

252

CUG 1995 Spring

 Proceedings

Performance Optimization of Parallel Programs
- Tracing, Zooming, Understanding -

A. Arnold

,

U. Detert

, and

W.E. Nagel

, Central Institute for
Applied Mathematics, Research Centre Juelich (KFA), 52425
Juelich, Germany

ABSTRACT:

Performance optimization most often is based on the detailed knowledge of
program behavior. One option to get this information is tracing. The visualization environment
PARvis developed at KFA translates a given trace file generated on CRAY T3D into a variety of
graphical views, e.g., state diagrams, activity charts, timeline displays, and statistics. PARvis
supports an animation mode that can help to locate performance bottlenecks, and it provides flex-
ible filter operations to reduce the amount of information displayed. Moreover, it has a powerful
zooming feature that allows to identify problems at any level of detail.

1 Introduction

On massively parallel computer systems, performance anal-
ysis and debugging can become an extremely complicated
process. Over the years, experience has shown that
user-friendly tools supporting this process are extremely helpful
and can drastically shorten the time-to-solution for a given
problem. At KFA Juelich, we have developed the X Window
based

PARtools

 environment (Fig. 1) which provides a general
tool set for investigating problems in the area of parallel
computing [NaAr93]. Currently, three components are
provided: simulation of multiprocessor architectures (

PARsim

,
[Nag93]), benchmark control (

PARbench

, [NaLi93]), and visu-
alization (

PARvis

, [Arn93, NaAr93, NaAr94, Mue95]).

This paper describes the visualization component

PARvis

.
Like most of the other performance analysis tools available for
parallel computers (

Paragraph

 [Int93] or

Pablo

 [Ree92]),

PARvis

 is used on a post-mortem basis, and it translates a given
trace file into a variety of graphical system views which provide
a reasonable basis for system understanding and program opti-
mization.

2 The

PARvis

 Environment

Performance analysis and program optimization are often
based on different categories of system views (Fig. 2),
[Mue95]):

• single time system snapshots: panels that show system
activities at a particular point of time;

• animation: option to look at a sequence of system snapshots
to investigate the dynamic behavior;

• statistics: the component that summarizes system behavior
for the time under investigation;

• time-line system view: detailed view of system activities,
which are visualized on a time axis.

Each of these categories is supported by the

PARvis

 environ-
ment. Over the last years,

PARvis

 has been extended to support
performance visualization of parallel programs on Intel
iPSC/860, Intel Paragon, and CRAY T3D systems. On Intel

Figure 1: The

PARtools

 system structure

Figure 2: Visualization categories

CUG 1995 Spring

 Proceedings

253

Paragon,

PARvis

 takes the

ipd

-generated trace file and extracts
the graphical information automatically [NaAr94].On CRAY
T3D, the user has to call a preprocessor which instruments the
code before execution. Extensions have been made to show the
flow of messages on different topologies as well as to display
network activities. For user convenience,

PARvis

 provides a
configuration file

PARvis

.cnf where user preferences (color,
layout, fonts, etc.) are stored from run to run. This file contains
all settings made within

PARvis

 and enables

PARvis

 to come up
with the same settings you had in the previous session. A
detailed description of all

PARvis

 features can be found in
[Arn93, Arn95, Mue95].

PARvis

 is implemented in ANSI C and uses the OSF/Motif
libraries. The current implementation already supports a
variety of different hardware platforms (IBM RS/6000, Sun
Sparc, DEC MIPS computers (Ultrix), DEC Alpha, and Silicon
Graphics). Figure 3 System activity snapshot at a single point of
time

3 Program Instrumentation on CRAY T3D

Based on the preprocessor

Paff

 [Ber89] developed at KFA
Juelich, we have implemented an instrumentation tool called

PARvis

.

inst

. The command

PARvis.inst [options] file_name [file_name]

automatically instruments all Fortran 77 programs which are
specified on the command line. There are flexible options to
generate

wrapper

-routines e.g. for the message-passing
routines, and the tracing for each routine can be switched off by
just marking this routine as non-traceable. Control directives
are supported to start and stop the tracing process. In addition,
the output is limited to roughly 1 Mbyte per processor, never-
theless the user can enlarge this value as wanted. All supported
directives can be found in the following list:

• CKFA$ TRACE STOP

• CKFA$ TRACE START

• CKFA$ TRACE LIMIT N

• CKFA$ TRACE NOREPLACE

The last directive identifies a

wrapper

-routine where the
replacement of names is suppressed.

