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ABSTRACT: 

 

In this paper we study the sorting performance of the CRAY T3D on a variety of
sorting tasks.  Our problems range from  that  of sorting one word per processor to sorting the
entire memory of the machine, and we give efficient algorithms for each case.  In addition, we
give both algorithms that make  assumptions about the distribution of the data and those that
make no assumptions.   The clear  winner, if data can be assumed to be uniformly distributed, is
a method that we call a  hash-and-chain sort.  The time for this algorithm to sort 1 million words
per proccessor over 64 processors is less than two seconds, which compares favorably to about
four seconds using a 4-processor CRAY C90 and about 17 seconds using a 64-processor
Thinking Machines CM-5.

 

1 INTRODUCTION

 

Sorting integers is an easily understood and well studied
problem that is always a natural choice when examining the
performance of a new computer system. We developed sorting
algorithms particularly suited for the CRAY T3D parallel
computer and evaluated the performance of the machine on
several different sorting tasks. Our problems ranged from
sorting one integer per processor to sorting all of the available
memory of the machine, which is currently about 180 Million
words.  Our goal is both to be able to sort integers quickly and
to gain insights into the efficient use of the T3D.

Sequential sorting algorithms have been extensively studied
since the 1950's and 1960's. Our primary reference for sequen-
tial sorting algorithms is Knuth [K]. We will assume knowledge
of some standard sequential sorts discussed in Knuth, such as
Quicksort, Radix sorts, and Radix-Exchange sorts.

Parallel sorting algorithms have been of particular interest
since 1968 when Batcher developed the bitonic sorting algo-

rithm [K]. This sort requires 

 

Θ

 

(log2 

 

n

 

) time using 

 

n

 

 processors.
His algorithm gives a fixed set of comparisons, called a sorting
network, that can be easily implemented on a parallel computer.
In 1983, Ajtai, Komlos, and Szemeredi gave a sorting network
requiring 

 

Θ

 

(log 

 

n

 

) time using 

 

n

 

 processors [AKS]. This algo-
rithm is theoretically optimal, but from a practical point of view
the hidden constants in the 

 

O

 

-notation are far too large to
produce useful algorithms. Reif and Valiant proposed a more
practical 

 

O

 

(log 

 

n

 

)-time randomized algorithm for sorting,
known as flashsort [RV]. Many other parallel sorting algo-
rithms have appeared in the literature, including parallel
versions of radix sort and quicksort [B], and parallel merge sort

[C]. An extensive paper on implementing sorting algorithms on
the Connection Machine CM-2 appears in [BLMPSZ].

 

2 MACHINE DESCRIPTION

 

The CRAY T3D is a parallel computer comprised of 128
DEC Alpha processors running at 151 Mhz with a network
connecting them in a 3-D toroidal configuration. Each Alpha is
a 64-bit RISC processor that has its own memory, and all
processors have the capability to read from and write to the
memory of any other processor. For this paper, the memory of
each processor was 2 MW, about 1.6 MW of which was avail-
able to the user. Each processor of a CRAY T3D is equipped
with a direct-mapped data cache of 1,024 words, and loads and
stores are done in 4-word cache lines.

There are several other machine-specific capabilities on the
T3D. Each Alpha processor can request several types of
memory operations by setting certain high bits in the memory
address. These capabilities include a read-ahead mode, which
improves sequential local memory reads, and non-cached reads,
to permit other memory locations to reside in the cache. For the
purposes of this paper we took advantage of only the read-ahead
mode for memory references. Several functions are supported
by the interconnection network. One is that of shared memory
reads and writes, which we will call, in accordance with the
names of their C functions, "

 

shmem_get

 

" and
"

 

shmem_put

 

". Another capability is to perform a hardware
barrier among all processors. This barrier is implemented using
a flag bit on each processor, such that when a processor
executes a barrier command, it sets its barrier bit and waits until
all processors' barrier bits are set before proceeding. Once all
processors reach the barrier, the barrier bits are cleared. There
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is

 

 

 

also a provision to wait until all remote memory writes have
completed by waiting for all acknowledgments from remote
processors to be received; this command will be called a

 

net_quiet

 

. Finally, the function “memory barrier” flushes the
buffer which holds data to be stored or transmitted; this verifies
that the data has been written to local memory or has entered the
interconnection network. For the rest of this paper, a “barrier”
will refer to the execution of these operations in the following
sequence: memory barrier, 

 

net_quiet

 

, hardware barrier; this
barrier insures that all remote memory operations have been
completed.

We fix some notation concerning programs on the T3D. A
tick will denote one clock cycle. We will denote by 

 

N 

 

the
number of processors used in a program; 

 

N 

 

is constrained to be
a power of 2. The individual processors we will denote by

 

P

 

0 . . . 

 

PN

 

-1, and, for pseudo-code, 

 

mype_num

 

 will denote the

processor number, so 

 

mype_num

 

 on 

 

Pi

 

 will be 

 

i

 

.

