data element, so
acompromise of sending afraction of data elementsworks best.
Wewill denote the size of the communication block BUCKET.

Let A[0..NUMWORDS-1] be an array which contains the
processor's sorted list, B another array of the same size, C an
array of length BUCKET, and i, j, k, | integer variables. We
constrain BUCKET to beadivisor of NUMWORDS. All other
variables are as in the pseudo-code for the one-word Batcher
sort. The processor that collects the smaller of the data items
executes the following pseudo-code.

send Al NUMAORDS- BUCKET. . NUMAORDS- |]

to array C at processor
nype_numtd;

wait until array C receives

Al 0..BUCKET-1] from processor
nype_nunmtd;

let i =0, j =0;

l et k = NUMANORDS- BUCKET,

while (i < NUMAORDS) do

if (B[j] < Ali]) then

let 1] =B[j];

increnent j and |;
el se

let CI] = Ail;

increment |;
increment i;

if (j=BUCKET) then

decrenent k by BUCKET,;

send Al k..k+BUCKET-I] to array
C at processor nype_numtd;

let j = 0;

wait until array C receives next
BUCKET words from processor
nmype_numkd;

end.

The result of the merge now liesin array B. The processor
which collects the larger of the data items simultaneously
executes the following pseudo-code.
send A[0..BUCKET-1] to array C
at processor nype_numd;

wait until array C receives
Al NUMAORDS- BUCKET. . NUMADRDS- |]
from processor nype_numtd,

let i NUMAORDS - 1, j = BUCKET -1;

let k = 0, 1 = NUMAORDS;

while (i >= 0) do

if (B[j] > Ali]) then

let (1] =B[j];

decrenent j and |;
el se

let 1] = Ali];

decrement |;
decrenment i;

if (j<0) then
increment k by BUCKET,;
send A [k Kk+BUCKET-1] to array C
at processor nype_numd;
let j = BUCKET,;
wait until array C receives
previ ous BUCKET words from
processor nype_numtd;

end.

Theresult of the merge now liesin array A.

Our implementation alternates the roles of arrays A and B at
every round, merging from one into the other, and therefore
avoids having to copy the datafrom A to B or fromB to A. The
local synchronization issues are greater than those of the
one-word sort. Since we cannot afford to have many extra
copies of array C, we execute barriers between each round.
However, we still need two copies of array C, oneto use in the
merge and the other to receive data, and we use busy-waits on
flags to coordinate the alternation of the copies of array C.

The Batcher mergesort requires two buffers of size
NUMWORDS and two buffers of size BUCKET, soit facesa
data size limit of roughly one-half the memory of the machine.
We found that the optima BUCKET vaue for
NUMWORDS= 703125 was approximately 1125 words. A
larger size increases the possibility of sending too many words,
since only afraction will actually be needed for the merge, and
for a smaller size the communication overhead begins to
degrade performance. Because the mergesort is an out-of-place
sort, we could have used an out-of-place sequential sort for the
initial single-processor sorts, but we opted for a version of
Quicksort.

In the tables that follow, by "wpp" we mean "words per
processor” . All run times are in millions of ticks (megaticks
MT); thus150 MT isone second of CRAY T3D cputime (1 pe).

Note that the sequential sort takes more than half the time
when NUMWORDS s greater than 500 for N = 4,10000 words
for N =8, or 500000 for N = 16. When N = 128, Batcher sorting

NUMWORDS=703125 words devotes 30% of the running
timeto theinitial sequential sort.

Batcher Mergesort: Table of run times (MT)
wpp N 1 3 16 32 64 198
500 119 175 .246 .378 491 730
1000 244 .356 .503 761 .994 1.26
5000 145 1.92 2.50 3.42 4.30 5.33
10000 3.13 3.95 5.02 6.40 7.95 9.68
50000 17.9 22.0 273 33.9 41.8 50.5
100000 37.6 45.5 55.0 67.2 81.1 97.6
500000 211. 252. 305. 371. 453. 540.
703125 301. 368. 438. 537. 644. 775.
Batcher Mergesort: Table of run times excluding initial sequential (MT)
wpp N 1 3 16 32 B4 128
300 067 111 .185 312 429 .666
1000 .109 217 365 624 858 1.13
5000 531 1.01 1.59 2.50 3.40 4.41
10000 .958 1.89 2.96 4.30 5.91 7.49
50000 4.54 8.76 14.2 20.9 28.7 37.1
100000 8.74 16.9 26.5 37.8 51.8 69.1
500000 43.1 86.8 136. 205. 286. 368.
703125 61.6 126. 192, 292. 398. 537.

