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Physicists believe that Quantum Chromodynamics (QCD) describes the strong interactions of high energy physics. This funda-
mental theory explains how quarks and gluons interact to form the subatomic particles observed in nature. Calculations with this
theory require large scale numerical simulations which tax the capabilities of the largest supercomputers presently available. The
objectives of these calculations will be briefly described, but emphasis will be placed upon the use of massively parallel computers,

such as the Cray T3D, to carry out the simulations.

1. INTRODUCTION

The particles that make up the atomic nucleus, pro-
tons and neutrons, are not fundamental, but are them-
selves bound states of quarks. The force that binds quarks
together is called “quantum chromodynamics” or QCD.
Some of the properties of QCD can be calculated ana-
lytically, but when quarks are separated by distances on
the order of a nuclear diameter (10~!3 cm) their inter-
actions become strong. At present the only known ap-
proach for performing such calculations from first princi-
ples is through large scale numerical simulations within the
framework of lattice gauge theory.

There are many good reviews and introductions to lat-
tice gauge theory and its use in QCD [1]. The lattice com-
munity has a large annual meeting and the proceedings
of those meetings (Lattice XX, published so far by North
Holland) are the best places to find the most recent results.
However, as in any large community with its own set of
problems, most of the papers in those proceedings tend to
talk to each other in a language which is rather opaque
to nonmembers. My goal is an impressionistic overview of
the field as it presently exists, which might be useful to an
outsider.

The bottom line is that for the past several years there
have been a lot of lattice calculations of masses and matrix
elements which agree with experiment at the ten to fifteen
per cent level.

I will begin with a very superficial overview of how lat-
tice calculations are performed. I will briefly describe the
algorithms we use, and then discuss how the research col-
laboration I am representing (the MILC [2] collaboration)
brought these calculations to MIMD machines like the
T3D. Then I will discuss my own experiences on the T3D.
Finally I will turn to a set of case studies: spectroscopy
of light hadrons, the decay constants of D- and B-mesons,
and a few words about QCD thermodynamics.

2. HOW LATTICE CALCULATIONS ARE
CARRIED OUT

Lattice calculations are performed using the Euclidean
path integral formulation of quantum field theory. If we
have some field theory with field variables ¢ (¢ could be
quarks, gluons (the particles in the theory which mediate
interactions in analogy with the photon), ...) and a La-
grange density £(¢), we define an analog of the partition
function in statistical mechanics

z= [s(e DNexp(~ [ d'aL(9)) (1)

(here z, = (z,#t)). The expectation value of any observ-
able O(4) is given by

(©) = 7 [z, 0100 exp(~ [ d*oL(8)) @)

To be able to perform calculations in any quantum field
theory one must introduce a short distance cutoff which
regulates the ultraviolet divergences. We do that by re-
placing continuous space time by a lattice of grid points
z = ax; where a is the lattice spacing, and defining the
field on those grid points ¢(z) — ¢; = ¢(z;). Then the
functional integrals Eqns. (1) and (2) become ordinary
integrals of very high dimensionality. One evaluates Eqn.
(2) using importance sampling: somehow one creates an
album of snapshots of the field variables ¢; where the prob-
ability that a particular configuration is present in the al-
bum is P(¢;) = exp(—)_, £(¢;) and then

N
(©)= 2066 +0(7) ©
i=

The generation of the album is done using Monte Carlo
techniques.