We point out that our run times are given generally for a
single piece of C code optimized for running on 64 processors
with a very large data size. For many fewer or many more
processors, or much smaller data sizes, other methods would
undoubtedly do better. We give run times for a variety of data
sizes and number of processors for comparison, and in each run
the data is fairly random and well distributed. We made efforts
to optimize our use of the data cache, but since our code was in
C, we undoubtedly faced instruction and data cache misses
which good assembly subroutines could avoid. We did,
however, use a version of C developed by Bill Carlson at the
Supercomputing Research Center, and we note that his AC
compiler typically gained 30% over the released CRAY C
compiler.

 

3 SORTING ONE INTEGER PER
PROCESSOR

 

The problem begins with one integer stored at each of the 

 

N

 

processors of the machine, and the goal is to finish with the
integer at 

 

P

 

0 smaller than that at 

 

P

 

1, the one at 

 

P

 

1 smaller than

that at 

 

P

 

2, and so on.

We studied two different algorithms to solve this problem.
The first method that we tried was chosen because of its ease of
implementation. The algorithm has three basic steps:

1. From each 

 

Pi

 

, send the data element to array location 

 

i

 

 at 

 

P

 

0.

2. Sort the array at 

 

P

 

0.

3. From 

 

P

 

0, send array element 

 

i

 

 to 

 

Pi

 

 for all 

 

i

 

.

While this method is far from asymptotically optimal, we
had some hope that because this is such a small, special case it
might be the fastest solution. Our preliminary results showed,
however, that our second method was a clear winner, even with
these small data sizes, and thus no more effort was put into opti-
mizing this method.

Our second idea for the one word problem was to use a
sorting network. A sorting network is a fixed compar-

ison-exchange sequence that is guaranteed to sort any input
permutation. Because the number of data elements for this
problem is 

 

N, 

 

always a power of 2, a natural choice is to use
Batcher's Odd-Even merge sorting network. The network
consists of (log

 

N

 

) (1 + log

 

N

 

)/2 rounds, and in each round
selected pairs of processors compare and exchange their data.
Although the asymptotic complexity of Batcher's method is 

 

0(N

log2N) 

 

comparisons, the number of rounds is close to optimal

when sorting 2

 

k

 

 elements for small 

 

k

 

. What follows is a
pseudo-code description of Batcher's algorithm and a discus-
sion of our implementation. For a complete description and
analysis of sorting networks and Batcher's method see Knuth.

Let 

 

N

 

 be the number of processors, which is the number of
data elements, and 

 

d

 

, 

 

p

 

, 

 

q

 

, and 

 

r

 

 be integer variables. In
pseudo-code Batcher's algorithm is the following.

 

let q = 

 

N

 

 / 2;
while (p > 0)

let q = 

 

N

 

 / 2, d = p, and r = 0;
repeat

if mype_num<(N-d) and
(mype-num & p) = r then

send your data to
processor mype_num+d

wait for the data from
processor mype_num+d

keep the smaller of the data items;
otherwise if mype_num >=d and

(mype_num-d) & p = r then
send your data to

processor mype_num-d;
wait for the data from

processor mype_num-d;
keep the larger of the data items;

let d = q-p, q = q / 2, and r = p;
until p > q;
let p = p / 2;

end.

 

The major concern in implementing this algorithm is inter-
processor synchronization; the program must insure that every
processor waits for the data word from its partner on a particular
round. One strategy is to synchronize by executing barriers. On
a given round of the repeat...until loop, every processor which
sends a word of data insures that its data has been received by
executing a barrier after the send. Since all processors must ex-
ecute a barrier, we have those that are idle also execute a barrier.
Since the overhead to execute a barrier is

 

 

 

large compared to the
time to send one word to another processor, this method dramat-
ically increases the run time.

Instead of using barriers to synchronize communication, we
chose to implement our own method of local synchronization
between pairs of processors. Each processor first initializes an
(log 

 

N

 

) (1~ log 

 

N

 

)/2-long array, one entry for each round of the

algorithm. On the 

 

kth 

 

round, let 

 

Pi

 

 and 

 

Pi

 

+

 

d

 

 be a pair of proces-

sors comparing data. We have 

 

Pi

 

 send its data to position 

 

k

 

 in
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Pi

 

+

 

d

 

 's array, and then we have 

 

Pi

 

+

 

d

 

  busy-wait until the value

of element 

 

k

 

 of the array changes from the initialized value. In
this manner the processors are not waiting for their sends to be
received by their partners, only that they have received the data
from their partners. This method is significantly faster than
using barriers, and since some processors are not involved in the
last few rounds they are now free to begin other tasks earlier
than the other processors, which may be helpful in some appli-
cations. The sole difficulty in coding this method is the
construction of a busy-wait loop on a memory location, since
without explicit indications to the contrary, a compiler will
assume that the memory location cannot change during the
execution of the loop and will set up an infinite loop. We give
the run times for different numbers of processors 

 

N

 

 in the table
below. We find that the run times are approximately 1250 + 195
(log 

 

N

 

)(1 + log 

 

N

 

)/2 ticks, or 195 ticks per round with some
overhead.