4.2 TheRadix Sort.

The radix sort assumes auniform distribution in the high log
N bits of the data because these bits determine the processor
number where the data will be stored at the conclusion of the
sort. The sort first separates the data into N portions based on

the high log N bits. Then each processor sendsiits ith portion to
processor Pj. Finally each processor separatesits datainto 1024

buckets (for large data sizes) based on the next ten bits and,
within each bucket, begins a radix-exchange sort, which
employs successive Quicksort-style partition passes where
partitions are made according to bits. It is standard to use a
specialized sort, such as an insertion sort or a sorting network,
when the partition becomes sufficiently small.

We implemented the data movement by an interprocessor
conference, as follows. First, every processor Pj sends the

length of itsjth portion to an array on processor Pj, indexed by
i. Then each processor Pj computes the partial sums of the
received lengths; this computation results in a N-long list of
indices I[0 . . N-I] into the target array on Pj. Then each
processor Pj sends out | [i] to an array on processor Pj, indexed

by j, for all i. At this point Pj knows where on Pj to send itsjth
portion, and does so using a shmem-put.

The pseudo-code for this radix sort is the following. We
require that no more than NUMWORDS+EXTRA data
elements have the same top log N bits and allocate this much
spacein array A and that no more than BUCKET S| ZE initial
datawords have the sametop log N bits on any processor. Let i,
j» k I beintegers, A [0.. NUMWORDS+EXTRA-I] an array,
thefirst NUMWORDS words of which contain the initial data,
temp[O .. N-I][O .. BUCKETSIZE-1] an array to hold buck-
eted data, cnt[O . . 1023], cnt2[0 . . 1023], and off[0 . . 1023]
arrays of integers, and tlen[O . . N-1] an array to hold the sizes
of each bucket, initialized to zero.

CUG 1995 Spring Proceedings 27

let i = 0;
r epeat
let j =the top log N bits
of Ali];
let tenpt[j][tlen[j]] = A[i];
increnent i, tlen[j];
unti |l i =NUMADRDS;

hol d conference with tlen[] of
each processor to determ ne
where in array A on processor
j each processor should send
temp[j][0..tlen[j]-1];
send tenmp [j][O0..tlen[j]-1] to
processor j at conputed |ocation,
for each j;

make 1024 counts cnt[0..1023] of
number of elements in Awth
each 10-bit pattern (bel ow the
top log N bits);

initialize off[i] to the sum of

cnt[0..i-1] for each i in 0..1023;
let cnt2[i] be the sumof cnt[O0..i]
for each i in 0..1023;
let i = 0;
r epeat
let j
r epeat
let | =ten bits after top log
N bits of j;
let k = Aloff[I1]];
let Aloff[l]]5;
increment off[I];
let j = k;
until |=i;
while (off[i]=cnt[i] and i<1024)
increment i;
until i=1024;
for each /j in 0 . 1024, performa
radi x- exchange sort on each
bucket of A;

end.

This fairly ssimple sort is a good test case for several T3D
architecture features such as the read-ahead capability and the
use of barriers. When N = 64 and NUMWORDS=703125,
using the read-ahead capability reduced the time for the initial
separation phase by about 3 million ticks down to 39 million
ticks. With the same values of N and NUMWORDS, we used
barriers between each round of shmem__putsin the datamove-
ment phase to bring the time for the stage down 6 million ticks,
to 17 million ticks.

Comparing this sort with other sorts in this paper, we find
that the sequential sort is more dominant in this radix sort than
in any other sort: for N = 64, the sequential sort comprised 76%
of the total time. Still, the network contention for large N
becomes significant: the runtimesare very close given the same
number of datawords per processor, until we reach 128 proces-
sors. The time for the interprocessor conference grows but is
negligible (less than 20,000 ticks for N = 64), and the time to

= ANoff[i]];

28 CUG 1995 Spring Proceedings

separate the data into buckets at the beginning is slightly lower
(8 million ticks) when the number of processorsis small enough
so that the counts can be kept in cache. Ignoring these small
effects, most of the run-time penalty, is due to increased
demands on the network. Consider that as N grows, each
processor sends the same number of words but does so in
smaller packets with more network contention. The N = 128
case, where 127 rounds of 128 simultaneous messages of size
about 5700 words were sent, was 10,000,000 ticks (10 MT)
slower than the N = 64 case, in which 63 rounds of 64 simulta-
neous messages of size about 11700 words were sent.

