

CUG 1995 Spring

 Proceedings

349

Distributed User Support on Exxon's Cray Supercomputer

Bonnie L. Hall

, Exxon Upstream Technical Computing

ABSTRACT:

Exxon Upstream Technical Computing Company (EUTeC) has developed a
system to allow distributed user support

.

The Customer Representative Interactive System for
Processing IDs (CRISPI) is a local application that has increased our efficiency and enhanced
our security and auditability

.

The application is easy to use and easy to maintain. CRISPI
allows root users to minimize the amount of time spent satisfying user requests

.

A basic version
of the application is simple to implement and may evolve into a complex system that completely
manages a site's customer support needs.

The application design is intended to be flexible. Any site could implement their own version
of CRISPI using any language that CRI supports. This paper will examine the benefits of such a
system and will provide the information necessary to design a CRISPI type application for a
typical UNICOS system.

1 Justification

1.1 Limit Root Access

EUTeC developed this system for both efficiency and secu-
rity. Every user community has many requests that require
assistance from system administrators with root access. A ratio
of 100 generic users to each root user is not unusual. The
CRISPI application provides non-root users at distributed sites
the ability to manage many of the users' requests. Requests that
may be handled by a CRISPI system include:

• Group Changes

• NFS Mapping Changes

• Password Resets

• Login Account Maintenance

• Billing Account Code Maintenance

• Data Access Changes (chown, chgrp, chmod, ACLs, MLS
labels)

• Creating directories and moving data

• NQS service queue and job maintenance

• Reviewing contents of various system logs

• Updating UDB privileges and resource limits

• Providing access to an MPP

With the dispersion of these tasks, the root users will have a
great deal more time to concentrate their efforts on installing
UNICOS updates and implementing system enhancements.

1.2 Positive User Identification

Security issues provide two good reasons to implement a
CRISPI system. Positive user identification becomes difficult
when a user community is spread over a large geographic area.
A common way to solve this problem is to establish a customer
representative contact (C-REP) at each remote site. All user
service requests must be directed through the site's C-REP via
e-mail or other verifiable means. The use of a C-REP for posi-
tive user identification is secure, but not efficient. A great deal
of time and energy may be saved by providing the C-REPs with
the tools necessary to satisfy the users' requests themselves.
However, it would not be prudent to allow C-REPs uncon-
trolled access to root. CRISPI provides a menu based system to
safely perform administrative functions on behalf of the user.

1.3 Enhanced Audit Trails

A well-developed CRISPI system will also solve problems
which arise when interpreting the contents of administrative
audit trails. It is important to have a log of all changes
performed on the users' behalf and a record of authorizations
obtained. One of the shortcomings of all UNIX systems is the
lack of a single, robust audit trail for all types of changes. CRI
does provide a number of good audit trails including MLS
system logs, nu application logs, the su log and several others.
However, these logs are all have different formats and different
information. Technical expertise is required to interpret these
logs and reconstruct administrator activities. CRISPI allows a
customized audit trail for all administrator activities with a stan-
dard change record that makes reporting a breeze.

350

CUG 1995 Spring

 Proceedings

Welcome to the CRISPI System

Please choose an option:

1) NFS UID/GID Map Changes
2) Update User Resource Limits
3) Change Group Membership
4) Change Data Access Permissions
5) Manipulate Existing User IDs
6) Review/Report Contents of Security Log
7) Obtain Information on a User
8) Exit the CRISPI System

Enter Number of Choice -->> ______

Figure 1

1.4 Consistent Treatment of Requests

The outcome of the more involved changes may vary when
different root users satisfy customer requests. The handling of a
user request for MPP access provides a good example. Several
resource limits must be set and other resource limits should be
increased. Often the user is added to new groups and given a
directory in a new file system. The customers do not know what
to expect if different administrators satisfy the MPP access
requests in different ways. Frustration is bound to arise. A
single script is used to perform all the changes when all MPP
access requests are handled via CRISPI. No one will forget to
set a limit or add a directory and all the requests are handled
consistently. The customer knows exactly what to expect when
a request for MPP access is granted.

2 System Components

2.1 Contents of a CRISPI home directory

To efficiently implement CRISPI it is necessary to maintain
a uniform structure across all the CRISPI login accounts.
Provide each C-REP with a home directory that contains a
customized menu and a log of their activities. All the CRISPI
users will use the same source code to satisfy the supported user
requests. The CRISPI home directories should all reside in the
same file system and the directory names should match the
CRISPI login name. Each CRISPI user is given a login in a stan-
dard format such as "REPxxx" with home directory
/users/REPxxx. Let xxx refer to a unique identifier for each
CRISPI user. The advantage to the naming conventions
becomes obvious when scripts are created to manage all
CRISPI logins in one fell swoop.

