

CUG 1995 Spring

 Proceedings

35

A Spectral Finite Element Model for Shallow Water
Equations: Implementation Experiences on the Cray T3D

Giovanni Erbacci

, CINECA - Interuniversity Computing Center,
Bologna, Italy,

Valeria Simoncini

, MGA - CNR, Modena, Italy,

Giorgio Bertero

, Computer Sciences Institute, University of
Bologna, Italy,

Roberto Ansaloni

, Cray Research S.r.l, Milano,
Italy, and

Antonio Navarra

, IMGA - CNR, Modena, Italy

ABSTRACT:

Finite element methods have recently gained great interest for solving large-scale
ocean circulation models, which are based on 2-3D coupled Navier-Stokes equations. The corre-
sponding discretized system can be treated by using implicit or explicit iterative methods. In this
work we are interested in the effective implementation of a recent semi-implicit method on
CINECA Cray-T3D, for integrating in time the corresponding velocity-pressure equations. The
original scalar code was initially implemented at the Institute of Marine and Coastal Sciences,
Rutgers University (NJ). Of particular interest is the fact that the elemental structure of the
discretized problem may yield effective load distribution among the nodes. A complete data
layout analysis is proposed, and first experimental results are provided in order to investigate the
efficiency of the code.

1 Introduction

The analysis of global atmospheric circulation models is
based on different and appropriate discretization techniques.
While finite differences methods are characterized by a simple
implementation on regular domains, the more recently
employed finite element and spectral element methods are more
flexible when dealing with complex geometries (e.g. polar
zones) and provide better accuracy.

The problem then becomes that of efficiently implementing
the discretized model on the prescribed domain. If high accu-
racy is required, the number of grid nodes representing the
domain may be extremely large so that the integration of the
model equations for long periods of time becomes computation-
ally very expensive and CPU time consuming. This motivates
the use of high speed computers that can also exploit the struc-
ture of the numerical model.

In this work we are interested in a parallel implementation of
a spectral finite element method. The subdivision of the domain
in elements justifies the use of massively parallel machines
which can locally handle the computation on each element at
low communication cost.

2 Model Description

Shallow water equations represent a convenient formulation
for describing an atmospheric circulation model for appropriate

parameters. Such formulation in 2D consists of the following
Navier-Stokes equations

where

u

 = (

u, v

) is the horizontal velocity vector,

ζ

 is the
surface elevation,

f

 the Coriolis parameter,

g

 the gravitation
acceleration,

γ

 the friction coefficient,

v

 the diffusion coeffi-
cient,

ρ

 the density of the fluid and finally

τ

 the forcing term.
The boundary conditions are of Dirichlet type. The equations
above are discretized by means of a mixed method that exploits
both finite elements and basis functions proper of spectral
methods [Ma-93]. The domain is subdivided in quadrangular
conformal elements in which a weak solution is sought,
belonging to a conveniently chosen Sobolev space. A spectral

method is then applied on each element. Denoting by

N

v

 the
number of nodes per direction in each element of the velocity
grid, each variable in (1)-(2) is interpolated

u u u k u u ut + ⋅ ∇ + × + ∇ + − ∇ =
+()f g

h
ζ γ ν

τ
ρ ζ

2

(((())))[[[[]]]]ζ ζt ++++ ∇∇∇∇ ⋅⋅⋅⋅ ++++ ≅≅≅≅h u 0

(2)

(1)

36

CUG 1995 Spring

 Proceedings

by where is the

first component of the velocity vector at the node
. Analogous formulations hold for

and , where for the pressure a staggered grid has been used

with nodes on each direction. The interpolating

spectral functions are Legendre Cardinal functions, associ-

ated to Legendre polynomials of degree , and, if are

the Gauss-Lobatto nodes for each element, it holds

 where is the Kronecker delta (analogously

for). Problem (1)-(2) then transforms to the ordinary differ-

ential equations

(3)

(4)

(5)

where capital letters stand for matrices corresponding to inte-
grals on the domain [IHB-93]. It is worth to remark that

, include non linear terms and that are
diagonal matrices.