Talf-Memory Radix Sort: Table of run times (MT)
wpp N 4 8 16 32 61 128
500 291 .297 341 .348 .385 .580
1000 426 432 .460 493 .529 .669
5000 1.36 1.44 1.45 1.51 1.58 1.66
10000 2.69 2.85 2.85 2.99 3.04 3.18
50000 14.2 14.6 14.9 154 15.5 16.2
100000 29.0 30.0 30.7 31.4 31.7 33.0
500000 155. 160. 164. 167. 168. 175.
703125 221. 228. 233. 238. 239. 246.
Half-Memory Radix Sort: Table of run times excluding initial sequential sort (MT)
wpp N 4 8 16 32 64 128
500 .0403 .0501 .0607 .0802 116 197
1000 0741 .0858 0964 119 .156 .226
5000 .309 .359 .400 447 480 578
10000 .681 693 741 .833 .898 1.06
50000 2.83 3.25 3.61 3.98 4.15 4.82
100000 5.65 6.56 7.21 7.90 8.19 9.53
500000 28.0 32.7 36.2 39.3 40.5 47.2
703125 39.3 46.0 50.5 55.2 56.8 66.3

5 SORTING MORE THAN HALF THE
MEMORY OF THE MACHINE

The sorting problem is the same as that of sorting less than
half the memory, but we no longer allow an extra buffer of
comparable size to the data. We consider several sorts. amodi-
fication of the radix sort from the previous section; a partition
sort, which is reasonably distribution independent; and a
hash-and-chain sort, which requires uniform distribution in
moretop bitsfor peak performance. The Batcher mergesort was
not extended dueto the large performance penalty of anin-place
merge.

5.1 The Partition Sort.

The partition sort is an attempt to create a distribution-inde-
pendent in-place sort for the T3D. Thedifficulty in doing so lies
in the interprocessor communication, because we have several
sequential in-place sorts available such as Quicksort and
Radix-Exchange sort. Our sort proceeds in much the same way
as the radix sort, where first data is sent to its destination
processor and afterwards the datais sorted sequentially on each
processor.

The algorithm is comprised of three stages. First, al proces-
sors jointly determine the N-tiles of the data, i.e., they each
divide their datainto N portions such that

(8)no element in partition i is greater than any element in
partition j fori <j, and

(b)for al i, the sum of the lengths of all ith partitions across
al N processorsisNUMWORDS.

By doing so, we separate the data so that after the second

stage, wherethe ith portions are sent to processor Pj for al i, we

have achieved relative order among the processors. We finish
by performing the third stage, a sequential sort.

The method to divide the data is to repeat Quicksortlike
partitioning steps as follows. Choose a partition element for all
processors; at each processor, partition the data with respect to
thiselement; compute the sum acrossall of the processors of the
number of data elements|ess than the partition value; and if the
sum is not the desired value, then choose the next partition
element, using a binary search. The data at each processor is

now partitioned into N blockswhere the ith block is destined for
Pj.

If data elements are identical, some additional work may be
necessary, since we must insure that the total number of data
elements destined for any processor is exactly NUMWORDS.
If we find that the total number of data elements less than our
partition element is less than NUMWORDS and that the same
total for the next greater partition element is larger than
NUMWORDS, then we face a situation where the partition
element is repeated. We then execute a clean-up phase of the
first stage, where we hold an interprocessor conference to
decide which repeats of the partition element should be placed
in either side of the partition.

We now give pseudo-code for the first stage of the algo-
rithm, beginning with code for the simple partitioning of the
data. Let A bethe array of dataand I,r, and p integers such that
we would like to partition A [l . . r] with respect to p. The
following code partitions the data and returns the index to the
rightmost element strictly less than the partition element p.

while (Ali]<p) and (i<j)

increnment i;
while (A[j]>=p) and (j>i)
decrenent j;
if (i=j) then
exit and return i;
r epeat
switch the values of Ali], Ajl;
r epeat
increment i;
until (A[i] >=p);
r epeat
decrenent j;
until (A[j] <p);

until (i<=j);

return i;

end.

We next give pseudo-code to find the partition point of all of
the data such that the sum of the number of elementsin the | eft
partition is M, assuming that no partition element repeats. Let
A bethe array of data, lowptr and highptr indicesinto A such
that we are partitioning A[lowptr . . highptr], plow and phigh

integer elementswhich arelower and upper bounds for the data.
The code returns the partition element and the index to the
right-most element strictly less than the partition element p.
Temporary variables are integers newp, p, total, and size.
|l et newp = the average of all of
the first, mddle, and |ast
el ements of A [lowptr.. highptr]
Oon every processor;
r epeat
let p = newp;
partition All owptr.. hi ghptr]
with respect to p;
let size = index of rightnost
element less than p in
A [lowptr..highptr];
let total = size across
all processors;
if (total>M then
I et phigh = p;
I et newp = (plowt+phigh)/2;
else if (total<M then
let plow = p;
l et newp = (pl ow+phi gh)/2;
if (newp<p) then
| et highptr=size-1;
el se
let |owtr=size;

until total =M

return size and partition el enent p;

end.