Lattice calculations are hard for several reasons: The
lattice spacing should be small-small enough that physics
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on a size scale less than a lattice spacing can be described
using perturbation theory. The size of the simulation vol-
ume L* should be greater than the physical size of the
hadrons. This point is in conflict with the first item. The
number of grid points is n = (L/a)*. A gluon field is a
three by three complex matrix per each direction on each
lattice site, or 72 real numbers per lattice site. Fermions
have four spins and three colors or 24 real numbers per
site. Typical simulations have lattice spacings around 1/10
fermi (within a factor of two) and a number of mesh points
ranging from 163 x 32 to 243 x 40 to 323 x 64: the end
is not yet in sight! One needs a lot of statistics-tens
to hundreds of uncorrelated lattice measurements. It is
very hard to compute with light (u,d) quark masses at
their physical values. On the lattice calculating a quark
propagator Gy(z,z’) involves inverting the matrix prob-
lem (B — my)Gy(z, 2') = 6*(z — 2’). The matrix becomes
singular as my — 0. One typically performs a calculation
at an unphysically heavy value of the light quark mass
and then tries to extrapolate to my = 0. Sea quarks (vir-
tual quark-antiquark pairs) are a problem because of Fermi
statistics, which effectively introduces long range interac-
tions among the quarks. There are techniques for dealing
with this problem[3,4] but they make QCD with dynamical
fermions orders of magnitude more difficult than if the sea
quarks were not there (and the difficulty scales inversely
as a power of the quark mass). A rather drastic approx-
imation called the quenched approximation neglects this
problem simply by throwing away all the sea quarks. This
is an uncontrolled approximation which people do mainly
because the alternative (keeping light sea quarks) is too
time consuming for the computer.

All these constraints add up to a very hard numerical
problem. We use the fastest supercomputers available. Af-
ter about 1990 old-style Cray’s were too slow. Some groups
have built their own computers. One of the projects I be-
long to used half of a Connection Machine CM-2 (at a
speed of about 3 1/2 Gflops) for about two years. This is
not considered an excessive amount of resources.

Our numerical tools include sparse matrix inverters (to
construct quark propagators) and various Monte Carlo or
molecular dynamics evolution schemes. The only robust
sparse matrix inversion algorithm which works for us is
conjugate gradient or its relatives. The matrices we in-
vert are not diagonal in Fourier space, and the matrices
are so big (N > 16*) that the only practical precondition-
ing is the use of a “reduced basis” (incomplete Cholesky
decomposition on a red-black checkerboard). Nobody has
invented a working multigrid algorithm for production run-
ning. Molecular dynamics updating is almost always stag-
gered leapfrog (we need reversability). We also have not
been able to invent practical implicit algorithms which sat-
isfy our physics constraints and for which improvement
beats the extra computational overhead.
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In some ways lattice gauge theory is easier than “stan-
dard Cray projects” like weather forecasting. Our grids
are regular. Load balancing is almost automatic. We also
do not have to deal with interactions on wildly different
length scales; for us the aspect ratio is set by the ratio of
the length of the box to the lattice spacing. (Physics on
distances shorter than the lattice spacing must be handled
by perturbation theory, which is a nontrivial problem in it-
self.) These reasons are probably why lattice QCD groups
are among the first “friendly users” on a new machine.

The major problem facing lattice calculations these days
are systematics: Quenching, is a small enough, is L big
enough, is the quark mass small enough? All these sys-
tematics are entangled in any one calculation. Lattice cal-
culations produce as output not a hadron mass my but
the combination ampgy. One finds a by dividing amg by
a measured my (in MeV). The problem is, which mass to
use? Most lattice calculations only reproduce mass ratios
at the ten or fifteen per cent level, so the lattice spacing is
uncertain at that level. This uncertainty propagates into
essentially all interesting calculations.

3. OUR MIMD CODES

The MILC Collaboration has developed a family of codes
for the study of QCD. The codes have compilation op-
tions which allow one to choose between different algo-
rithms. In all lattice gauge theory calculations, a very
significant fraction of the computer time is spent invert-
ing the lattice Dirac operator. Compiler options allow
one to chose between the conjugate gradient and con-
jugate residual algorithms for this purpose. Our code
runs on a wide variety of scalable parallel computers in-
cluding the Paragon, CM-5, T3D and SP2. It also runs
on single processor workstations, which we use for much
of our code development. The codes are available on
the Web: look at http://heplibw3.slac.stanford.edu
/FIND/FREEHEP/NAME/MILC QCD/FULL.

In our programs all of the physical variables associated
with a lattice point are stored together in a single struc-
ture. This organization of the data is advantageous for a
processor with a data cache, such as the i860. It is very dif-
ferent from the optimal organization for vector machines,
where, for example, all the real parts of the first row first
column of the x-direction matrices would be stored as a
single vector, followed by another vector for the imaginary
parts, etc. Pointers to the structures at neighboring sites
and the pointers set by the communications routines, are
stored in separate lists. This turns out to optimize the
cache hits since these lists are usually scanned sequentially.