2.1.1 The Customized CRISPI Menu

The CRISPI application is accessed through a menu inter-
face which is the login shell. The CRISPI user interactively
supplies answers when prompted for information. Not all the
C-REPs are allowed the same level of access. Different main

menus control which customer requests a given CRISPI login
may satisfy. This is referred to as the "level" of the CRISPI
account. Each CRISPI level provides access to all privileges
granted to the lower levels. A site may decide that no levels are
necessary and each CRISPI user may access all the functions.
The following is an example of a possible three-level CRISPI
implementation:

1. Level one CRISPI is given to C-REPs in remote locations.
These CRISPI users provide services for a particular group
of people and no others. The level one CRISPI users are able
to manipulate existing login accounts or data and groups that
are owned by their local site.

2. Level two CRISPI is for use by a central security administra-
tion team. Level two CRISPI users have authority to provide
service to anyone in the user community. This centralized
group handles adding and deleting login accounts and
groups, granting MPP access, setting certain privileges or re-
source limits and manipulating NQS queues. A level two
CRISPI user may define ownership for groups, data and lo-
gin accounts to allow a level one CRISPI user to manage the
entity.

3. Level three CRISPI is reserved for root users. All the func-
tions provided by CRISPI could also be performed as root,
but there are good reasons to use CRISPI instead: it retains
local audit trails, provides consistent handling of requests
and it takes less time. Functions that are restricted to level
three CRISPI accounts include moving data between file
systems, creating file links, adding new CRISPI accounts,
and full use of udbgen.

Note that it is often desirable to provide sub-menus for
CRISPI logins that provide many options. More than 8 options
will clutter the menu and make it difficult to use. The following
menu is an example of a CRISPI main menu for an account that
can access many functions. Options 1 - 6 lead to various
secondary menus.

CUG 1995 Spring

 Proceedings

351

Option 7, "Obtain Information on a User", calls a local script.
The CRISPI user may input any search criteria that may be
found in an /etc/passwd entry, such as name, telephone number,
or login ID. The script will locate all possible matches and allow
the CRISPI user to choose a single login ID. A full screen of
data is then provided for the chosen login including UID, name
and phone, all groups, valid account codes, last login, and status
of the account (enabled, password disabled, udb disabled, etc.).
This tool is essential to CRISPI users who only access the
system via the CRISPI menu.

2.1.2 Authentication Routine

Each CRISPI account must contain an authentication
routine. To restrict some CRISPI logins to changes for users at
a given site, it is necessary to know where each user is assigned.
An effective method is to query a database on another machine.
Payroll computers are kept up to date on all personnel transfers.
Create a cron job to query this computer several times a day and
put each user into a group that represents their organization. For
instance, a group named ORGxxx may be used. The characters
ORG allow the programmer to manipulate all the groups at once
while xxx is a unique identifier for each group. There is an
added benefit to using ORG groups - it is trivial to detect when
users transfer between divisions or leave the company.

Once every user is in an ORG group to uniquely identify
their organization, define a variable to store all ORG groups
accessible to a given CRISPI login. For the sake of example this
variable will be referred to as the ALLOW variable. The
ALLOW variable and level of the CRISPI menu are the only
two pieces of code that vary between various CRISPI login
accounts.

2.1.3 Scripts and C programs to satisfy requests:

All CRISPI accounts access the same CRISPI source code.
The menu level controls which function each user may perform.

The implementer may decide to keep different scripts to
satisfy each type request, build change handling directly into
the menu program or to create a hybrid scheme. Similar changes
may be handled by one program while short changes may be
built directly into the menu. It is important to keep the principle
of least privilege in mind when deciding an implementation
scheme for request handlers. Only the piece of code that
requires privilege should assume privilege. All other code
should run as a standard user.

It is a good idea to build questions into your code to confirm
certain actions. When the option to remove an account is
selected the application may prompt:

Are you sure you want to

remove xxxxxx

 and

ALL THE FILES

 in his home? (y/n) ==

>

If the CRISPI user supplies any response other than Y or y,
exit the code with an error message.