 

4 OUT-OF-PLACE METHODS

 

For the remainder of this paper, the sorting problem begins
with an array of 

 

NUMWORDS

 

 integers stored at each of the 

 

N

 

processors of the machine and the goal is to finish with a sorted
array at each processor such that no integer at 

 

P

 

0 is greater than

any integer at 

 

P

 

l, no integer at 

 

P

 

l is greater than any integer at

 

P

 

2, and so on.

For this section we will restrict 

 

NUMWORDS

 

 so that the
data fits in at most half of the memory available to the program.
This permits out-of-place algorithms that store an extra copy of
the data. We studied two algorithms that fall into this category:
a Batcher mergesort and a radix sort. While the Batcher sort
succeeds for all data sets, the radix sort makes the assumption
that the log 

 

N

 

 high-order bits are uniformly distributed. The
radix sort is more than twice as fast as the Batcher mergesort for
large data sets. We note that algorithms for sorting more data,
considered later in this paper, are competitive with these algo-
rithms even for small data sizes.

 

4.1 The Batcher Mergesort.

 

The Batcher mergesort is a merging network, i.e., a fixed
merging sequence among 

 

N

 

 processors that is guaranteed to sort
any input permutation. Each processor begins by sorting its data
using a sequential sort. Then a sequence of 2-processor merges
is executed, where the processors that merge at each round are
those that compare and exchange in the l-word algorithm
described above. Since the sequence is the same, we give
pseudo-code only for the merge, which replaces the line "keep
the smaller (larger) of the data items" in the algorithm for the
one-word sort.

The 2-processor merge begins with each processor having a
sorted array of 

 

NUMWORDS

 

 integers. When the merge of

processor 

 

Pi

 

 and 

 

Pi

 

+

 

d

 

 is completed, the array at 

 

Pi

 

 contains the

 

NUMWORDS

 

 smallest integers from the two arrays and 

 

Pi

 

+

 

d

 

contains the largest. To achieve this, the processors must
exchange data, and the simplest algorithm is to have 

 

Pi

 

 send

 

Pi

 

+

 

d

 

 a complete copy of its data and 

 

Pi

 

+

 

d

 

 send a copy to 

 

Pi

 

 as

well. This creates unnecessary communication, however. Since
processor 

 

Pi

 

 is keeping the small values, it can begin merging

from the small ends of the arrays, and likewise 

 

Pi

 

+

 

d

 

 can begin

merging from the large ends. Both processors complete when
they have merged a total of 

 

NUMWORDS

 

 integers.
Note that 

 

Pi

 

 will use the same number data values from 

 

Pi

 

+

 

d

 

in its merged array as 

 

Pi

 

+

 

d uses from Pi. This fact implies that

the extra communication can be eliminated, as follows. When-
ever processor Pi uses a value from its partner, it sends its

partner another value. Pi does not need to inform Pi+d that it

sent the data; we are assured that Pi+d will send another value,

so Pi simply waits to receive this next data element. Of course

the overhead is quite large for sending only one data element, so
a compromise of sending a fraction of data elements works best.
We will denote the size of the communication block BUCKET.

Let A[0..NUMWORDS-1] be an array which contains the
processor's sorted list, B another array of the same size, C an
array of length BUCKET, and i, j, k, l integer variables. We
constrain BUCKET to be a divisor of NUMW0RDS. All other
variables are as in the pseudo-code for the one-word Batcher
sort. The processor that collects the smaller of the data items
executes the following pseudo-code.

send A[NUMWORDS-BUCKET..NUMWORDS-l]

to array C at processor

mype_num+d;

wait until array C receives

A[0..BUCKET-l] from processor

mype_num+d;

let i = 0, j = 0;

let k = NUMWORDS-BUCKET,

while (i < NUMWORDS) do

if (B[j] < A[i]) then

let C[l] = B[j];

increment j and l;

else

let C[l] = A[i];

increment l;

increment i;

if (j=BUCKET) then

decrement k by BUCKET;

send A[k..k+BUCKET-l] to array

C at processor mype_num+d;

let j = 0;

wait until array C receives next

BUCKET words from processor

mype_num+d;

end.
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The result of the merge now lies in array B. The processor
which collects the larger of the data items simultaneously
executes the following pseudo-code.

send A[0..BUCKET-l] to array C
at processor mype_num-d;

wait until array C receives
A[NUMWORDS-BUCKET..NUMWORDS-l]
from processor mype_num+d;

let i = NUMWORDS - 1, j = BUCKET -1;
let k = 0, 1 = NUMWORDS;
while (i >= 0 ) do

if (B[j] > A[i]) then
let C[l] = B[j];
decrement j and l;

else
let C[l] = A[i];
decrement l;

decrement i;
if (j<0) then

increment k by BUCKET;
send A [k  k+BUCKET-l] to array C

at processor mype_num-d;
let j = BUCKET;
wait until array C receives

previous BUCKET words from
processor mype_num+d;

end.

The result of the merge now lies in array A.
Our implementation alternates the roles of arrays A and B at

every round, merging from one into the other, and therefore
avoids having to copy the data from A to B or from B to A. The
local synchronization issues are greater than those of the
one-word sort. Since we cannot afford to have many extra
copies of array C, we execute barriers between each round.
However, we still need two copies of array C, one to use in the
merge and the other to receive data, and we use busy-waits on
flags to coordinate the alternation of the copies of array C.