In order to find the N partitions recursively, we have the
following pseudo-code. Variables are as before. We begin this
code with depth equal to log N, M = NUMWORDS « N/2,
offsst=NUMWORDS* N/2, low =0, high=NUMWORDS—
1, and upper and lower bounds for the data phigh and plow.

find partition elenent p such that

sum of nunber of elements in |eft
partition is M

l et size = index of rightnost el enent

less than p in Al low.. high];
decrenent depth;

if (depth>0) then

recurse with [ow = | ow,
hi gh = size-1, plow = plow,
phigh = p, depth = depth,
M= M- offset/2, and
of fset = offset/2;

recurse with |ow = size,
hi gh = high, plow = p,
phi gh = phi gh, depth = depth,
M= M+ offset/2, and
of fset = offset/2;

end.

While the implementation of stage oneis relatively straight-
forward, and the execution of stage three using Quicksort is
efficient, the datamovement in stage two is of particular interest
for several reasons. Designing an efficient scheme which
succeeds on any data set. is a hard problem, since pathological

CUG 1995 Spring Proceedings 29

cases may occur in which some processors must send all of their
data to others while other processors must spread their data
among many others. Also, determining the correct sequence of
interprocessor communications to use when sending data is a
serious implementation issue. If the sequence is broken up into
many communications among few processors, the total time
will be great; if one assumes N—1 rounds during which each
processor sends a portion of its data to another, there will be
significant contention on the T3D network and there exists the
possibility that there will be insufficient space on destination
processors to receive data. Empirical evidence indicates that
some communication permutations among processors are
significantly better than others, although the time to send from
one processor to any other with no contention has very little
variation. Employing simple methods, such as having each
processor send on round i to processor (mype_num-+i) mod N,
makes coordinating data movement easier, but we have found
that some of these permutations perform worse than random,
precisely because these very ordered permutations are ordered
poorly. Since a T3D node contains two processors but shares a
network connection, it can be helpful to send to processors that
arenot sending or are sending very little data, although this does
not help usin this particular case. Similarly, having processors
send only along one of the three T3D network axes can improve
bandwith. It is an open question how to design N—1 rounds
which maximizes T3D network bandwidth.

We implemented the data movement stage as follows. We
assume that the data buffer is larger than NUMWORDS by a
small amount which is proportional to the data size, and that the
extra space lies at the left end of the buffer. Recall that each
processor begins this phase with a contiguous sequence of vari-
able-sized buckets of data, such that bucket j must go to
processor Pj. First, for al i, Pj shifts some of its dataleft so that

the beginning of bucket 0 is at the beginning of the buffer and
the extra space, called the hole, lies between bucketsi and i + 1.
Then we execute N—1 rounds |. N—1 where on round j each
processor Pk sendsiits data destined for P(j+k)modN to the hole

on processor P(j+k)modN, thereby shifting the holes on each

processor to the right and possibly changing its size. The
processors continue in succession, wrapping around the buffer
when necessary, and after completion of the rounds data is
moved so that the data is contiguous. As long as the hole on
each processor does not overflow at any round, this method of
data movement will succeed.

The chance of success of this method varies with the distri-
bution of the data and the amount of extra space in the buffer.
The extra space on each processor must be at least
NUMWORDS/N, and if the dataiis reasonably well distributed,
this space can be smaller than 3+ NUMWORDS/(2N), or about
2% of NUMWORDS when N = 64. The less distributed the
data, the greater this space should be, and the space need be no
larger than the size of the data buffer, in which case the algo-
rithm is guaranteed to succeed.

30 CUG 1995 Spring Proceedings

In our implementation we compute whether or not the data
movement method would succeed, and, if not, we apply the
following randomization to the data. We first run through the
data on each processor in groups of 12 words (three cachelines)
and exchange these 12 words with a random contiguous
preceding segment of 12 words. This randomly permutes the
dataat each processor. Then we divide the datainto N segments
of length NUMWORDS/N, such that segment i is sent to Pj

using a movement scheme much like the above. This move-
ment, however, is guaranteed to succeed since the data blocks
are of equal length. After this randomization, we repartition the
data, using the partition elements from the previous trial, and
now the data movement scheme will succeed with high proba-
bility since the distribution of the sizes of the partitions on each
processor is close to uniform.

Partition Sort: Table of run times (MT)
Wop N 1 B 16 32 54 128
1000 .283 410 796 2.32 9.81 30.7
5000 1.57 1.91 2.49 4.46 13.6 87.3
10000 3.40 3.64 4.75 6.82 16.8 101.
50000 19.5 21.1 22.7 28.0 39.0 128.
100000 404 45.3 48.3 55.2 69.0 167.
500000 240. 253. 264. 290. 319. 442.
703125 339. 358. 383. 413. 449. 583.
1000000 505. 537. 565. 598. 656. 77
1250000 663. 711. 754. 802. 942.
1406250 851. 912. 1,095.

