

CUG 1995 Spring

 Proceedings

291

AC for the T3D

William W. Carlson

 and

Jesse M. Draper,

 IDA Supercomputing
Research Center, Bowie, Maryland, USA

1 Introduction

We have modified the C language slightly to enable
programmers to read and write remote memory efficiently with
simple assignment statements. To create a programming model
in which local data and remote data are differentiated solely by
the ways in which they are declared, we have focused on
pointers and arrays, the two C constructs which are most closely
tied to addresses. The addition of a single keyword gives the
programmer the ability to declare a pointer that can point to any
memory location in the program’s virtual address space or to an
array that is distributed among all the local memories of the
program. By keeping software constructs to a minimum and
enabling programmers to use underlying hardware efficiently,
AC is solidly in the C tradition. Using the Free Software Foun-
dation’s GNU C Compiler [Stal 94], we have implemented AC
on the Cray T3D and have achieved excellent performance
results compared to the Cray Standard C compiler.

2 Modifications to C

Adding distributed objects to ANSI C required one syntactic
change: the addition of a keyword “dist” as a

type-qualifier

[ANSI 89] in data declarations to indicate that the declared
objects are distributed across all the processing elements in the
system. Distributed scalars result in a single object on a single
PE. In all of the example code throughout the paper,

PROCS

 is
a special

const int

 variable which is initialized to the
number of processors in a system segment, and

MYPROC

 is a
special

const int

variable which, for each processor, is
initialized to the index of that processor, between

0

 and

PROCS-1

. Although it is not necessary that distributed arrays
have a final dimension which is either the symbol PROCS or an
integer multiple of that symbol, such declarations make explicit
the distribution across processors.

dist int y[PROCS];/*one y per PE*/
dist int a[100][PROCS];
 /*one a[100] per PE*/
dist int b[100][12*PROCS];
 /*one b[100][12] per PE*/
dist int odd[PROCS][17];
 /* 17 integers per PE, BUT
 they are SKEWED in their
 mapping by 17/PROCS */

dist int x; /* one x on entire
 system */

2.1 Distribution of Arrays

As the syntax indicates, the addresses a[100][5] and
a[100][6] are on successive processors, with “successive”
meaning the next higher numbered processor, with the excep-
tion of the last processor, whose successor is processor 0. Note
that b[87][5] and b[87][6] are also on successive processors.
The local element of b that is one above b[42][5] is
b[42][5+PROCS]. In effect, the layout of b is the same as if it
had been declared b[100][12][PROCS]. The difference between
the two is that references to the latter require three subscripts
rather than two. A statement of the form

i = a[42][i];

will result in the computation of an address on processor

i

 and
a remote fetch from that address. Similarly, a statement of the
form

a[i][j] = i;

will result in the computation of an address on processor

j

 and
a remote store to that address.

2.2 Pointers

In order to achieve consistency between arrays and pointers,
operations on pointers to distributed objects have several char-
acteristics that differ from those of conventional C pointers.
Internally, pointers to distributed objects have two separate
components, a processor number and a local address. The
processor number is used to determine where the remote refer-
ence is to be done, and the local address is used on that
processor as if it were in that processor’s “local” view. On the
T3D, the top 16 bits of a 64-bit value are used to hold the
processor number, and the bottom 48 hold the local address.
This section discusses several important semantic characteris-
tics of distributed pointers: how they are affected by pointer
addition and subtraction; how they are affected by casting to
local pointers; and how local pointers are cast to distributed
pointers.