The Batcher mergesort requires two buffers of size
NUMWORDS and two buffers of size BUCKET, so it faces a
data size limit of roughly one-half the memory of the machine.
We found that the optimal BUCKET value for
NUMWORDS= 703125 was approximately 1125 words. A
larger size increases the possibility of sending too many words,
since only a fraction will actually be needed for the merge, and
for a smaller size the communication overhead begins to
degrade performance. Because the mergesort is an out-of-place
sort, we could have used an out-of-place sequential sort for the
initial single-processor sorts, but we opted for a version of
Quicksort.

In the tables that follow, by "wpp" we mean "words per
processor" . All run times are in millions of ticks (megaticks
MT); thus 150 MT is one second of CRAY T3D cpu time (1 pe).

Note that the sequential sort takes more than half the time
when NUMWORDS is greater than 500 for N = 4,10000 words
for N = 8, or 500000 for N = 16. When N = 128, Batcher sorting

NUMWORDS=703125 words devotes 30% of the running
time to the initial sequential sort.

4.2 The Radix Sort.
The radix sort assumes a uniform distribution in the high log

N bits of the data because these bits determine the processor
number where the data will be stored at the conclusion of the
sort. The sort first separates the data into N portions based on

the high log N bits. Then each processor sends its ith portion to
processor Pi. Finally each processor separates its data into 1024

buckets (for large data sizes) based on the next ten bits and,
within each bucket, begins a radix-exchange sort, which
employs successive Quicksort-style partition passes where
partitions are made according to bits. It is standard to use a
specialized sort, such as an insertion sort or a sorting network,
when the partition becomes sufficiently small.

We implemented the data movement by an interprocessor
conference, as follows. First, every processor Pi sends the

length of its jth portion to an array on processor Pj, indexed by

i. Then each processor Pj computes the partial sums of the

received lengths; this computation results in a N-long list of
indices I[0 . . N-l] into the target array on Pj. Then each

processor Pj sends out I [i] to an array on processor Pi, indexed

by j, for all i. At this point Pi knows where on Pj to send its jth

portion, and does so using a shmem-put.
The pseudo-code for this radix sort is the following. We

require that no more than NUMWORDS+EXTRA data
elements have the same top log N bits and allocate this much
space in array A and that no more than BUCKETSIZE initial
data words have the same top log N bits on any processor. Let i,
j, k, l be integers, A [0 . . NUMWORDS+EXTRA-l] an array,
the first NUMWORDS words of which contain the initial data,
temp[O . . N-l][O . . BUCKETSIZE-1] an array to hold buck-
eted data, cnt[O . . 1023], cnt2[0 . . 1023], and off[0 . . 1023]
arrays of integers, and tlen[0 . . N-l] an array to hold the sizes
of each bucket, initialized to zero.
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let i = 0;
repeat 

let j = the top log N bits
of A[i];

let tempt[j][tlen[j]] = A[i];
increment i, tlen[j];

until i=NUMWORDS;
hold conference with tlen[] of

each processor to determine
where in array A on processor 
j each processor should send 
temp[j][0..tlen[j]-1];

send temp [j][0..tlen[j]-1] to
processor j at computed  location,
for each j;

make 1024 counts cnt[0..1023] of
number of elements in A with 
each 10-bit pattern (below the
top log N bits);

initialize off[i] to the sum of
cnt[0..i-1] for each i in 0..1023;

let cnt2[i] be the sum of cnt[0..i]
for each i in 0..1023;

let i = 0;
repeat

let j = A[off[i]];
repeat

let l = ten bits after top log
N bits of j;

let k = A[off[l]];
let A[off[l]]=j;
increment off[l];
let j = k;

until l=i;
while (off[i]=cnt[i] and i<1024)

increment i;
until i=1024;
for each i in 0 . . 1024, perform a

radix-exchange sort on each 
bucket of A;

end.
This fairly simple sort is a good test case for several T3D

architecture features such as the read-ahead capability and the
use of barriers. When N = 64 and NUMWORDS=703125,
using the read-ahead capability reduced the time for the initial
separation phase by about 3 million ticks down to 39 million
ticks. With the same values of N and NUMWORDS, we used
barriers between each round of shmem_ puts in the data move-
ment phase to bring the time for the stage down 6 million ticks,
to 17 million ticks.

Comparing this sort with other sorts in this paper, we find
that the sequential sort is more dominant in this radix sort than
in any other sort: for N = 64, the sequential sort comprised 76%
of the total time. Still, the network contention for large N
becomes significant: the run times are very close given the same
number of data words per processor, until we reach 128 proces-
sors. The time for the interprocessor conference grows but is
negligible (less than 20,000 ticks for N = 64), and the time to

separate the data into buckets at the beginning is slightly lower
(8 million ticks) when the number of processors is small enough
so that the counts can be kept in cache. Ignoring these small
effects, most of the run-time penalty, is due to increased
demands on the network. Consider that as N grows, each
processor sends the same number of words but does so in
smaller packets with more network contention. The N = 128
case, where 127 rounds of 128 simultaneous messages of size
about 5700 words were sent, was 10,000,000 ticks (10 MT)
slower than the N = 64 case, in which 63 rounds of 64 simulta-
neous messages of size about 11700 words were sent.