Equations (3)-(5) are numerically solved by means of a
semi-implicit method which explicitly evaluates the non linear
terms by means of a third order Adams-Bashforth method and
implicitly determinates the new velocity iterates with the
Crank-Nicolson recursion [Sew-88]. More precisely, with
obvious notation the following recursion is iterated in time

(6)

where, for algorithmic convenience, the Coriolis parameter has
also been treated explicitly. An analogous relation holds for the
continuity equation. The implementation of a semi-implicit
method partially relieves from the constrain on the timestep that
often penalizes an explicit less expensive approach. The addi-
tional cost of the implicit step is mainly due to the solution of
the linear system in (6)

where the coefficients matrix corresponds to the discretized
derivative and to , and . Denote by the four

blocks of the coefficients matrix. The inexact Uzawa algorithm

can be employed for the solution of this system. Letting
 and , the algorithm consists of

explicitly determining the two unknowns and by means of
(cf. [MPa-89]).

, .

The (approximate) solution of two small systems with are

required, where the size of the matrix is usually about one third
of that of the original one. The iterative nonsymmetric solver
TFQMR is used for solving the system with [Fre-93]. A

major advantage in using this technique is that assembling the
coefficients matrix is not required, and that short term recur-
rence makes it computationally very competitive. For a faster
convergence, diagonal preconditioning is applied with mass
matrix.

3 Parallel Implementation

The model described in the previous section was originally
implemented at the Institute of Marine and Coastal Sciences of
Rutgers University, New Jersey, and the implementation was
done in Fortran for scalar systems [IHB-93]. This scalar imple-
mentation constitues the basis for the

implicit

 parallel version
we present in this work; a parallel version of the

explicit

 method
was recentely proposed in [HCI-94].

The model requires time integration of differential equations
and the number of time steps remarkably increases when it is
adopted for the simulation of large scale ocean circulation. In
this way, for real applications it becomes time consuming so it
is important to provide a parallel version. The algorithm is
outlined in Fig. 1. Seven routines are called inside the do loops
consuming more than 90% of the algorithm total time. There-
fore, in order to parallelize the algorithm, we can focus on the
computational kernel of these routines.

The spectral finite element technique is particolarly appro-
priate for implementation on parallel systems and the basic idea
for the parallelization simply comes from the data structure
used by the original algorithm.

u x h,() u i j, hi
v x()h j

v h()
j 1=

Nv

∑i 1=

Nv

∑= ui j,

ξ i j,
v η i j,

v,() i j, , 1 … Nv, ,= vi j,

ξ i j,

N p Nv= 2–

hi
v

Nv 1– xi

hi
v xi

v() δi j,= δi j,

hi
p

Mvdu
dt
------ γMv vD+()u Fv– gPxζ Ax+ + + rx=

Mvdv
dt
------ γMv vD+()v Fu– gPyζ Ay+ + + ry=

M pdζ
dt
------ Cxu Cy+ + v Az+ 0=

Ai i(, x y z), ,= M
v

M
p,

un 1+

∆t
------------ 1

2
---– Bn 1+ un

∆t

1
2
---Bn– α3 An α2 A n 1–()+ += α1 A n 2–()+

α M
v

vD+ 0 gP
x

0 α M
v

vD+ gP
y

C
x

C
y α M

p

q
p 

  f 1
f 2 

 =
- - - - - - - - - -

B n 1+() q u v,()= Ai

d A1
1– f 1= T A3 A1

1– A2– A4+()=

p q

p T 1– f 2 A3d–()= q d A1
1– A2 p–=

A1

A1

Figure 1: Flow Structure for the Shallow Water Algorithm

CUG 1995 Spring Proceedings 37

In this section we first introduce the data structure used by
the original algorithm to solve the shallow water equations
applied to the propagation of the equatorial Rossby soliton of
Boyd [Boy-80], then we describe how to modify this data struc-
ture to realize an efficient parallel implementation of the orig-
inal algorithm.