4 Visualization of System Activities

The main window of the

PARtools

 environment (Fig. 3) is
partitioned into several areas. Just below the menu line, the

PARvis

 control buttons reside in the middle part of the
window.The control functions and panels for the other compo-
nents of

PARtools

 (

PARsim

 and

PARbench

) are placed on both
sides. Under these sub-windows, the visualization area can be

Figure 3: System activity snapshot at a single point of time

254

CUG 1995 Spring

 Proceedings

found, which is used to display the actual system activities
executed on the nodes.

The main window can display the trace data in several select-
able modes. After start-up, the

Node display

 is set.This mode
displays every processor as a box.The size and arrangement of
the boxes depend on the number of processors and the geometry
of the main window and are automatically calculated by

PARvis

. Each box is partitioned into a lower and an upper
part.The lower part describes the current activity on the nodes,
whereas the upper part (called

statistic field

) shows the time
portion (in percent) spent on a particular activity for the period
under investigation (here:

Calculation

). For monitoring
reasons, the background color reflects the current value printed
out, and the corresponding percentual values are listed on the
right.

Fig. 3 represents one example of an actual system snapshot
at a special point of time.The

step

-button in the

PARvis

 control
area can be used to show the system activity changes.Typically,
the number of events to be displayed is rather large, so the
animation mode can be used to animate the sequence of system
snapshots. The step width for the animation mode can be either
an event or a given time period; the time difference between two
movements (i.e., the animation speed) and the number of move-
ments after which the animation should stop can be adjusted in
the panel

Settings/steppings

. This animation feature can be
used to analyze the program behavior in time, to identify critical
program sections, and to find the hot spots of the run.

5 Statistics

The Node display mode already contains a small statistics
field, but due to its limited size only the time portion of

one

 state
can be monitored.Quite often, one would like to get a more
detailed idea of how the time is spent on each of the nodes. To
analyze the complete state distribution, it is possible to switch
the display mode to the

statistics display

. Press F6 or select the
menu option

Global_Display/Chart Style

, and the main window
layout will switch to something like Fig. 4, which shows a
statistics of the complete trace file in a pie chart style. The
colors chosen for the individual states are just the same as those
which are used as the background color for the state field in the
CPU display. The most important activities can be identified
for all nodes, and differences in the node behavior will be clear
immediately (Fig. 4). As can be seen from that panel, most
time is spent in

Calculation

 on all nodes, and significant
portions of time are also spent at a barrier.

When a lot of CPUs are involved in a parallel system, the
individual statistics in this display can become very small and
uninformative. To relieve this unfortunate situation,

PARvis

can open additional windows containing statistics for only

one

CPU. To select the CPUs you want statistics for, simply click
at them with the left mouse button, and their frame color will be
inverted.You can also drag Figure 4 Time distribution statistics
for the program run over a couple of CPUs to select several
CPUs with one action. In the example shown in Fig. 4, the

Figure 4: Time distribution statistics for the program run

CUG 1995 Spring

 Proceedings

255

actual time distribution spent in user subroutines (

Calculation

,
pie chart in the left sub-window: most time is spent in subrou-
tine VELO) as well as for node communication (

Communica-
tion

, histogram in the upper right sub-window), and

Paragon

emulation (Paragon, histogram in the lower right sub-window)
is shown for node 2. The user can toggle between table, pie
chart, and histogram in all chart windows.The histograms may
be linear or logarithmic, and zooming is supported.

6 System Activity Profile

The statistics windows only show the accumulated break-
down of system activities over the whole program run. Never-
theless, the program may have different phases where the
timing behavior of system activities is quite different. These
phases can be identified either by looking for differences during
an animation run or by viewing the window

system activity
profile

 (Fig. 5).

This window shows the actual time distribution for all
system activities in each time step accumulated over all the
nodes; and problem areas where, for example,

calculation

 has
low values, can be seen immediately. Figure 7

PARvis

 realiza-
tion: Make zooming as easy as possible

7 Time-line Displays

Based on the data visualization options presented above, we
now concentrate on the interaction of parallel activities and
possible bottlenecks. At this point, the user is interested in
seeing a sequence of activities on all nodes, and the interdepen-
dences between these different program parts.