5 SORTING MORE THAN HALF THE
MEMORY OF THE MACHINE

The sorting problem is the same as that of sorting less than
half the memory, but we no longer allow an extra buffer of
comparable size to the data. We consider several sorts: a modi-
fication of the radix sort from the previous section; a partition
sort, which is reasonably distribution independent; and a
hash-and-chain sort, which requires uniform distribution in
more top bits for peak performance. The Batcher mergesort was
not extended due to the large performance penalty of an in-place
merge.

5.1 The Partition Sort.

The partition sort is an attempt to create a distribution-inde-
pendent in-place sort for the T3D. The difficulty in doing so lies
in the interprocessor communication, because we have several
sequential in-place sorts available such as Quicksort and
Radix-Exchange sort. Our sort proceeds in much the same way
as the radix sort, where first data is sent to its destination
processor and afterwards the data is sorted sequentially on each
processor.

The algorithm is comprised of three stages. First, all proces-
sors jointly determine the N-tiles of the data, i.e., they each
divide their data into N portions such that

(a)no element in partition i is greater than any element in
partition j for i < j, and



CUG 1995 Spring  Proceedings  29

(b)for all i, the sum of the lengths of all  ith partitions across
all N processors is NUMWORDS.

By doing so, we separate the data so that after the second

stage, where the ith portions are sent to processor Pi for all i, we

have achieved relative order among the processors. We finish
by performing the third stage, a sequential sort.

The method to divide the data is to repeat Quicksortlike
partitioning steps as follows. Choose a partition element for all
processors; at each processor, partition the data with respect to
this element; compute the sum across all of the processors of the
number of data elements less than the partition value; and if the
sum is not the desired value, then choose the next partition
element, using a binary search. The data at each processor is

now partitioned into N blocks where the ith block is destined for
Pi.

If data elements are identical, some additional work may be
necessary, since we must insure that the total number of data
elements destined for any processor is exactly NUMWORDS.
If we find that the total number of data elements less than our
partition element is less than NUMWORDS and that the same
total for the next greater partition element is larger than
NUMWORDS, then we face a situation where the partition
element is repeated. We then execute a clean-up phase of the
first stage, where we hold an interprocessor conference to
decide which repeats of the partition element should be placed
in either side of the partition.

We now give pseudo-code for the first stage of the algo-
rithm, beginning with code for the simple partitioning of the
data. Let A be the array of data and l,r, and p integers such that
we would like to partition A [l . . r] with respect to p. The
following code partitions the data and returns the index to the
rightmost element strictly less than the partition element p.

while (A[i]<p) and (i<j)
increment i;

while (A[j]>=p) and (j>i)
decrement j;

 if (i= j) then
exit and return i;

repeat
switch the values of A[i], A[j];
repeat 

increment i;
until (A[i] >=p);
repeat

decrement j;
until (A [j] <p);

until (i<=j);
return i;
end.

We next give pseudo-code to find the partition point of all of
the data such that the sum of the number of elements in the left
partition is M, assuming that no partition element repeats.  Let
A be the array of data, lowptr and highptr indices into A such
that we are partitioning A[lowptr . . highptr], plow and phigh

integer elements which are lower and upper bounds for the data.
The code returns the partition element and the index to the
right-most element strictly less than the partition element p.
Temporary variables are integers newp, p, total, and size.

let newp = the average of all of
the first, middle, and last
elements of A [lowptr..highptr] 
on every processor; 

repeat
let p = newp;
partition A[lowptr..highptr] 

with respect to p; 
let size = index of rightmost

element less than p in 
A [lowptr..highptr]; 

let total = size across
all processors;

if (total>M) then 
let phigh = p; 
let newp = (plow+phigh)/2;

else if (total<M) then 
let plow = p; 
let newp = (plow+phigh)/2;

if (newp<p) then 
let highptr=size-1;

else
let lowptr=size; 

until total=M; 
return size and partition element p;
end.
In order to find the N partitions recursively, we have the

following pseudo-code. Variables are as before. We begin this
code with depth equal to log N, M = NUMWORDS • N/2,
offset= NUMWORDS • N/2, low = 0, high = NUMWORDS—
1, and upper and lower bounds for the data phigh and plow.