Partition Sort: Table of run times excluding initial sequential sort (MT)
wpp N 4 8 16 32 64 128
1000 143 277 663 2.26 9.68 30.6
5000 587 920 1.52 3.50 12.7 86.3
10000 1.22 1.62 2.61 4.81 14.6 99.0
50000 5.49 8.30 10.1 15.0 26.3 115.
100000 11.2 16.0 19.4 27.4 41.1 139.
500000 61.1 84.4 98.7 124. 156. 279.
703125 78.8 113, 142. 172. 217. 344,
1000000 115. 162. 197. 246. 304. 436.
1250000 193. 255. 308. 365. 509.
1406250 351. 399. 603.

In all of the runs timed above, the randomization step was
not needed; had it been, the running time would have increased
by 30% to 40%. One should try to choose the size of the extra
space so that this step is infrequent, and so for these runs we
chose the extra space to be close to the 1.5/N factor for large
data sizes and chose it larger for particularly small data sizes.
The holesin thelower left corner of thistable are dueto the fact
that extra space requirements grow larger as the number of
processors decreases, and thus the memory of the machine was
no longer large enough to hold both the data and the extra space.
What is clear from the table is that a severe penalty is paid
above 16 processors, and for small data sets the dominant factor
in this penalty is the communication necessary to determine a
partition value. At N = 128, it actually takeslonger to determine
the 128 partition values than to sort the data on the processor.
As the number of processors grows, some improvement to the
algorithm to find the N-tiles may be necessary. The parti-
tion-and-conference takes 41% of the total time (whereas
Quicksort took 54%) for N = 64 with 1 million words/processor.

The times can be improved if the data is known to be of a
particular type. For instance, by assuming relatively random

data, we were able to modify our code so that we found N-tiles
in 2/3 of the previous time. In the code which found the N-tile
partition points, we replaced the binary search with a search
which was biased more towards the initial guess at the outset
and which used this bias less and less as the search progressed.
The choice of methods at the beginning of such a search is of
chief importance since the partition steps at the beginning,
larger data sets, cost the most.

It is interesting to note that the proportion of repeats in the
data can both increase and decrease the time to find the N-tiles.
With a moderate number of repeats, the number of partitioning
roundsislessthan average, and very quickly the clean-up phase
of stage oneis entered, where the communication to determine
exact N-tilesisrelatively cheap compared to many more confer-
ence-and-partition steps. Of course, with avery large number of
repeats performance degrades since several partitioning rounds
are redundant (before flagging a repeat). Special code could
certainly be written to take care of this case, but a different sort
would be appropriate on such data.

5.2 TheRadix Sort.

In order to permit the radix sort alarger data size, we incor-
porate two changes from the out-of-place radix sort. First,
instead of separating the data into buckets at the beginning, we
do a radix-exchange sort on the top log N bits. This change
releases us from the requirement of having extra buckets large
enough to hold the data. The second change is to use the data
movement phase from the preceding partition sort, modifying it
to allow each processor to receive a different number of words.

Thefollowing tables show the run times of thisversion of the
radix sort:

Radix Sort: Table of run times (MT)
WP N 1 8 16 32 64 128
1000 180 .229 .374 906 2.99 13.2
5000 1.30 1.42 1.65 2.28 4.56 15.1
10000 2.67 2.96 3.31 4.34 7.68 21.3
50000 14.3 15.4 16.5 18.6 22.9 36.9
100000 29.6 31.9 34.3 37.5 41.0 59.0
500000 157. 168. 180. 191. 205. 236.
703125 226. 243. 259, 275. 291. 320.

1000000 322. 350. 370. 396. 417. 459.
1250000 441. 463. 499. 526. 538.
1406250 565. 592. 649.

Radix Sort: Table of run times excluding initial sequential sort (MT)

wpp N 4 8 16 32 64 128
1000 0696 115 .254 .789 2.87 13.1
5000 .299 430 .651 1.29 3.67 14.1
10000 615 -859 1.26 2.19 553 192
50000 3.05 4.22 5.35 7.12 11.8 255
100000 6.27 8.68 10.9 13.99 17.7 35.7
500000 30.0 40.7 52.1 65.1 774 108.
703125 43.2 60.3 75.3 92.4 108. 136.
1000000 58.3 84.3 106. 132. 154. 198.
1250000 105. 131. 162, 190. 239,
1406250 183. 214. 269.

Again, as in the out-of-place radix sort and the preceding
partition sort, the cost to use N = 128 processors becomes rela
tively expensive as the interprocessor conference prior to the
data movement phase involves more and more processors
which experience significant network contention. Comparing
these tables with those for the out-of -place radix sort, we notice

that the out-of-place version performs better on every data size
(for which it is capable) and number of processors save 10,000
words on four processors. The out-of-place version loses
because it is separating the data on each processor into four
buckets, thus reading and writing every data word, while the
present version does only a 2-bit radix exchange, reading every
word but having to write only a fraction. We could envision a
special sort for small data sizes on a small number of proces-
sors, employing the 1- or 2-bit radix exchange from the present
sort and the data movement scheme from the out-of-place,
which would beat both, but the utility of such a sort seems
limited.