Since the variables “live on” a four dimensional lattice,
it is natural to divide the computation among processors
by assigning each processor a piece of the four dimensional
space-time. These pieces can be four dimensional hyper-



cubes, or they can be two or three dimensional slices of
the four dimensional lattice. For example, if we are di-
viding an 8 x 8 x 8 x 8 lattice among 16 processors, we
might assign each processor a 4 x 4 x 4 x 4 piece of the
lattice. Alternatively, we might assign each processor an
8x8x4x1 part of the lattice. The division into hypercubes
has the advantage that when the amount of lattice on each
processor is large the number of sites “on the surface” is
minimized. On the other hand, for small lattices this may
be outweighed by the fact that in the “slice” distributions
there are some directions in which every site has its near-
est neighbor on the same processor. The key point is that
the lattice remains regular throughout our computations,
and approximately the same amount of computation is re-
quired at each lattice site. This contrasts with many ap-
plications for which the load on the processors can become
imbalanced as the computation proceeds unless some of the
computation originally assigned to one processor is given
to another.

In thinking about the computation, we imagine that
computing is done “at a site”, by whatever processor is
in charge of that lattice site. In evaluating the updated
value of a field at a site, we need to know the variables at
other lattice sites. In thinking about the physics we do not
want to worry about whether these other lattice sites are
on the same processor as the variable we are evaluating.
As always, the solution is to hide the details of accessing
variables. What is needed is a set of routines for accessing
fields at other sites which work whether the other site is
on the same processor or a different one. Once these are
written, we need think only about whether a variable is
stored at the same lattice site at which we are computing,
and not worry about what processor it is on. This is a very
general need, and we have only addressed it for simulations
which share some simplifying features.

There are three important simplifying features of the
accesses to variables at other lattice sites in QCD simula-
tions: they are homogeneous, mostly local and predictable.
The accesses are homogeneous in the sense that when a
computation at one lattice site reads a variable from a
neighboring lattice site, the computations at all lattice sites
will access the same variable at their neighboring sites. Ac-
tually, things are a little more complicated. Most of the
applications involve different computations on the red or
black sites of a four dimensional checkerboard. If the com-
putations on red and black sites are different, homogeneity
means that when a computation at one red site accesses
data at a neighbor, all red sites will access data at their re-
spective neighbors. In QCD simulations these other sites
at which variables are accessed are almost always neigh-.
bors, usually nearest neighbors, of the site at which the
new variable is being computed. In this sense the accesses
are “local”. (Among the exceptions are the butterfly and
bit reverse in the FFT. These are homogeneous and pre-

dictable, but long range in the four dimensional lattice.)
Finally, the accesses are predictable. We take advantage
of this predictability by making tables in the startup part
of our program which list all of the sites on each proces-
sor that have their nearest neighbors on another proces-
sor, with separate tables for each of the eight directions
(forward in four directions and backward in four direc-
tions). Fortunately, most of these lists are empty! For
reasonable distributions of lattice sites among processors,
fetching data from the nearest neighbor in one direction of
every site on the processor involves communications with
only one or two of the other nodes. On a machine which
allows synchronous communication and computation like
the iPSC/860 we can start the accesses, do some other
piece of computation while waiting for any internode com-
munication that may be required, and then use the data
when it arrives.

Most of the accesses to fields at other sites can be done
by a sequence of three routines. These routines work by
setting a pointer at each lattice site on the desired checker-
board. If the neighboring site is on the same node, the
pointer will just be set to the address of the field on the
neighboring site, but if the neighboring site is on another
node, the pointer will be set to an address in a tempo-
rary buffer used to receive a message. The first routine,
“start_gather”, checks to see if any messages need to
be sent or received, allocates buffers for messages to be
received, sends any needed messages, and sets pointers
on all sites where the neighboring site is on the same
node — all hidden from the user. Following the call to
this routine, other computation may be done, or gathers
from other directions or of other variables may be started.
This happens concurrently with any communication re-
quired by the gather. Before the gathered data is accessed
a second routine, “wait_gather”, must be called. This
routine makes sure that all required messages have ar-
rived and sets the pointers on all sites whose neighbors
are off-node. Finally, after we are done with the data a
third routine, “cleanup.gather”, frees all the temporary
buffers that were allocated. To set up the lists of neigh-
bors used by these routines, the high level code calls a
routine “make_gather”, one of whose arguments is a func-
tion which returns the coordinates of the neighbor site.
It is not necessary that the “neighbor” actually be close
on the four dimensional lattice. The same algorithms can
be used for any orderly interchange of data among lattice
sites. For example, in our analysis code we do Fast Fourier
transforms using these same gather routines for the but-
terfly and bit reverse interchanges.