It is important to understand a distinction in the ANSI stan-
dard term

type qualifier

 [ANSI 89] and, specifically, the action
of type qualifiers on pointers. The major question is “What is
distributed, the pointer itself, or what it points at?” In general,
the way to read these declarations is to start with the object

292

CUG 1995 Spring

 Proceedings

being declared and work out, so the simple declarations are
described as follows:

int *p; /* p points at an int */
dist int *pd; /* pd points at an
 int in “dist space” */

Both of these declarations declare a single value (the pointer)
which is allocated on each processor (i.e., local) and is uninitial-
ized. If both pointers have been set to point to reasonable
things, dereferencing

p

 (i.e.,

*p

) results in an access to local
memory, whereas dereferencing

pd

 results in a remote memory
access to “anywhere” in the machine. Continuing to slightly
more complex references:

int *dist dp;
 /* dp is a pointer which is
 distributed; it points at
 an int which is local */

dist int *dist dpd;
 /* dpd is a pointer which is
 distributed; it points at
 an int which is in dist
 space */

In this case each declaration declares a pointer object which
is “

dist

” (i.e., a single pointer shared by all processors). That
is the meaning of

*dist

 in the declarations. Dereferencing

dp

results in a remote memory access to get the value of

dp

 (from
a single PE), followed by a local memory access using that
value. Dereferencing

dpd

 results in a remote access to get the
value of

dpd

, followed by a second remote access to get the
value at that address. Note, then, that the number of

dist

keywords in the declaration indicates the number of remote
accesses performed when the object is (fully) dereferenced, and
that the order (from “inside-out”) indicates which are local and
which are remote.

2.2.1 Arrays of Pointers and Pointers to Arrays

Another level of declaration complexity can be obtained by
using both pointers and arrays in the same declaration. The
important rule in understanding these declarations is that, in the
default case, array notation (

[]

) has higher precedence than
pointer notation (

*

). Consider the following declarations:

int *ap[10]; /* an array of 10
 pointers to int */

dist int *apd[10];
 /* an array of 10 pointers,
 each pointing at an int
 which is in dist space */

int *dist adp[10];
 /* a distributed array of 10
 pointers, each pointing at
 a local int */

dist int *dist adpd[10];
 /* a distributed array of 10
 pointers, each pointing at
 an int in dist space */

Each declares an array of 10 pointers. The first two (

ap

,

apd

)
of these arrays are “local”; the second two (

adp

,

adpd

) are
distributed as described in Section 2.1. A “pointer to a distrib-
uted array” requires a declaration using parentheses to break the
common precedence rules:

dist int (*p)[10];
 /* a single (local) pointer
 to a distributed array of
 10 integers */

Such a declaration is quite useful for “striding” through a
complex data structure. If the dimension is PROCS, this is a
particularly useful context, because increments to p would
remain on the same processor. One of AC’s advantages is that
a programmer with a proper understanding of declarators (as
describe above) can create virtually any conceivable data struc-
ture. To a large extent this flexibility is possible because the
implementation of distributed objects is “faithful” to C.

2.2.2 Pointer Arithmetic

Pointer arithmetic is defined modulo PROCS. For example,
successive increments of a distributed pointer increment the
processor number until it reaches PROCS and only then affect
the offset. Although distributed pointers are not structures,
structure notation is useful for defining what happens in pointer
arithmetic for two distributed pointers dp and dp1:

dist int *dp, *dp1;
dp1 = dp + i;

effectively generates the following code

dp1.proc = (dp.proc+i)%PROCS;
dp1.loc = dp.loc +
 ((dp.proc+i)/ PROCS)
 * sizeof(*dp);

where

proc

 and

loc

 refer to the components of this
pseudo-structure and

sizeof(*dp)

 represents the size of
what

dp

 and

dp1

 point at (int in this case). Thus

dp++

 points
to the same offset on the next processor unless the processor
number before the increment is PROCS-1, in which case

dp++

points to the next local address (+= 8 bytes for int’s on the
T3D) on processor 0. This convention allows a user to step
through an entire distributed array one element at a time.