find partition element p such that
sum of number of elements in left 
partition is M; 

let size = index of rightmost element 
less than p in A[low..high]; 

decrement depth; 
if (depth>0) then 

recurse with low = low,
high = size-l, plow = plow,
phigh = p, depth = depth,
M = M - offset/2, and 
offset = offset/2; 

recurse with low = size,
high = high, plow = p, 
phigh = phigh, depth = depth,
M = M + offset/2, and
offset = offset/2;

end.
While the implementation of stage one is relatively straight-

forward, and the execution of stage three using Quicksort is
efficient, the data movement in stage two is of particular interest
for several reasons. Designing an efficient scheme which
succeeds on any data set. is a hard problem, since pathological
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cases may occur in which some processors must send all of their
data to others while other processors must spread their data
among many others. Also, determining the correct sequence of
interprocessor communications to use when sending data is a
serious implementation issue. If the sequence is broken up into
many communications among few processors, the total time
will be great; if one assumes N—1 rounds during which each
processor sends a portion of its data to another, there will be
significant contention on the T3D network and there exists the
possibility that there will be insufficient space on destination
processors to receive data. Empirical evidence indicates that
some communication permutations among processors are
significantly better than others, although the time to send from
one processor to any other with no contention has very little
variation. Employing simple methods, such as having each
processor send on round i to processor (mype_num+i) mod N,
makes coordinating data movement easier, but we have found
that some of these permutations perform worse than random,
precisely because these very ordered permutations are ordered
poorly. Since a T3D node contains two processors but shares a
network connection, it can be helpful to send to processors that
are not sending or are sending very little data, although this does
not help us in this particular case. Similarly, having processors
send only along one of the three T3D network axes can improve
bandwith.  It is an open question how to design N—1 rounds
which maximizes T3D network bandwidth.

We implemented the data movement stage as follows. We
assume that the data buffer is larger than NUMWORDS by a
small amount which is proportional to the data size, and that the
extra space lies at the left end of the buffer. Recall that each
processor begins this phase with a contiguous sequence of vari-
able-sized buckets of data, such that bucket j must go to
processor Pj. First, for all i, Pi shifts some of its data left so that

the beginning of bucket 0 is at the beginning of the buffer and
the extra space, called the hole, lies between buckets i and i + 1.
Then we execute N—1 rounds l. N—1 where on round j each
processor Pk sends its data destined for P(j+k)modN to the hole

on processor P(j+k)modN, thereby shifting the holes on each

processor to the right and possibly changing its size. The
processors continue in succession, wrapping around the buffer
when necessary, and after completion of the rounds data is
moved so that the data is contiguous. As long as the hole on
each processor does not overflow at any round, this method of
data movement will succeed.

The chance of success of this method varies with the distri-
bution of the data and the amount of extra space in the buffer.
The extra space on each processor must be at least
NUMWORDS/N, and if the data is reasonably well distributed,
this space can be smaller than 3 • NUMWORDS/(2N), or about
2% of NUMWORDS when N = 64. The less distributed the
data, the greater this space should be, and the space need be no
larger than the size of the data buffer, in which case the algo-
rithm is guaranteed to succeed.

In our implementation we compute whether or not the data
movement method would succeed, and, if not, we apply the
following randomization to the data. We first run through the
data on each processor in groups of 12 words (three cache lines)
and exchange these 12 words with a random contiguous
preceding segment of 12 words. This randomly permutes the
data at each processor. Then we divide the data into N segments
of length NUMWORDS/N, such that segment i is sent to Pi
using a movement scheme much like the above. This move-
ment, however, is guaranteed to succeed since the data blocks
are of equal length. After this randomization, we repartition the
data, using the partition elements from the previous trial, and
now the data movement scheme will succeed with high proba-
bility since the distribution of the sizes of the partitions on each
processor is close to uniform.

In all of the runs timed above, the randomization step was
not needed; had it been, the running time would have increased
by 30% to 40%. One should try to choose the size of the extra
space so that this step is infrequent, and so for these runs we
chose the extra space to be close to the 1.5/N factor for large
data sizes and chose it larger for particularly small data sizes.
The holes in the lower left corner of this table are due to the fact
that extra space requirements grow larger as the number of
processors decreases, and thus the memory of the machine was
no longer large enough to hold both the data and the extra space.
What is clear from the table is that a severe penalty is paid
above 16 processors, and for small data sets the dominant factor
in this penalty is the communication necessary to determine a
partition value. At N = 128, it actually takes longer to determine
the 128 partition values than to sort the data on the processor.
As the number of processors grows, some improvement to the
algorithm to find the N-tiles may be necessary. The parti-
tion-and-conference takes 41% of the total time (whereas
Quicksort took 54%) for N = 64 with 1 million words/processor.

The times can be improved if the data is known to be of a
particular type. For instance, by assuming relatively random
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data, we were able to modify our code so that we found N-tiles
in 2/3 of the previous time. In the code which found the N-tile
partition points, we replaced the binary search with a search
which was biased more towards the initial guess at the outset
and which used this bias less and less as the search progressed.
The choice of methods at the beginning of such a search is of
chief importance since the partition steps at the beginning,
larger data sets, cost the most.

It is interesting to note that the proportion of repeats in the
data can both increase and decrease the time to find the N-tiles.
With a moderate number of repeats, the number of partitioning
rounds is less than average, and very quickly the clean-up phase
of stage one is entered, where the communication to determine
exact N-tiles is relatively cheap compared to many more confer-
ence-and-partition steps. Of course, with a very large number of
repeats performance degrades since several partitioning rounds
are redundant (before flagging a repeat). Special code could
certainly be written to take care of this case, but a different sort
would be appropriate on such data.