The problem with most other visualization tools like

Para-
graph

 [Int93] or

Pablo

 [Ree92] is that these tools are based on
the

Replay Technique

: Whenever the user wants to have just
another information about a special part of the program, the
whole trace file is analyzed once again, even if the file contains
several hundreds of Mbytes (see Fig. 6).The magnification
glass has to scan the whole trace file several times whenever the
user would like to see a different information or just another
time frame.

This is different in the

PARvis

-environment:here, the user
can specify the size of the magnification glass, and all details

within the magnification glass can be seen without any further
I/O-activity (Fig. 7). For example, statistics for all activities
inside the chosen time window can be generated within milli-
seconds.Moreover, the user can use a powerful zooming feature
to analyze the program behavior on any level of detail; each
zoom-operation also takes only a few milliseconds, even if
several Mbytes of tracing information are under investiga-
tion.Of course, a hierarchical

unzoom

-operation is provided for
user convenience.

In

PARvis

, the

Global_Display/Timeline

 panel is used to
display this type of information.As can be seen from the upper
part of Fig. 8, colors are used to represent different kinds of
activities, and it is possible to show system activities over time
on each of the nodes. In this example, the program is running
in phases where the subroutine VELO is executed several times.
The black parts are hundreds of messages (represented by one
line each) which are sent between the nodes. Based on the
information displayed in this window, it is quite easy to identify
critical program sections where problems may have occurred.

The powerful zooming feature can now be used to go into
detail. As shown in the middle part of Fig. 8, the period of

interest

1

 (400 - 560 ms) was zoomed-in by just specifying the
time frame with the mouse. Here, one of the time-step iterations
can be seen, and the load imbalance causes long synchroniza-
tion times at the barrier called GSYNC.

1. The time offset is specified in the lower left corner of the panel.

Figure 5: System activity profile

Figure 6: Zooming and the

Replay

Technique

Figure 7:

PARvis

 realization: Make zooming as easy as possible

256

CUG 1995 Spring

 Proceedings

Figure 8: Time-line zooming and message identification

CUG 1995 Spring

 Proceedings

257

The zooming feature also can be used to get deeper and
deeper into the analysis process, to understand program
behavior, and finally to identify problems. The lower part of
Fig. 8 shows a data communication exchange part of the
program (at about 525 ms) where different communication
patterns inform the user about his communication activities. In
the message passing programming model, communication and
data exchange are solely based upon the sending and receiving
of messages.Regardless of the network's topology (which is
hidden to the application programmer in most cases), it is
obvious that the visualization of message transfers and patterns
plays an important role in the performance analysis and debug-
ging of parallel programs. Therefore,

PARvis

 includes means to
display and inquire information about message-passing trans-
fers.These tools are not isolated from the other part of

PARvis

:
message events are read through the same trace file interface
into

PARvis

, and the message visualization tools work
hand-in-hand with the features described so far. It is possible to
mouse-click a message that pops up another panel showing all
information related to that message, including the transfer rate
in MByte/s (i.e.about 20 MByte/s).The information for this
message is coming out of the wrapper of the

shmem_get

communication routine, and the overhead involved is quite low.
Moreover, detailed information about the activities on one node
or a selection of nodes can be obtained.The lower left part of
Fig. 8 documents that even calls to

gdhigh

 (a few microseconds
inside the communication library routine) easily can be identi-
fied. A case study on Intel Paragon [WiNa94] describes a situ-
ation where the

PARvis

 environment was extremely helpful in
identifying performance bottlenecks in the communication
library; based on the optimization process, the output perfor-
mance (

hippi-output

) was increased by a factor of more than
five within a few hours.

In addition, the zooming operation can be used to identify
typical communication patterns. It is obvious that the visualiza-
tion of such communication patterns gives knowledge about
implementation aspects of the system and of your own program,
and it is very helpful to understand synchronization delays and
related side effects which sometimes significantly influence the
performance of real applications.

8 Additional Features

PARvis

 accesses several external tools to perform some of its
tasks. These tools must be located in a directory included in
your PATH environment variable:

•

lpr

, the standard UNIX printing facility, to print lists and
window snapshots.

•

import

, a screen snapshot utility from the

ImageMagick

package to export or print window contents.

ImageMagick

can be downloaded from

ftp.zam.kfa-juelich.de

, directory

pub/graphics/ImageMagick

.