2.2.3 Casting of “Local” Pointers to
 Distributed Pointers

Whenever a local pointer (one without the

dist

 attribute) is
cast into a distributed pointer, the processor number portion of
the distributed pointer is set equal to the current processor.
Therefore, dereferencing the distributed pointer will result in
the same value as dereferencing the local pointer.

dist int *dp;
int *p;
dp = (dist int *) p;
if (*dp == *p)
 printf(“always true!”);

CUG 1995 Spring

 Proceedings

293

Because pointers to distributed objects include a processor
number, they cannot be statically initialized.

2.2.4 Casting of Distributed Pointers to “Local” Pointers

Whenever a distributed pointer is cast to a local pointer, the
processor number of the distributed pointer is lost. Therefore,
this operation is dangerous, because the resulting local pointer
may point to a different object than the distributed pointer.
However, it is useful to get a local pointer for efficient access to
the local elements of a distributed array.

dist int x[PROCS];
int *p;

p = &x[MYPROC];
 /* p points to x[MYPROC], but
 is more efficient for
 pointer ops */

On the T3D all accesses via dist pointers are uncached (they
use the prefetch mechanism), and all accesses via local point-
ers are eligible for caching. In general, this works very well,
but cache consistency problems can arise when both a distrib-
uted pointer and a local pointer are used to refer to the same
object. If a program reads a local pointer and does a store to
the dist pointer (on any processor), there may be an inconsis-
tent value in the dereference of the local pointer. For this case,
users must use some invalidation mechanism (such as
cache_invalid_on() or line_invalid_on(x)).

2.3 Node-level GCC Extensions

Because AC is based on GCC, the GNU C Compiler, AC
provides the same extensions to ANSI C that GCC does
[Stal94]. While some users shy away from these extensions,
several are quite useful in developing high performance
programs for the T3D. The first is the use of variably dimen-
sioned automatic arrays and function arguments, much as in
Fortran 77. Syntactically, the dimension of an array can be any
expression. In the following function:

foo (a,n)
 int n;
 double a[n][n];
{
 int i;
 for (i=0;i<n;i++) a[i][i] = 1.0;

the array

a

 is dimensioned at runtime (and sets the diagonal
elements to 1.0). This syntax will work with distributed arrays
as well as normal ones.

The other major GCC enhancement of use to (and used by)
AC programmers is the GNU “asm()” mechanism, which
allows any instruction to be included in user source C code with
C expression operands. This extension is obviously machine
dependent and requires knowledge of the T3D architecture,
specifically the instruction set architecture of the DEC ALPHA
chip. The basic format of the instruction is:

asm(

assembler_string

 :

output_operands

 :

input_operands

);

where assembler_string is the actual text to be written to the
compiler output; output_operands describes where results of
the instruction are written; and input_operands describes the
sources of instruction inputs. More specifically,
assembler_string is an ascii string with printf-style % argu-
ments. Each % is followed by a number, which refers to the
output and input operands, in the order they appear. The
output_operand and input_operand segments of the asm speci-
fication are comma separated lists of operands, each of which
has a “constraint_string” and a C expression value. In general,
the “constraint_string” is a collection of potential register or
memory classes which are used internally to GCC for the
ALPHA. The letter “r” refers to an integer register; the letter
“f”, to a floating point register; and a number, to a duplicate
argument. Thus the asm() statement for a store quad condi-
tional instruction (needed to access the DTB annex on the
T3D) would be:

int val; int *addr;

asm volatile ("stq_c %0,0(%2)":
 "=r" (val):"0" (val),"r" (addr));

In this case, the instruction has an output register which is the
same as the input register (the instruction both reads and writes
the value) and an input register containing the address. If

val

were allocated by the compiler to register r12 and

addr

 to reg-
ister r7, the compiler would output the instruction:

stq_c r12,0(r7)

to the assembler output file, which would then be assembled
as appropriate. The keyword volatile tells the compiler not to
rearrange or eliminate the instruction if

val

 is unused after this
point in the program. Note that it is crucial to get the input and
output arguments of these instructions correct, because the
compiler will attempt to optimize and rearrange the user’s code
as much as possible, and if the constraints are not correct, bad
code will result. For example, if the argument

val

 was not an
output argument, the compiler might attempt to reuse the value

val

, which would be wrong because the stq_c instruction
changes that register.