3.1 Original Data Structure
The computational domain is divided into blocks, each block

is then mapped into a rectangle before its subdivision into spec-
tral elements.

The original algorithm uses two grids, a velocity grid and a
pressure grid, and, depending on physical parameters, (such as
diffusion coefficient, gravity coefficient, etc.,) computes the
propagation of the equatorial Rossby soliton.

The boundary nodes that are shared by more elements are
replicated in every local structure.

The grids introduced are described by the coordinates of the
nodes that compose the grids themselves. Such nodes (global
nodes) are numbered on the grids from bottom to up and from
left to right, as we can see in Fig. 2.

The algorithm independently works on each grid element, so
it is necessary to know which are the global nodes held in each
element. Inside each element, the grids are described using a
local numbering scheme (local nodes). The following data
structure describes the velocity grid:

nodeglob: total number of velocity nodes in the
spectral grid.

nelem: total number of elements in the spec-
tral grid.

npts: number of nodes per element per
direction in the velocity grid.

node: number of nodes per element in the
velocity grid, (node = npts × npts).

XGLOB[nodeglob]: contains the x coordinates of the nodal
grid points on the velocity grid.

YGLOB[nodeglob]: contains the y coordinates of the nodal
grid points on the voelcity grid.

IGLOB[node,nelem]: describes the grid element connectiv-
ity; iglob[i, n] gives the global node
number of node i (1≤ i ≤ node) in ele-
ment number n (1≤n ≤ nelem).

ndiric: total number of Dirichlet nodes in each
direction.

ndiricu: number of u-Dirichlet nodes.

ndiricv: number of v-Dirichlet nodes.

ndiricz: number of ζ-Dirichlet nodes.

IDIRIC[ndiric]: contains the global node numbers with
Dirichlet conditions (u-Dirichlet+
v-Dirichlet + ζ-Dirichlet).

As an example, Fig. 2 shows a velocity grid with eight
elements (nelem = 8), 16 points in each direction per element
(npts = 16), so that the total number of grid nodes is 1891.

The pressure grid is similar to the velocity grid (the same
number of elements) but differs for the number of points in each
direction per element: nptp = npts - 2 in this case. The total

number of nodes in each element becomes nodeglbp = nptp2 .

Figure 2: Velocity grid: nelem = 8, npts = 16, nodeglob = 1891

38 CUG 1995 Spring Proceedings

Besides the global data structure that represents the problem
parameters, as for the velocity grid, two arrays
XGLBP[nodeglbp] and YGLBP[nodeglbp] contain the x and y
coordinates of global nodes and IGLBP[nodep, nelem]
describes the element connectivity.

3.2 New Data Structure

Adam-Bashforth and Uzawa algorithms for the linear system
solution operate on each grid element, so that for an efficient
implementation we need to completely decouple the elements
of the grid. In order to do this we need to modify the data struc-
ture of the original algorithm, essentially acting on the
boundary conditions.

We can observe that the element is the basic unit for the
spatial discretization of the spectral finite element scheme.
Therefore it is not convenient to distribute each element among
the processors but, on the contrary, to act in order that each
processor can work independently on one or more elements.

In this way the communication overhead is very low also if
the level of parallelism is limited to the number of elements in
the grid. Moreover, in order to have a good load balance, we
need a grid with a number of elements that is multiple of the
number of available processors.

To assure a true independence for each element, we trans-
formed all the global arrays (nodeglob elements for the velocity
grid, and nodeglbp elements for the pressure grid) in bidimen-
sional arrays of node × nelem elements (nodep × nelem for the
pressure grid), containing also the replicated nodes corre-
sponding to the boundary nodes between the elements.

In this way each element does not share points with other
elements, so each processor holds one or more grid elements,

i.e. the columns of these new arrays, and can work indepen-
dently on the given elements.