All of the routines which involve internode communica-
tions, as well as various “housekeeping” routines such as
the function that returns the node number of a proces-
sor, are isolated in one file. A version of this file exists
for each machine on which our code runs. To move from
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Figure 1. A cartoon of a lattice spread among several

processors.

one machine to another we simply link the appropriate file.
Similarly, the functions which determine the layout of the
lattice sites among the processors are isolated in another
file, which contains routines that return the processor num-
ber on which any lattice site lives and the address on its
processor of any lattice site. Thus to change the way in
which lattice sites are distributed among processors we just
plug in another file. It turns out that there are not great
differences in the performance with different layout algo-
rithms. (The exception is a random distribution of sites
among processors, which we used in debugging the code.
This slows the code by a large factor, since in a gather ev-
ery node must send and receive messages from every other
node.)

The vanilla version of our code is written in C, and is
highly portable. However, in order to optimize perfor-
mance, it is necessary to take into account the specific
architecture of the processors, and to do some assembler
language programming. For the Paragon we have written
approximately 25 computationally intensive subroutines in
assembler language. This has led to a speedup of slightly
more than a factor of three in the performance on a single
node. For the CM-5 the entire conjugate gradient routine,
which uses approximately 90% of the floating point op-
erations in a typical lattice gauge theory calculation, has
been written in assembler language. This routine runs at
40 Mflops per node. However, the CM-5 C compiler does
not support access to the vector units, so the remainder of
the code runs on the SPARC chips at a speed of approxi-
mately 3 Mflops per node. For the T3D we have rearranged
some of the assembler code produced by the Cray compiler,
and written a few subroutines in assembler language. This
work has led to a factor of two improvement in the perfor-
mance over the vanilla C code. We obtained early access
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to parallel operations on the CTC SP2 in December, 1994,
and ported our SP1 MPL code it. The benchmarks pre-
sented above are from this first port. As we start tuning
the code, we expect a substantial improvement. We are
currently developing machine language versions of some
of the small, but time-critical routines, such as the SU(3)
matrix times vector operation.

Table I above shows the current performance for our
code on various MIMD machines. For the Paragon, T3D
and SP2 we present benchmarks for the conjugate gradi-
ent inversion routine for staggered quarks. The full code
runs at a slightly faster rate. For the CM-5 we present
benchmarks for the conjugate gradient routine for stag-
gered quarks, and the overall performance of the code for
a typical production run on a 243 x 12 lattice with a quark
mass amg = 0.008.

4. MY LIFE ON THE T3D

Essentially all my recent parallel computing has been
done on Intel machines. Although my colleagues in the
MILC Group have been making extensive use of T3Ds at
the Pittsburgh Supercomputer Center and at NERSC, be-
fore February of this year the only thing I had ever done
on a Cray was to change my password. When I was asked
to give this talk, I thought I should see what the Cray was
actually like. T also had to compute a few numbers for a
work station sized project I am involved in. I figured the
T3D could produce the numbers in a few evenings’ run-
ning, which my Indigo work stations would need a couple
of weeks to duplicate.

Others in the MILC group had ported their particular
projects. I copied a pre-existing Makefile and edited it to
produce my executable. The (borrowed) communication
routine did not compile so I borrowed its object file. The
program compiled but crashed. A few mail messages to my
friends revealed that Cray had been fooling around with
the system software (and one of the header files redefined
“complex” in a way that conflicted with our definitions
of complex numbers.) One of my friends had patched a
private copy the offending header file and with it I got a
clean compile and a running code. Total elapsed time: a
couple of hours spread over a couple of days.