• If you have trace files compressed with

gzip

 or

compress

,

PARvis

 can extract them automatically if their counterparts

gunzip

 or

uncompress

, respectively, are available.

There are quite a few other enhanced features that cannot be
described in detail in this paper; the most important ones are
mentioned below:

• filter functions:

PARvis

 allows to simultaneously display up
to 512 nodes. Typically, this number is much too large to be
handled meaningfully; therefore, powerful filter functions
are available to reduce the number of nodes, either automat-
ically or manually by the user.

• network activity: communication messages are sometimes
moving over the same hardware connections, leading to hot
spots on the network. This component is able to display
communication patterns on the underlying network.

• extensions for

shared virtual memory

 (

SVM

):

PARvis

 has
been enhanced recently to include a number of new win-
dows that help to understand memory access patterns in sys-
tems with

shared virtual memory

 (

SVM

). These extensions
are not discussed in this paper; details can be found in
[Mue95].

• movie support: after each animation step, control is option-
ally given back to a user-command (i.e., a shell script). This
allows to generate movies unattended by the user, just by
specifying a single command in a sub-panel.

9 Summary and Conclusions

This paper describes the

PARvis-environment which
provides some powerful features to discover parallel program
behavior on several parallel systems like Intel Paragon and
CRAY T3D. Experience has shown, that for debugging, as well
as for performance optimization purposes, the supported
time-line displays in combination with the statistics features are
the strength of the system. With the extremely flexible zooming
function in the time-line displays, analysis operations are
supported which can drastically improve the understanding of
observed performance problems.

References

[Arn93] A. Arnold, PARvis: Eine X-basierte Umgebung zur Visualisierung
von parallelen Programmen in Multiprozessorsystemen, Juel-2848,
Forschungszentrum Juelich (KFA), 1993.

[Arn95] A. Arnold, PARvis - an X-based visualization environment for par-
allel programs (User's guide), Forschungszentrum Juelich (KFA),
to be published.

[Ber89] R. Berrendorf, Der FORTRAN-Parser PAFF als wiederverwend-
bares Modul fuer Programmier-Tools, Juel-Spez-537, Forschung-
szentrum Juelich (KFA), 1989.

[Int93] Paragon application tools user's guide, Intel Corporation, 1993.
[Mue95] Ch. Muellender, Visualisierung der Speicheraktivitaeten von paral-

lelen Programmen in Systemen mit virtuell gemeinsamem Speicher,
Juel-2911, Forschungszentrum Juelich (KFA), 1994.

[Nag93] W. E. Nagel, Ein verteiltes Scheduler-System fuer Mehrprozessor-
rechner mit gemeinsamem Speicher: Untersuchungen zur Ablauf-
planung von parallelen Programmen, Juel-2850,
Forschungszentrum Juelich (KFA), 1993.

258 CUG 1995 Spring Proceedings

[NaAr93] W.E. Nagel und A. Arnold, PARvis: Ein Werkzeug zur Visual-
isierung von parallelen Prozessen auf Mehrprozessorsystemen,
Proc.7.ITG/GI Fachtagung MMB'93 (Kurzberichte und
Werkzeugvorstellung) pp. 178-187, 1993.

[NaAr94] W.E. Nagel und A. Arnold, Performance visualization of parallel
programs: The PARvis environment, In: Proc. 1994 Intel Super-
computer Users Group Conference (ISUG'94), pp. 24-31.

[NaLi93] W.E. Nagel and M.A. Linn, Benchmarking parallel programs in a
multiprogramming environment: The PAR-Bench System, in Don-
garra/Gentzsch, Eds.:Advances in parallel computing, Vol. 8:Com-

puter benchmarks, Elsevier Science Publishers B.V., pp. 303-322,
1993

[Ree92] D.A. Reed, R.A. Aydt, T.M. Madhyastha, R.J. Noe, K.A. Shields,
and B.W. Schwartz, An overview of the Pablo performance analysis
environment, Technical Report, Dept. of Computer Science, Uni-
versity of Illinois, Urbana-Champaign, 1992.

[WiNa94] R. Williams and W. E. Nagel, Optimization of output bandwidth
from a Paragon, Technical Report CCSF-44, Caltech Concurrent
Supercomputing Facilities, Pasadena, CA, 1994 (also on WWW: ht-
tp://www.ccsf.caltech.edu/"roy/hippipap/paper.html).