3 Performance Analysis

To analyze the performance of our distributed access proto-
type, we conducted two classes of experiments: a comparison of
the low-level transfer performance of AC to highly optimized
libraries on the T3D, and a comparison of the implementation
of a distributed algorithm under both the distributed model and
under a highly efficient message-passing model. These experi-
ments show that our goals are being achieved: the low-level
performance is superior to the optimized libraries, achieving
very near hardware-limited performance, and the benchmark
algorithm shows that one can achieve this performance level

294 CUG 1995 Spring Proceedings

while having a much cleaner representation than is possible
with the message-passing model.

3.1 Scalar Performance
AC can produce extremely efficient code for the T3D system

in most cases. However, some input programs will produce
quite bad results. For maximal efficiency, two simple guide-
lines should be followed when preparing programs. Fortu-
nately, these guidelines often result in “good” programs whose
functionality is clear and therefore easy to understand, main-
tain, and modify.

1. Each subroutine/function should be of “reasonable” size.

2. Memory usage should encourage reuse.

The first rule prevents two big performance problems: too
much function call overhead and too much “local” variable
state. The first problem occurs when a function has too little
work. This can be cured by using the “inline” attribute in GCC,
or by simply making each call do a larger amount of work. In
general, a function call/return requires about 100 cycles and 10
memory accesses. This means that virtually any function con-
taining a “loop” is big enough, but short (1-10 statement)
sequential functions will incur a large overhead. On the other
end of the spectrum are gigantic functions. Not only are these
difficult to maintain, but they also, in general, contain too much
state for the 32 registers in the DEC ALPHA chip. Probably
anything with more than 20 local variables or longer than 200
lines should be broken up. Note that both tiny and huge subrou-
tines will compile and run correctly; the overall program will
just run much faster if subroutines are “reasonably” sized.

The second rule recognizes the presence of cache memory
on the DEC ALPHA chip. Because cache memory is between 8
and 30 times faster than main memory, it is important to use it
effectively for high performance. This is mainly achieved by
structuring algorithms to allow reuse of data in units of the

cache size (8Kbytes for the T3D) or, if that is not possible, using
stride-one access to larger data structures. While this paper is
not the appropriate place to describe all such algorithms in
depth, there is a large body of research [DDSv91] in so-called
“blocking” algorithms which may be helpful to users of the
T3D.

Our experience shows that when users follow these guide-
lines, performance achieved by AC and the T3D can be very
high. Typical experience shows a 50% to 300% increase in the
performance of programs so structured and compiled by AC,
when compared to the Cray Standard C compiler, version 4.0.3.
When such performance is not seen, it is almost always due to
function size problems or a memory-bound (i.e., noncaching)
program.

3.2 Get/Put Performance

Figures 1 and 2 show the “get” and “put” performance of
three systems: distributed declarations, the Cray provided
“shmem” library, and a highly optimized library written locally.
In each case, a block of N words was transferred from an origi-
nating processor to a remote processor repetitively until the
performance measures stabilized. All values are given in “ticks
per word”, which refers to the transfer rate for a machine with
150MHz clock cycles. For small values of N our mechanism
significantly outperforms both of the library versions, and for
large values of N the three approaches are generally of equal
performance. Therefore, we would expect to see performance
advantages using this model when transfer granularity is small
and equivalent performance when it is large. Note that these
transfers were all dependent on each other, so no compiler opti-
mization was possible. While the put rate is at the hardware
limit of the system, the get rate for single word transfers can be
reduced to approximately 70 ticks per word if concurrency is
visible to the compiler. This, again, is quite close to the hard-
ware limit of the system.