Batch jobs were easy; I just copied a T3D NQS file and
edited it. Some of the calls are different from Paragon
dialect, but this was not a big deal. Two or three days
later (at one two hour job per day) I was done. I would say
the machine is slightly more user-friendly that the Paragon
(where I have most of my experience), but it is not a Sun
work station, or even an Indigo.

My friends report the machine is very stable. The only
jobs that failed were ones that exceeded the time limit.
I have no experience with mass storage. I know that our
Cray binary lattices are incompatible with ones from other



Table 1: MIMD QCD code performancein M egaflops (MF) per node on current machines.

Machine Niodes Lattice Size MF per node
Paragon 1 g4 26 )
0OSF/1 16 164 24
T 167 = 32t 23
124 16 = 32* FE|
256 a 22
CM-5 (Conjugate gradient) 138 94 = 19 40
OM-5 (Full cods) 128 248 = 12 23
T3D I B FI| “'
16 164 b
4 16T « 302 o0
128 16 = 32° 2
ap2 1 I = & i1
[Nt Taned) 4 129 = 24 0
B 12? x 241 3
16 12 = 247 31
32 244 26

machines; this is annoying because we compute on a lot of
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problem presumably arises because DEC does not believe
in IEEE standards for binary words.

5. SPECTROSCOPY

The calculation of the masses of the strongly interact-
ing particles is one of the major objectives of lattice gauge
theory. Besides being an important test of quantum chro-
modynamics in its own right, a controlled calculation of
the mass spectrum would also demonstrate that we are
in a position to carry out reliable calculations of nonper-
turbative effects in QCD that are not as well determined
experimentally as the masses. A computation of the low
lying spectrum in the continuum limit for physical values
of the quark masses is a prerequisite for calculations of
strong and weak interaction matrix elements.

In order to measure the mass of a hadron which has some
set of quantum numbers, invent an operator J which has
the same set of quantum numbers and compute

C(t) = (0]7 ()7 (0)[0). (4)
A little fiddling rewrites this as
C(t) = Y _ {0l |n)[? exp(—Ent) (5)

where |n) is an energy eigenstate with energy E,, which
at big ¢t goes over to

C(t) = [{017]1)|* exp(~Ent) (6)

where E; is the lightest state with the quantum numbers
of J. The exponential falloff of the correlator gives us the
mass, while its intercept gives us a matrix element {(0|J|1).

For bound states of quarks the operator C(t) is basically

tha Faynman oranh shown in Fie 1. it ie made of the
tae reynman grap: snown In rig. i 1y 18 made Oi e

appropriate number of quark and antiquark quarks prop-
agating in the background of gluon fields in your album of
configurations.
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Figure 2. (a) A typical correlator showing good exponen-
tial falloff (the correlator has periodic boundary conditions
in the time direction). (b) Feynman diagrams for meson
and baryon correlators.

Generally in lattice calculations people try to deal with
dimensionless quantities as much as possible, since they are
independent of the precise value of the lattice spacing. In
spectroscopy, people present their data on so-called “Ed-
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inburgh plots,” My /M, vs. Mx/M,. (The name is after
the collaboration which invented the plot).
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Figure 3. Edinburgh plot prepared by me from the data
of Ref. 5. showing ratios at several values of the lattice
spacing (different $’s). The octagon shows the expected
result at infinite quark mass, and the question mark is the
real world value.
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Figure 4. Ratio of lattice masses to the rho mass, after ex-
trapolations to infinite simulation volume and zero lattice
spacing, from Ref. 5. Circles are real world data, squares
from simulations.

An interesting recent calculation is by a group from IBM
which built its own computer to do QCD [5]. Fig. 3 shows
their data plotted by me on an Edinburgh plot. There
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appears to be a small change between the data at larger
lattice spacing (8 = 5.7, about 0.14 fm) to the smaller
lattice spacing (3 = 5.93, 6.17, a down to about 0.07 fm).
The authors of Ref. [5] have extrapolated their masses
in a and L and present the limits in Fig. 4, as a plot
of mass divided by M, at My = 0. The agreement with
observation is spectacular.