5.3 TheHash-and-Chain Sort.

The hash-and-chain sort operates on the principle that if one
knows the approximate position of a data element in the final
sorted list, it should be placed there. On very uniform data this
idea improves on the radix algorithms mentioned above,
although for peak performance this algorithm requires a larger
amount of extra space. This sort is about three times as fast as
the Batcher sort and isfaster than any other sort for virtually any
datasize.

The basic strategy of this algorithm is similar to that of the
radix sort described above; we separate the data by destination
processor, send it in several rounds, and finish with asequential
sort. The separation phase is dlightly different than that of the
radix sort. Wefirst separate the datainto buckets on the top log
N bits asfollows. We declare the data buffer to be N contiguous
buckets of equal size. Then we run through the data, picking up
each dataword and deciding its target buffer. We exchange our
element with an unbucketed element in the target buffer, and
repeat.

After the data is bucketed, we then employ the data move-
ment scheme used for the out-of-place radix sort. We have

processor Pj save its ith bucket to a separate array and then
execute 1 . . N—1 rounds, where on round k processor Pj sends

its(i + k)'[h bucket to the empty bucket on processor Pj+k. Then

each processor collapsesits datafrom the separate array and the
N—21 buckets into a contiguous segment.

Now we are ready to describe the hash-and-chain sort. First
we require some extra space at the end of the buffer. We run
through the data, picking up each data word and calculating its
approximate location in the sorted list by masking off the top
log N bitsand performing afloating-point multiply. If thistarget
location is empty, we place the hashed element there. If this
target location contains a data element which has not yet been
hashed, we exchange it with our hashed element. If this target
| ocation contains adata el ement which has already been hashed,
we execute aforward insertion sort to place our element in order
among a short segment of hashed elements.

There are severa strategies to determine whether or not a
location is empty, contains an unhashed data element, or
contains ahashed dataelement. Oneisto useaflag valuefor the
empty spaces, where a flag value is some value which no data

CUG 1995 Spring Proceedings 31

element can take, and to use a spare bit in the dataword to indi-
cate that the data word has already been hashed, but we wished
to allow more general data than 63-bit data with a flag value.
We can eliminate these requirementsfor the multiprocessor sort
by adopting a different strategy. Since this sequential sort
occurs at the end of the sorting algorithm, we are guaranteed
that the top log N bits of each data word on a given processor
are the same, so we are free to use two of them as flags aslong
asNisrequired to be at least 4.

We give pseudo-code for the final sequential sort asfollows.
Let A[O.. NUMWORDS-1+EXTRA] bean array of integers,
of which the first NUM words are data. (NUM might not be
NUMWORDS, dueto the fact that not every processor has the
same amount of data at this stage.) FLAGVAL is some value
which is not identical to any data element and which is recog-
nized as not being a hashed value. For us, FLAGVAL can be
chosen to be any data word with the second high-order bit
changed, since we change the high-order bit indicate having
been hashed. Let i, j, k, 1, t be integers.

initialize Al NUM.NUMAORDS- 1+EXTRA

to FLAGVAL;
let i = 0O;
whi |l e i <NUM do
if Ali] has not been hashed then
let j = Ali], a[i] = FLAGVAL;
r epeat
let 1 be the result of
maski ng off the top | og
N bits of j and nmultiplying
by 1/ NUM
if ALl = FLAGVAL then the
location is enpty, so
do
let t = FLAGVAL;
let AIl] =] with the
hashed bit set;
el se the |l ocation contains data,
so do
let k =j with the hashed
bit set;
while (A[I] has been hashed)
and (k > A[I]), continue
insertion-sorting:

let t = All];

increnment |;
let AllI] = k;
increnent |;

if All] has been hashed then
while AlI] has been hashed
switch A[I] and t;
increnment |;
switch A[I] and t;
let j =1t;
until (t is not FLAGVAL) and
(j does not have the hashed
bit set);
increnent i;

32 CUG 1995 Spring Proceedings

let i =0, j =0;
whi |l e i <NUM do
if Alj] is not FLAGVAL then
let Ali] = Aljl;
increment i;
increnent j;

end.

We found that on the T3D the extra space at the end of the
data buffer needed to be roughly NUMWORDS/4 if the
method wasto perform well on random data. Therefore this sort
should only be considered a 4/5 memory sort, while the radix
sort presented above can, for large N, approach the full memory
size, needing only extra space of size 3+ NUMWORDS/(2N).
If spaceisavailable, the extra space should be closer to one-half
of theinitial datasize.