5.2 The Radix Sort.
In order to permit the radix sort a larger data size, we incor-

porate two changes from the out-of-place radix sort. First,
instead of separating the data into buckets at the beginning, we
do a radix-exchange sort on the top log N bits. This change
releases us from the requirement of having extra buckets large
enough to hold the data. The second change is to use the data
movement phase from the preceding partition sort, modifying it
to allow each processor to receive a different number of words.

The following tables show the run times of this version of the
radix sort:

Again, as in the out-of-place radix sort and the preceding
partition sort, the cost to use N = 128 processors becomes rela-
tively expensive as the interprocessor conference prior to the
data movement phase involves more and more processors
which experience significant network contention. Comparing
these tables with those for the out-of-place radix sort, we notice

that the out-of-place version performs better on every data size
(for which it is capable) and number of processors save 10,000
words on four processors. The out-of-place version loses
because it is separating the data on each processor into four
buckets, thus reading and writing every data word, while the
present version does only a 2-bit radix exchange, reading every
word but having to write only a fraction. We could envision a
special sort for small data sizes on a small number of proces-
sors, employing the 1- or 2-bit radix exchange from the present
sort and the data movement scheme from the out-of-place,
which would beat both, but the utility of such a sort seems
limited.

5.3 The Hash-and-Chain Sort.
The hash-and-chain sort operates on the principle that if one

knows the approximate position of a data element in the final
sorted list, it should be placed there. On very uniform data this
idea improves on the radix algorithms mentioned above,
although for peak performance this algorithm requires a larger
amount of extra space. This sort is about three times as fast as
the Batcher sort and is faster than any other sort for virtually any
data size.

The basic strategy of this algorithm is similar to that of the
radix sort described above; we separate the data by destination
processor, send it in several rounds, and finish with a sequential
sort. The separation phase is slightly different than that of the
radix sort. We first separate the data into buckets on the top log
N bits as follows. We declare the data buffer to be N contiguous
buckets of equal size. Then we run through the data, picking up
each data word and deciding its target buffer. We exchange our
element with an unbucketed element in the target buffer, and
repeat.

After the data is bucketed, we then employ the data move-
ment scheme used for the out-of-place radix sort. We have

processor Pi save its ith bucket to a separate array and then

execute 1 . . N—1 rounds, where on round k processor Pi sends

its (i + k)th bucket to the empty bucket on processor Pi+k. Then

each processor collapses its data from the separate array and the
N—1 buckets into a contiguous segment.

Now we are ready to describe the hash-and-chain sort. First
we require some extra space at the end of the buffer. We run
through the data, picking up each data word and calculating its
approximate location in the sorted list by masking off the top
log N bits and performing a floating-point multiply. If this target
location is empty, we place the hashed element there. If this
target location contains a data element which has not yet been
hashed, we exchange it with our hashed element. If this target
location contains a data element which has already been hashed,
we execute a forward insertion sort to place our element in order
among a short segment of hashed elements.

There are several strategies to determine whether or not a
location is empty, contains an unhashed data element, or
contains a hashed data element. One is to use a flag value for the
empty spaces, where a flag value is some value which no data
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element can take, and to use a spare bit in the data word to indi-
cate that the data word has already been hashed, but we wished
to allow more general data than 63-bit data with a flag value.
We can eliminate these requirements for the multiprocessor sort
by adopting a different strategy. Since this sequential sort
occurs at the end of the sorting algorithm, we are guaranteed
that the top log N bits of each data word on a given processor
are the same, so we are free to use two of them as flags as long
as N is required to be at least 4.

We give pseudo-code for the final sequential sort as follows.
Let A[O . . NUMWORDS-1+EXTRA] be an array of integers,
of which the first NUM words are data. (NUM might not be
NUMWORDS, due to the fact that not every processor has the
same amount of data at this stage.) FLAGVAL is some value
which is not identical to any data element and which is recog-
nized as not being a hashed value. For us, FLAGVAL can be
chosen to be any data word with the second high-order bit
changed, since we change the high-order bit indicate having
been hashed. Let i, j, k, 1, t be integers.

initialize A[NUM..NUMWORDS-1+EXTRA
to FLAGVAL; 

let i = 0;
while i<NUM do 

if A[i] has not been hashed then
let j = A[i], a[i] = FLAGVAL;
repeat 

let 1 be the result of
masking off the top log
N bits of j and multiplying
by 1/NUM;

if A[l] = FLAGVAL then the
location is empty, so
do

let t = FLAGVAL;
let A[l] = j with the

hashed bit set;
else the location contains data,

so do
let k = j with the hashed

bit set;
while (A[l] has been hashed)

and (k > A[l]), continue
insertion-sorting:

let t = A[l]; 
increment l;

let A[l] = k;
increment l;
if A[l] has been hashed then

while A[l] has been hashed
switch A[l] and t;
increment l;

switch A[l] and t;
let j = t;

until (t is not FLAGVAL) and
(j does not have the hashed
 bit set);

increment i;

let i = 0, j = 0;

while i<NUM do

if A[j] is not FLAGVAL then

let A[i] = A[j];

increment i;

increment j;

end.