It is also useful to show the CRISPI user the result of a
change. The application may display all groups associated with
a user after a new group has been successfully added. The

CRISPI user can see that the change took place correctly.
Conversely, the code should exit in a manner that will get the
attention of the CRISPI user in the event of an error. The error
handling code should display messages that will make it
possible for the implementer to locate the source of the
problem.

2.1.4 The CRISPI Log

One of the most convenient features of CRISPI is the logs
which are cut as requests are satisfied. One record cutting
routine should be called by all the source code. This ensures
uniform records in the log. The logs may be stored inside the
CRISPI home directory. Scripts may be run weekly or monthly
to send the contents of each CRISPI log to a report. Section
3.2.3 gives examples of CRISPI logs and reporting mecha-
nisms.

2.2 CRISPI Utility Jobs

All source code needed to create a CRISPI home directory
resides in a common area with several jobs that are used to
maintain the CRISPI accounts. These utility jobs may be
invoked through a high level CRISPI account or run by a root
user. The CRISPI utility jobs may include the following scripts
or programs:

2.2.1 CRISPI Account Installation Routine

CRISPI accounts may be installed by means of a script that
takes a login name, UID, level and the ALLOW variable as
input. The job can do a udbgen -v (show all fields) on a current
CRISPI ID, then replace all occurrences of the user name, the
UID number, and the "update" directive with a "create". The
directives are then redirected into udbgen to create the account.
The script will then set the ALLOW variable for the authentica-
tion routine, create the home directory, provide a header to start
the log file and place the appropriate menu inside. Note that the
level parameter decides which menu will be provided, and all
other source is the same for each CRISPI user. The last step is
to have the installer assign a password to the new account. Set
"force" in the pwage field so the new CRISPI user will have to
reset the password at first login. At this point the CRISPI
account is complete and ready for use.

2.2.2 CRISPI Account Update Routine

The utility job for complete system updates may be modified
to update a single program. One important feature is that all
CRISPI accounts are updated at once. It is important to retain
uniformity among accounts to keep CRISPI maintenance
simple. Only the menus and the value of the ALLOW variable
should differ from login to login. A single test CRISPI ID is
used for testing system updates. This test ID does not follow the
naming conventions used by the other accounts so it is not
affected by the utility routines and may be maintained by hand
as the programmer sees fit.

Due to the naming conventions the update process is simple.
If all the CRISPI accounts begin with the letters REP and the

352

CUG 1995 Spring

 Proceedings

homes reside in /users, a loop on /users/REP* is sufficient to
collect information and install the updated system.

2.2.3 CRISPI Reporting

The reporting scheme is also kept simple by use of conven-
tion. Customer organizations supported by a given CRISPI
account are identified by the ALLOW variable. All CRISPI
source code invokes the same routine to record actions of the
request handling programs in a log in the CRISPI home direc-
tory. The following example illustrates one possible log imple-
mentation:

Routine "cutrec" writes four lines to the log for each change
made. Each of the lines begins with the customer's ORG group
(see section 3.1.2). The first line is blank to make the reports
easy to read. The second line records the date and the name of
the CRISPI account. The third line displays a line provided by
the request handler to describe the change. The fourth line
allows the C-REP to enter a comment, such as a record of how
the change was authorized. An invocation of cutrec from the
password update request handler would look like:

cutrec $cust "Password updated for
customer"

The cust variable is the login ID serviced, the phrase is used
in line three to describe the change. The user would be
prompted by cutrec to enter the fourth line by cutrec invoking
the ̀ line` command. The customer's organization group is found
by using the $cust variable to query /etc/group or the UDB.
Consider a customer JaneJones who is a member of group
ORGmathstud and a CRISPI login account named
REPjohnDoe. The CRISPI Log entry for a password update
would appear as:

ORGmathstud:
ORGmathstud:May 12, 1995 11:30:33:

Request handled by REP-
johnDoe

ORGmathstud:Password updated for
customer JaneJones

ORGmathstud:Comment: Jane is in my
office with student ID
badge

The reporting of the log contents may be accomplished by
means of a data file to identify the name of each report and the
ORG groups reported therein:

MathDept:ORGmathstud,ORGmath-
teach,ORGmathTA

CompDept:ORGcompstud,ORGcomp-
teach,ORGcompTA

The reporting routine loops through the data file and creates
a report for each line. Each report contains information from the
listed groups. Gathering the information is extremely simple.