CUG 1995 Spring Proceedings 295

3.3 Benchmark Algorithm Comparison
One AC user has implemented the “blocks-in-a-box” puzzle

as described in [BCG 82]. This is a fairly complex benchmark
which maintains both a distributed stack of partial solutions to
the puzzle on each processor, and a tree structure among the
processors for load balancing. There are two implementations:
one which uses a very efficient message-passing model, and
another which uses the distributed declarations described in this
paper. The code for the distributed case is not only considerably
cleaner than the message-passing code, but also about 10%
faster on average. The latter point is consistent with the data
reported above because the “state” passed between processors
is 16 words in length or smaller. Therefore, for at least this case,
our new model has achieved its goals of equaling or surpassing
the hardware limited library performance while providing a
convenient and easy to understand programming model for
users. In addition, because of the improved optimization,
instruction scheduling, and register allocation of the AC
compiler, the node-level section of this program runs 5 times
faster than when compiled with version 4.0.3 of the Cray Stan-
dard C compiler.

4 Using AC

Instructions for acquiring and installing AC can be obtained
from the authors. A technical report is available [CaDr 95], and
email can be sent to wwc@super.org or jdraper@super.org.
Bug reports can also be sent to the authors at the same
addresses.

4.1 Command Line
To compile an AC program for the T3D, issue the following

command:
% ac -O2 -fprocs-N file.c

The -fprocs-N flag tells the compiler and linker to produce
code for N processors. Currently users must compile for a
specified number of processors; that requirement may vanish in
the future, but specifying the number of PE’s will continue to
produce better code since the compiler can use constants in
performing address calculation and pointer arithmetic. It is
possible to use other optimization levels, but level 2 is enough
to gain the distinct performance advantages offered by GCC’s
instruction scheduler.

4.2 Debugging Support
When invoked with the -g option, AC generates code that is

compatible with CRI’s TotalView debugger. Users can set
breakpoints in source code, single-step source code, and
examine both local and global variables by name. It is also
possible to examine assembly code and registers.

5 Conclusions

We have designed and implemented extensions to the C
programming language that enable programmers to read and
write remote memory efficiently with familiar C syntax. Our
performance results on both node-level programs and remote
stores and fetches compare quite favorably with those of the
Cray Standard C compiler and libraries on the Cray T3D.

6 Acknowledgments

The Split-C work at UC Berkeley [CDG 93] inspired us to
add similar features to AC, and David Culler and several of his
colleagues were generous with their time in discussing
approaches to the problem of distributed objects. We would
like to thank a number of users who have bravely tested AC by
writing actual applications rather than just test programs. We
also appreciate the cooperation of Cray Research, Inc., which

296 CUG 1995 Spring Proceedings

has provided essential documentation and worked with us to
improve the compatibility of AC programs with Cray tools.

7 References

[ANSI 89]American National Standards Institute, American National Standard
for Information Systems--Programming Language--C, 1989, sec. 3.5.4.1.

[BCG 82] Berlekamp, Elwyn R., John H. Conway, and Richard K. Guy, Win-
ning Ways for Your Mathematical Plays, Volume 2: Games in Particular,
Academic Press, New York, 1982, p. 736.

[CaDr 95] Carlson, William W., and Jesse M. Draper, AC for the T3D, Techni-
cal Report SRC-TR-95-141, Supercomputing Research Center, February
23, 1995.

[CDG 93]Culler, David E., Andrea Dusseau, Seth Copen Goldstein, Arvind
Krishnamurthy, Steven Lumetta, Thorsten von Eicken, and Katherine
Yelick, “Parallel Programming in Split-C,” in Proceedings of Supercomput-
ing ‘93, Portland, OR, November 15-19, 1993, pp. 262-273.

[DDSv91]Dongarra, Jack J., Iain S. Duff, Danny C. Sorensen, and Henk A. van
der Vorst, Solving Linear Systems on Vector and Shared Memory Comput-
ers, SIAM Press, Philadelphia, 1991.

[Stal 94]Richard M. Stallman, Using and Porting GNU CC.