In the tables, we show times when the extra buffer size is
chosen fairly carefully. When space allows, such as on data
sizes up to 50,000 words, we use an extra buffer 1/2 aslarge; on
higher data sizes, we are forced to cut this buffer down. For
1,250.000 words we were particularly constrained, using an
extra buffer only 10% as large, and the performance certainly
degrades. Wedo not givetimesin thelower |eft corner because
either the date movement phase, requiring a separate buffer of
size NUMWORDS/N, cannot be alocated, or the extra buffer
for the sequential sort must be so small that the run time
increases dramatically. For optimal buffer sizes, the time for a
fixed number of processorsisvirtualy linear. For afixed data
size, the initial bucketing increases only slightly with more
processors; the chief increase as more processorsare used is due
to the network contention. More packets of smaller sizes are
sent between more processors, and this degrades performance
significantly from 64 to 128 processors.

Hash-and-Chain Sort: Table of run times (MT)

wpp N 1 3 16 32 61 128
1000 210 221 244 270 327 .599
5000 1.22 1.23 1.29 1.35 1.42 1.95
10000 2.46 2.59 2.64 2.72 2.79 3.00
50000 12.7 13.2 13.4 13.7 14.0 14.8
100000 25.5 26.2 26.8 27.6 27.9 29.5
500000 127. 131. 134. 137. 139. 147.
703125 180. 185. 189. 193. 196. 207.
1000000 268. 271, 278. 282. 303.
1250000 385. 392. 397, 406.
Hash-and-Chain Sort: Table of run times excluding initial sequential sort {MT)
wpp N 1 B 16 32 64 128
1000 .0845 0963 112 139 179 1291
5000 367 408 .445 512 .558 .684
10000 .706 820 .894 976 1.05 1.29
50000 3.50 4.04 4.31 4.72 4.93 5.78
100000 7.00 7.96 8.65 9.41 9.74 11.3
500000 34.8 39.5 42.3 46.2 48.0 55.8
703125 49.5 55.6 60.0 65.6 68.2 79.2
1000000 79.5 86.0 93.3 97.4 117.
1250000 108. 118. 125. 150.

We also implemented a special case version of this sort,
wherethe size of the data buffer was a power of two and the data
movement could be achieved out-of-place. At itsbest, with the
datauniformly distributed among the positive integers less than
apower of 2, this version sorted in 80% of the time of the sort
above. For N = 64 and NUMWORDS = 400,000 the run time
was about 90 million ticks, or about 0.6 seconds. Although this

sort time is impressive, we did not pursue this sort further
because of its lack of generality.

6 CONCLUSIONS

Webegin by giving several tablesfor various sizes and types
of data which indicate, for a given number of processors, the
quickest of the sortsconsidered in thispaper. For arbitrary data,
the Batcher mergesort and the partition sort arethe only options,
and we note that for more than half of the memory, partition
sorting isthe only choice. For datawhichisuniform inthetop
log N bits, we may choose between Batcher mergesorting, parti-
tion sorting, out-of-place radix sorting, or almost in-place radix
sorting. Finaly, for datawhich is uniform in more than the top
log N bits, we may choose among any of the methods discussed
in this paper. Note, however, that the hash-and-chain sort
cannot sort as much data as the radix sort.

The relative speeds of Batcher mergesorting, partition
sorting, radix sorting, and hash-and chain sorting on a CRAY
T3D are similar to that of other machines; we found that those
sorts which take advantage of assumptions about the uniformity
and distribution of the data perform better. Given the parallel
nature of the CRAY T3D, we expected the efficiency of sorting
data in paralel aso to depend significantly on the degree to
which processors communicate or send data using network
connections. Whilethis dependence was certainly apparent, the
penalty for network communication was not as great as
expected. For instance, we compared the proportion of time
spend sequentially sorting for each of the sorts, given 64 proces-
sors sorting roughly half the memory. While for the Batcher
mergesort the initial sequentia sort comprised 40% of the total
time, the bulk of the remainder was spent merging, not waiting
for data; the partition sort devoted 50% of the time to sequential
sorting and only 4% to large block data moves. Similarly, the
almost in-place radix sort devoted 63% of the time to a sequen-
tial radix sort and 28% to partitioning; the hash-and-chain sort
used 66% of the time for sequential sort; and the out-of-place
radix sort spend 72% of the time sequentialy sorting. The
penalty for network contention occurred primarily in the parti-
tion sort, which required frequent interprocessor conferencing,
and in simultaneous data movement among more than 64
processors. We conclude that the memory operations on the
DEC Alpha chips are sufficiently slow, compared to vector
processors, that the network contention does not pose a signifi-
cant burden.

The CRAY T3D can currently be equipped with as many as
1024 processors, with up to 8 MW of memory per processor.
While we believe that increased memory will not significantly
change the relative performance of these sorts, we suspect that
those sorts which have extensive interprocessor communication
will have dramatically increased total time per word sorted.
Indeed, on large data sizes the behavior of the partition sort

aready degrades between N =64 and N = 128. In contrast, the
radix sorts should perform well even for large N.