Assume the CRISPI logs are stored in each CRISPI home
directory under the name of "rep.log". To create the MathDept
report the script would issue:

egrep -e "^ORGmathstud:|^ORGmath-
teach:|^ORGmathTA:" \
/users/REP*/rep.log>$rpt/MathDept

The entire report is created easily with one command per
report. Once all the reports are created, copy the rep.log files to
an archive location and initialize each report for the next
reporting period by copying a header over the original file.

3 Security Considerations

The security of this application was a consideration
throughout its design. Privileged access is being provided via
this interface. It is essential that security guidelines are followed
to design an acceptable CRISPI system that is in full control of
all privileges and root usage.

3.1 The Restricted Shell

The key to the security lies in the use of a restricted shell.
Each CRISPI menu is actually the shell for the CRISPI login.
This means that the login cannot be used for any other purpose
on the system. The CRISPI menu is displayed when the CRISPI
user logs into his account. The user may only select options that
are provided by the menu. If the CRISPI user breaks out of the
menu, the session is ended and the user is no longer logged into
the system.

It is easy to confine a user to a restricted shell. The shell field
in the UDB contains the name of the CRISPI menu instead of
the typical /bin/sh, /bin/ksh or /bin/csh programs. Fictitious
CRISPI user REPjohnDoe has a CRISPI home directory of
/users/REPjohnDoe. The menu is the shell and it is named
rep.menu. The entry in the UDB would appear as:

:shell:/users/REPjohnDoe/rep.menu:

The primary risk introduced by this scheme is that the
CRISPI implementer could install the wrong level DSA menu
or set the ALLOW variable too lenient. Automated scans of
each CRISPI menu level and ALLOW variable would detect
such an error. The CRISPI implementer should only provide
accounts to people who have been approved by management.
Each CRISPI user should sign an agreement to use the login for
intended purposes only. In the event that the implementer did
provide the wrong menu or ALLOW list, the CRISPI user
would be able to detect, and

should

 report, the error. There is
little danger that the CRISPI user could accidentally abuse priv-
ileges because the user drives all actions taken by the applica-
tion.

3.2 The System Security Configuration and CRISPI Imple-
mentation

There are currently three types of MLS Unicos systems
available today, PRIV_SU, PRIV_TFM and PAL. The security
mechanism used will effect the CRISPI implementation.

CUG 1995 Spring

 Proceedings

353

The CRISPI login ID is going to need system privileges to
satisfy requests. This is not a security exposure because the
CRISPI login may only perform actions completely specified
by the restricted shell. The method used to give the restricted
shell system privileges will differ depending on the system
MLS implementation.

3.2.1 PAL Based Security

In a system with PRIV_SU and PRIV_TFM disabled, Privi-
lege Access Lists (PALs) completely control all system privi-
leges. The CRISPI users will require different privileges
depending on the functions performed by the restricted shell.
The most restrictive solution would be to custom define a cate-
gory for the CRISPI users and customize the PALs on the bina-
ries used by the application. The least restrictive possibility
would be to define the intcat and valcat fields in the UDB to
secadm and allow the CRISPI applications to run as secadm at
all times, with full privileges enabled. This solution does not
follow the principle of least privilege and has risks if the
CRISPI code is not implemented properly. Any site with PAL
based security would need to consider the options carefully and
custom design a solution for their site.

3.2.2 PRIV_SU Based Security

On a PRIV_SU system the root ID is all powerful. The
CRISPI application must assume root power whenever special
privileges are required. This is easy to do via a Set UID to root
(SUID) program. A SUID program assumes the privileges of
the file owner during execution. SUID is implemented via the
permission mode settings on a file as explained in the chmod
man pages. UNICOS differs from most UNIX systems in that a
shell program will not assume the file owner privileges even
when the SUID mode bit is set. A binary file must be used to
issue a SUID command and assume privileges. This works out
well for the administrator who is using shell programs to design
a CRISPI application. A simple C program may be written that
includes two system calls, setuid and execl. Use the setuid
system call to assume root privileges, then issue the execl
system call with a command as its parameter. Compile this
simple C program and chmod the binary file to set the suid
mode bit. Set the executable's owner to root. Call this program
to execute the command parameter of the execl system call as
root.

Whenever a script needs to execute a given command from
root, the script will call the c program with the command as the
parameter. If the complied C program is called

rootexec

and it resided in a directory $src, issue the command

 ls -l
/users/REP*/rep.log

as root by preface the entire string with the
program call:

$src/rootexec ls -l /users/REP*/rep.log

This method has a built in protection mechanism. Most of
the CRISPI code does not need to run as root and the
programmer will only invoke suid to root programs when root
privileges are required.