Steve Gottlieb [6] in our collaboration has recently fin-
ished a related set of calculations with a different lattice
formulation of quarks. It is significant that calculations on
essentially the same lattice volumes were done a few years
earlier by another collaoration, but the data sets were small
and the analysis was not done carefully enough. Gottlieb’s
thorough analysis was as necessary as the big computer
was.

6. A CASE STUDY-HEAVY MESON DECAY
CONSTANTS

The decay constant fys of a pseudoscalar meson M is
defined as

(0lg10759|M) = farmaur. (M

Decay constants are interesting because some of them (7
and K) are measured and provide a benchmark for lattice
calculations, while some of them are not measured and
allow predictions (D, D,, and B). They probe very sim-
ple properties of the wave function: in the nonrelativistic
quark model

fur = f—,ﬁl—o_j; ®)

where 1(0) is the gg wave function at the origin.
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Figure 5. Pseudoscalar decay constant from the lattice.



One of my colleagues, Claude Bernard, has been doing
the definitive fp calculation at the Oak Ridge National
Laboratory’s Center for Computational Sciences (lattice
volume 243 x 80), and at Indiana University (lattice vol-
umes up to 16 x 48). Some of his results [7] are shown in
shown in Fig. 5.

With the current data, he is able both to extrapolate in
lattice spacing to the continuum limit and to control finite
volume effects. In this way, all the important systematic
errors in the quenched approximation can be controlled.
A report of the preliminary results from this project was
presented at Lattice-94. He found (in MeV):

fp =147(6)(23);  fp = 181(4)(18);
fB, =164(5)(20); fp, = 195(3)(16);

I _11s@)e); 22 =1090)4). ©)
fB Io

There are several other lattice predictions of these num-
bers. They differ in detail, but all give numbers in their
range. There are two experimental measurements of fp,.
They are 232+ 45+ 20 £+ 48 MeV [8] or 344 £ 37+ 52+ 42
MeV [9]. The experimental error bars are so large that the
lattice calculation is a prediction for experiment to verify
or disprove.

7. HIGH TEMPERATURE QCD

Under normal laboratory conditions one does not di-
rectly observe the fundamental entities of QCD, the quarks
and gluons. Instead one observes their bound states, the
strongly interacting particles: the proton, the neutron and
the scores of short lived particles produced by high energy
accelerators. However, at very high temperatures or den-
sities one expects to see a crossover or phase transition to
a new state of matter, the quark—gluon plasma. Nuclear
physicists hope to observe the plasma in heavy-ion colli-
sions being planned for facilities such as RHIC and LHC.
However, to make such an observation it is necessary to un-
derstand the nature of the transition and the properties of
the high temperature state. The quark—gluon plasma may
exist today in the cores of neutron stars, and it played a
role in the evolution of the early universe prior to nucle-
osynthesis. Studies of high temperature QCD have an im-
portant bearing on other lattice gauge theory calculations
because they provide a straightforward means of deter-
mining the lattice spacing at which one can safely extract
continuum results.

The study of high temperature QCD in the vicinity
of the crossover between the low and high temperature
regimes is inherently a strong coupling problem, and at
present it can be addressed from first principles only by
lattice methods. The questions to be answered are the
nature of the transition or crossover, the temperature at
which it occurs, and the properties of the high tempera-
ture regime. We have been actively involved in addressing

all of these questions.

During the past year one of our major MetaCenter
projects has been the study of high temperature QCD
with two flavors of staggered quarks on 243 x 12 lattices.
We have performed simulations with quark masses 0.008
and 0.016 in lattice units (about 14 MeV and 28 MeV in
physical units). These parameters correspond to a lattice
spacing approximately 33% smaller than has been used in
previous studies of full QCD at high temperatures. Thus,
we believe that this work is a significant step in push-
ing the study of QCD towards the continuum limit. This
project will yield an improved estimate of the crossover
temperature between the low temperature regime of or-
dinary hadronic matter and the high temperature quark-
gluon plasma. We also expect it to provide insight into the
nature of the crossover and the properties of the plasma.
In Fig. 6 we show a plot of the deconfinement temperature
of QCD from our simulations.
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Figure 6. Deconfinement transition temperature (in units
of the rho mass, 770 MeV) as a function of the pi/rho mass
ratio, from lattice simulations with various formulations
of quarks (Wilson or Staggered) and for various levels of
discretization (the lattice spacing is 1/(N;T¢)). The real
world is along the dotted line.