Sort choices between mergesorting (M) and partition-sorting (P)
for almost all data sets
Table of run times excluding initial sequential sort (MT)
Wpp N 4 8 16 32 64 128
1000 M M M M M M
5000 M P P M M M
10000 M P P M M M
50000 M P P P P M
100000 M P P P P M
500000 M M P P P P
703125 M P P P P P
1000000 P P P P P P
1250000 none P P P P P
1406250 none none none P P r
Sort choices between mergesorting (M), partition-sorting (P), and almost
in-place radix sorting (R2), for data uniform in the top log N bits
Table of run times excluding initial sequential sort (MT)
wpp N 4 8 16 32 64 128
1000 M P R1 R1 R1 R1
5000 R1 R1 R1 R1 R1 R1
10000 R2 R1 R1 Rl Ri RI
50000 R1 R1 Rl R1 R1 R1
100000 R1 Ri RIL Ri RIL R1
500000 Rl R1 R1 R1 R1 R1
703125 R1 RIL RI RIL R1 R1
1000000 R2 R2 R2 R2 R2 R2
1250000 none R2 R2 R2 R2 R2
1406250 none none R2 R2 R2 R2
Sort choices between mergesorting (M), partition-sorting (P),
out-of-place radix sorting (R1), almost in-place radix sorting (R2),
and hash-and-chain sorting (H), for very uniform data
Table of run times excluding initial sequential sort (MT)
wpp N 4 8 16 32 64 128
1000 H H H H H H
5000 H H H il H H
10000 H H H H H H
5000¢ H H H H H H
100000 H H H H H H
500000 H H H H H H
703125 H H I 11 il H
1006000 R2 H H H H H
1250000 none R2 H H H H
1406250 none none R2 R2 R2 R2

The paper [TS] gives some sorting benchmarks for a
Thinking Machines CM-5. They use a 1024 processor machine
and can sort 1 billion 32 bit keys (1 million keys per processor)
using aradix sort in about 17 seconds. We did not have such a
large machine to use for our experiments, unfortunately,
because a direct comparison would certainly be interesting.
Their results are virtually the same for 64 processors, where
their sort still takes about 17 seconds. This comparesto lessthan
two seconds for our hash-and-chain method.

We finish this paper with a rough comparison of the of the
sorting performance of a T3D and a CRAY C90. For uniform
data, one C90 head performs as well as between 8 and 16
processors of a T3D, while for general data one C90 head
performs aswell as between four and eight processorsof aT3D.
When the C90 is multitasked, four heads are comparableto 32
processors of aT3D.

CUG 1995 Spring Proceedings 33

34 CUG 1995 Spring Proceedings

Comparison of C90 radix sorting versus T3D radix (R)
and hash-and-chain (H) sorting, for general data, in seconds
Data size C90 T3D
1 head 4 heads 8 procs 16 procs 32 procs 64 procs
1,000,000 .162 .059 R:.263 124 0621 .0314
H: 217 111 .0563 .0288
10,000,000 1.26 .583 R:2.92 1.35 .648 .327
1I: 1.10 570 .287
Comparison of C90 Quicksorting versus T3D
Batcher mergesorting (M) and partition sorting (P),
for general data, in seconds
Data size C90 T3D
8 procs 16 procs
1,000,000 454 M: 420 226
P: 419 .199
10,000,000 4.8 M: 2.58
P: 4.39 2.27

REFERENCES

[AKS]

[B]

[BLMPSZ]

(€]
(K]
[RV]

(TS

M. Ajtai, J Komlos and E. Szmeredi, An O (n log n) sorting net-
work, Proceedings of the Fifteenth Annual ACM Symposium on
Theory of Computing (April 1983), 1-9.

G. E. Bléloch, Vector Models for Data-Parallel Computing
(1990), The MIT press.

G. Blelloch, C. Leiserson, B. Maggs, G. Plaxton, S. Smith, and M.
Zagha, A Comparison of Sorting Algorithms for thc Connection
Machine CM-2, Proceedings of the 3rd Annual ACM Symposium
on Parallel Algorithms and Architectures (July 1991).

R. Cole, Parallel merge sort, SIAM Journal on Computing (1988),
770-785.

D. Knuth, The Art of Computer Programming,vol. 3, Searching
and Sorting, Addison-Wesley, Reading, MA, 1973.

J. Reif and L. Valiant, A logarithmic time sort for linear size net-
works, Journal of the ACM 34(1) (January 1987), 60-76.

K. Thearling and S. Smith, An Improved Supercomputer Sorting
Benchmark, Proceedings of Supercomputing '92 (November
1992), ACM press, 14-19.