The parallel algorithm has been implemented on the Cray
T3D using the work sharing paradigm allowed with the Cray
Research Fortran Programming Model (CRAFT). Work sharing
supports SPMD (Single Program Multiple Data) programming
style and contains directives to distinguish between data objects
that are shared among all processors and those that are private
to a processor [PMD-94], [T3D-94]. Using the work sharing
syntax we can distribute the arrays in the following way:

cdir$ shared array (:, :block(1))

This distribution assignes a column of array per processor.
In this way only the columns af array are forced to be a power
of two.

The new arrays contain replicated values in correspondence
of the boundary points between two contiguous elements
because they contain values corresponding to nodes that are
local to an element while the original arrays describe global
nodes (i.e. defined on the whole grid).

This new data structure permits an optimal work distribution
among the processors but introduces the problem of the
boundary points between two elements. The algorithm updates
such points considering the contributions coming from the
elements that share the boundary nodes in the grid, as we can
see in Fig. 3.

Each processor computes the values for its own local nodes,
then updates the values for the boundary nodes, using the results
produced from the contiguous processor.

This work can be done in parallel for all the grid elements.
To do this we need to define four work arrays of nelem x npts

Figure 3: Neighbour points for each element: red = element 1 North points, yellow = element 4
South points, green = element 7 West points, blue = element 6 East points.

CUG 1995 Spring Proceedings 39

elements shared between the processors (nelem x nptp elements
for the pressure grid) to retain the values of the boundary
elements. For example, for each boundary point i:

T_EAST[n, i] will contain the copies of the boundary points
of the element at the East (if it exists) of the element n.

T_WEST[n, i] will contain the copies of the boundary points
of the element at the West (if it exists) of the element n.

Using the work sharing syntax, the arrays can be distributed
by row among the processors. For example for array T_EAST,
we can use the directive:

cdir$ shared T_EAST(:block(1), :)

The work array we introduced are necessary for mutual
exclusion problems. In fact, the Cray T3D is a distributed
memory MIMD parallel computer system characterized by Non
Uniform Memory Access (NUMA) and from a single processor
it is possible to access directly the memory of every remote
processor.

We can observe that the copy from the East side can be done
concurrently with the copy from the West and analogously the
copy from the South with that from the North. But a mutual
exclusion problem arises if we try to do the copy from the East
in parallel with the copy from the South or from the North. The
same considerations hold for the copy from the West. The
reason for this constraint are the cross points shared by four
elements.The Fortran code that implements the updating algo-
rithm for the velocity grid is shown in Fig. 4.

For the full parallelization of the algorithm another data
structure has to be modified: the array IDIRIC[ndiric]
containing the Dirichlet points. This array contains the global
points of the velocity grid on which the Dirichlet conditions are
imposed. Such conditions are set on the global boundary of the
velocity grid, in both x and y directions.

Using a global structure such as IDIRIC would cause a loss
of locality for the references (remote accesses, and computation
for the two structure address mapping) and therefore a
decreasing in performance. Then a new structure has been intro-
duced for the Dirichlet boundary conditions to allow a good
reference locality.

A new array for each of the three components U, V, Z of the
velocity has been introduced for each element of the grid:
IDIRICU, IDIRICV, IDIRICZ.

IDIRICU (V and Z) contains the node numbers on which the
Dirichlet conditions are imposed. Observing that the Dirichlet
conditions are imposed only on the velocity grid global bound-
aries, we deduce that it is not necessary to define arrays with
node rows but only with npts rows. Each element has npts
points in each direction, at the maximum, in which the condi-
tions are imposed. In this way, IDIRICU contains the numbers
of local node in which the condition is imposed.

Using the work sharing syntax, we can distribute the arrays
by column among the processors; for example array IDIRICU
is distributed as follows:

cdir$ shared IDIRICU(:, :block(1))

When it is necessary to establish the Dirichlet conditions,
each processor for their own elements, controls if the first
element of the local IDIRICU column is greater than zero and
in this case runs through all the column and sets the conditions
on the nodes contained in IDIRICU, as we can see from the
example showed in Fig 5.