We found that on the T3D the extra space at the end of the
data buffer needed to be roughly NUMWORDS/4 if the
method was to perform well on random data. Therefore this sort
should only be considered a 4/5 memory sort, while the radix
sort presented above can, for large N, approach the full memory
size, needing only extra space of size 3 • NUMWORDS/(2N).
If space is available, the extra space should be closer to one-half
of the initial data size.

In the tables, we show times when the extra buffer size is
chosen fairly carefully. When space allows, such as on data
sizes up to 50,000 words, we use an extra buffer 1/2 as large; on
higher data sizes, we are forced to cut this buffer down. For
1,250.000 words we were particularly constrained, using an
extra buffer only 10% as large, and the performance certainly
degrades.  We do not give times in the lower left corner because
either the date movement phase, requiring a separate buffer of
size NUMWORDS/N, cannot be allocated, or the extra buffer
for the sequential sort must be so small that the run time
increases dramatically.  For optimal buffer sizes, the time for a
fixed number of processors is virtually linear.  For a fixed data
size, the initial bucketing increases only slightly with more
processors; the chief increase as more processors are used is due
to the network contention.  More packets of smaller sizes are
sent between more processors, and this degrades performance
significantly from 64 to 128 processors.

We also implemented a special case version of this sort,
where the size of the data buffer was a power of two and the data
movement could be achieved out-of-place.  At its best, with the
data uniformly distributed among the positive integers less than
a power of 2, this version sorted in 80% of the time of the sort
above.  For N = 64 and NUMWORDS = 400,000 the run time
was about 90 million ticks, or about 0.6 seconds.  Although this
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sort time is impressive, we did not pursue this sort further
because of its lack of generality.

6 CONCLUSIONS

We begin by giving several tables for various sizes and types
of data which indicate, for a given number of processors, the
quickest of the sorts considered in this paper.  For arbitrary data,
the Batcher mergesort and the partition sort are the only options,
and we note that for more than half of the memory, partition
sorting is the only choice.  For data which is uniform in the top
log N bits, we may choose between Batcher mergesorting, parti-
tion sorting, out-of-place radix sorting, or almost in-place radix
sorting.  Finally, for data which is uniform in more than the top
log N bits, we may choose among any of the methods discussed
in this paper.  Note, however, that the hash-and-chain sort
cannot sort as much data as the radix sort.

The relative speeds of Batcher mergesorting, partition
sorting, radix sorting, and hash-and chain sorting on a CRAY
T3D are similar to that of other machines; we found that those
sorts which take advantage of assumptions about the uniformity
and distribution of the data perform better.  Given the parallel
nature of the ÇRAY T3D, we expected the efficiency of sorting
data in parallel also to depend significantly on the degree to
which processors communicate or send data using network
connections.  While this dependence was certainly apparent, the
penalty for network communication was not as great as
expected.  For instance, we compared the proportion of time
spend sequentially sorting for each of the sorts, given 64 proces-
sors sorting roughly half the memory.  While for the Batcher
mergesort the initial sequential sort comprised 40% of the total
time, the bulk of the remainder was spent merging, not waiting
for data; the partition sort devoted 50% of the time to sequential
sorting and only 4% to large block data moves.  Similarly, the
almost in-place radix sort devoted 63% of the time to a sequen-
tial radix sort and  28% to partitioning; the hash-and-chain sort
used 66% of the time for sequential sort; and the out-of-place
radix sort spend 72% of the time sequentially sorting.  The
penalty for network contention occurred primarily in the parti-
tion sort, which required frequent interprocessor conferencing,
and in simultaneous data movement among more than 64
processors.  We conclude that the memory operations on the
DEC Alpha chips are sufficiently slow, compared to vector
processors, that the network contention does not pose a signifi-
cant burden.

The CRAY T3D can currently be equipped with as many as
1024 processors,  with up to 8 MW of memory per processor.
While we believe that increased memory will not significantly
change the relative performance of these sorts, we suspect that
those sorts which have extensive interprocessor communication
will have dramatically increased total time per word sorted.
Indeed, on large data sizes the behavior of the partition sort

already degrades between N = 64 and N = 128.  In contrast, the
radix sorts should perform well even for large N.

The paper [TS] gives some sorting benchmarks for a
Thinking Machines CM-5. They use a 1024 processor machine
and can sort 1 billion 32 bit keys (1 million keys per processor)
using a radix sort in about 17 seconds. We did not have such a
large machine to use for our experiments, unfortunately,
because a direct comparison would certainly be interesting.
Their results are virtually the same for 64 processors, where
their sort still takes about 17 seconds. This compares to less than
two seconds for our hash-and-chain method.

We finish this paper with a rough comparison of the of the
sorting performance of a T3D and a CRAY C90. For uniform
data, one C90 head performs as well as between 8 and 16
processors of a T3D, while for general data one C90 head
performs as well as between four and eight processors of a T3D.
When the C90 is multitasked, four heads   are comparable to 32
processors of a T3D.
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