The primary exposure introduced by use of suid programs
results from programmer error. It is important to only call
commands which do not give the user access to a shell. For
instance, the vi editor allows shell commands. If the vi editor
were invoked suid to root than the user has to all shell
commands as root. This must be avoided. Any UNIX security
text would discuss this subject in greater detail. Another risk
may arise from improperly defined file access. It is essential to
restrict execute access on any suid to root program. More detail
is given on this subject in section 2.

3.2.3 PRIV_TFM Based Security

PRIV_TFM refers to the Trusted Facility Management priv-
ilege mechanism that will be removed from the system in
UNICOS 9.0. Since this mechanism is slated for removal, very
little detail will be given about its uses. The easiest way to
implement a CRISPI application that is compatible with this
privilege mechanism is to design the application for a
PRIV_SU system and add:

:intcat:secadm,sysfil:valcat:sec-
adm,sysfil:

to the UDB entry for each CRISPI account. The CRISPI appli-
cation is then ready for migration to UNICOS 9.0 PRIV_SU
system. NOTE: Do not use secadm category for TFM purposes
on a system that is migrating to PALs, the category has different
meanings under each system. PRIV_TFM systems that are
migrating to PALs should implement CRISPI using PALs.

3.3 File Permissions and Owners

This section assumes a CRISPI implementation under
PRIV_SU or PRIV_TFM (i.e., suid to root files will be used
instead of PALs). Protecting the suid files from unauthorized
execution is extremely important. It is best to set file permis-
sions as restrictive as possible when dealing with SUID to root
programs.

3.3.1 CRISPI Source Code Directory

Protect CRISPI source code from everyone except root.
Keep all the source code in one directory that is set to mode 700
and owned by the CRISPI implementer or root. The request
handling programs should be executable by CRISPI users only.
Consider using ACLs for added protection. Keep everything
associated with the application under a protected directory.
Keep test files separate from production code, but make sure
that the test files are also carefully protected. In an environment
with multiple root users and lax change control procedures, the
CRISPI implementer should install scans that ensure that all
protections placed on CRISPI programs stays intact.

It is important to protect all suid to root programs individu-
ally, even with protections placed on the parent directory. The
suid files must be owned by root to run as root. Create a group
for exclusive CRISPI use to control who executes the suid to
root files. Set the suid files to root owner and group CRISPI,
then chmod to 4410. A 4410 file mode means: set the suid bit,

354

CUG 1995 Spring

 Proceedings

allow user (root) read access and allow group execute. No
access is allowed for all other users on the system.

3.3.2 CRISPI Home Directories

It is also essential to protect the CRISPI home directories
from outside access. The CRISPI home directories may be
owned by the CRISPI user and the mode set to 700. The CRISPI
log file is the only file which a CRISPI user should have write
permissions.

As long as the proper file permissions are in place there is no
exposure created by the existence of the CRISPI application. It
is up to the administrator to ensure that all CRISPI accounts and
source code are properly protected and that the protections
remain in place.

4 How To Get Started

Designing your own CRISPI application will provide your
site with vastly improved audit trails, faster turn around time on
customer requests and a mechanism to handle all request in a
uniform manner. It is not necessary to invest a great deal of time
in the initial CRISPI system. The key to a successful CRISPI
implementation is to start small and build the application over
time.

Every system administrator has customer requests that are
time consuming. Start to develop a custom CRISPI application

by writing scripts for common requests. The first time a request
is made it will take extra time to put the solution into a script but
time will be saved on subsequent requests. A CRISPI menu to
provide access to the request handlers is easy to program. The
initial version of CRISPI may simply provide just two options:
Change a User Password and Exit CRISPI. This simple version
of CRISPI would take only a couple of hours to create, install,
and educate C-REPs in its use. The request handler for a pass-
word change is very simple: invoke /bin/passwd as root, run cll
-r on the user and set the force bit on the pwage field in the UDB
entry. An initial authentication routine (section 3.1.2) may be
as simple as checking group membership.

Once contacts are established in the user community, the
basic CRISPI application can be put into production. The
C-REPs will handle a few basic user requests and the system
administrator may use the time saved to add more request
handlers for the CRISPI applications. As the application
matures, efficiency will increase for both users and administra-
tors. The users will be able to get help from a contact at their site
and will not have to repeatedly track down a root user for assis-
tance. Once the application is mature, root users will be able to
invested a much larger portion of their time in system enhance-
ments and other projects.