As a second project in high temperature QCD, we are
doing a nonperturbative calculation of the equation of state
for two flavors of staggered quarks. A determination of the
energy and pressure as a function of temperature is impor-
tant for understanding the formation of the quark-gluon
plasma. It is also needed for phenomenological models of
strongly interacting matter, and to calculate the hydrody-
namic evolution of matter in the aftermath of relativistic
heavy ion collisions.
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Figure 7. The equation of state for two flavor QCD as:

a function of temperature. The temperature is calculated
from the rho mass. The energy density is obtained from the
interaction measure and the pressure. The lower curves are
three times the pressure. The octagons are for am, = 0.025
and the squares are for am, = 0.1. The errors contain the
uncertainty in the 8 function. The bursts are extrapola-
tions of the data to am, = 0. At high temperature they
approach the Stephen-Boltzmann law for noninteracting
particles on a finite lattice (dashed line, the solid line gives
the continuum value).

During the past year we carried out the first measure-
ment of the equation of state of QCD with two flavors of
quarks.[10] We found the pressure by numerically integrat-
ing derivatives of the partition function with respect to the
bare parameters, 6/g2 and am,. (g is the gauge coupling
constant, m, the quark mass and a the lattice spacing).
These derivatives were measured directly on the lattice.

We began by performing a feasibility study at a rather
large lattice spacing, @ = 1/(47), that is at Ny = 4. (T
is the temperature and N; the number of Euclidean time
slices of the lattice). Although this work already produced
interesting results, it is clearly necessary to push these cal-
culations to smaller lattice spacings in order to make con-
tact with continuum physics. We have therefore begun a
new series of simulations at lattice spacing ¢ = 1/(67),
that is N; = 6. We are using a spatial volume of N, = 12,
and studying quark masses am, = 0.025 and 0.0125. The
strategy, as in the N; = 4 calculation, is to perform simu-
lations along lines of constant bare coupling at a few quark
masses and extrapolate to am, = 0. The phase diagram
will then be filled in by running simulations along lines
of constant am,. Histogram reweighting can be used to
smoothly cover the entire region.
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8. SUMMARY

Present day lattice calculations are able to produce ten
to fifteen per cent numbers for a wide variety of physi-
cal observables. Most of the uncertainties are systematics
limited (at the cost of large amounts of computing to beat
down statistics). The major systematic is the lattice spac-
ing. It is just not understood how small the lattice spacing
should be so that lattice calculations are insensitive to it
(or more precisely, so that all physics on scales less than a
are perturbative).

New supercomputers help in two ways. The obvious way
is that they give us the resources to increase the lattice size,
decrease the lattice spacing, and reduce the quark mass,
in short, to more accurately model the real world.

However, in my opinion, our problems will not be solved
simply with more powerful machines. The T3D (and the
Paragon and anything else of the same power) are just not
going to take us all the way. The most interesting new
ideas to me, which might lead to improved calculations
on smaller computers, are concerned with the question:
Can one find a more complicated discretization which al-
lows one to work at bigger lattice spacings? Doubling the
number of terms in the lattice action roughly doubles the
amount of work, while halving the lattice spacing at fixed
simulation volume increases the work by a factor of 16.
This subject is under active study [11]. New algorithms
are tested on small systems, and most of my work has
been done on (fast) work stations. I use supercomputers
for turnaround, so that I can find out reasonably quickly
whether my latest great idea is a failure or not. For that
mode of research our code family is extremely convenient
and our paradigm for parallel computing might serve as a
model for other users.

I would like to thank my friends on the MILC Collabo-
ration (who have actually done all the work listed here) for
their insights and advice. This work was supported by the
U. S. Department of Energy and by the National Science
Foundation. Simulations were performed on the NERSC
T3D and the San Diego and Indiana Paragons.
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