In this way only one test is needed to know if the Dirichlet
conditions are imposed in the element. Moreover, the data
locality is preserved, allowing to achieve good performance
because remote data access is more time consuming than local
references.

4 Results

In this section we describe the results obtained running the
algorithm on the CINECA Cray T3D using the following
parameters: τ = 0, ν = 0, γ= 0 , ƒ=y h= 1 (unviscous case); all
parameters are in non dimensional units [IHB-93]. The applica-
tion ran for 200 time steps using two different grids of 8 or 32
elements; each element contains 16 nodes on each direction
(256 total points per element).

In the following we report on timings for a very early Cray
T3D implementation and for the current version (the work is
presently in progress). We report the global time (Ttot)

including I/O operations, and the computation time (Tcomp). All

timings are expressed in seconds.
As a reference, the performance of the serial implementation

of the same algorithm on the CINECA Cray C-90 are reported
in Table 1 and in Table 2. We note that no specific optimization
effort has been applied for the serial version: in particular the
short vector length of the computational kernel (npts = 16)
severely limits the possibility to achieve a significant portion
of C-90 peak performance.

In Table 3 and 4 we report the Cray T3D timings for the two
versions of the program on the 8 element grid.

From the previous tables and from Fig. 6, we can see that the
current version shows very good performances compared to the
original code and almost linear scalability. We can see also that
on this algorithm one C-90 CPU is equivalent to about four
Cray T3D processors.

Due to the data distribution method the number of processors
is limited by the number of grid elements.

In Table 5 and in Fig. 7 the performance figures for the 32
element grid computation are shown (optimized version only).

As we can see from Table 5 and Fig. 7 the performance is
again very satisfactory. The scalability is almost linear and this
trend is maintained when the number of processors increases
from 8 up to 32.

5 Conclusions

In this work we have presented the parallel implementation
of a spectral finite element method for the Cray T3D. The good

40 CUG 1995 Spring Proceedings

Figure 4: Neighbour update for the velocity grid elements

CUG 1995 Spring Proceedings 41

Table 5. T3D timing: 32 element grid, optimized version.

Table 3. Non optimized version timings.

Table 1. C-90 timing: 8 element grid.

Table 2. C-90 timings: 32 element grid.

Figure 5: Dirichlet conditions

Table 4. Optimized version timings.

Figure 6: Speed-up for 8 element grid

Figure 7: Speed-up for 32 element grid

42 CUG 1995 Spring Proceedings

performance obtained is mainly due to the new data structure
introduced that allows a large computational load within each
PE as compared to the low cost of inter-processor communica-
tions.

As we can see from these preliminary results by increasing
the problem size (grids with a high number of elements) the use
of a massively parallel processor becomes very favourable, due
to an observable almost linear scalability.

Some preliminary single processor optimization techniques
have been applied on the current working version but some
more detailed optimization analysis are still in progress (single
PE optimization, cache alignment, use of libsci routines).
Furthermore we are working on a new grid with 256 elements
that will fully utilize the 64 PEs of CINECA Cray T3D.

Acknowledgments

We thank Dr. M. Iskandarani and Prof. D. Haidvogel for
providing us with the original implementation of the scalar
code.

References

[Boy-80] Boyd J.P., ‘Equatorial solitary waves Part I: Rossby solitons’, Jour-
nal of Physical Oceanography, Vol 10, N. 11, pp. 1699-1717, (1980).

[Fre-93] Freund R., ‘ A Transpose-Free Quasi-Minimal Residual Algorithm
for Non-Hermitian Linear Systems, SIAM J. Sci. Comput. 14, pp. 470-482,
(Mar. 1993).

[HCI-94] Haidvogel D., Curchitser E., Iskandarani M., Hughes R., ‘Global
Modeling of the Ocean and Atmosphere Using the Spectral Element Meth-
od’, Submitted to Atmosphere-Ocean, (1994).

[IHB-93] Iskandarani M., Haidvogel D., Boyd J. P., ‘A Staggered Spectral Fi-
nite Element Model With Application to the Oceanic Shallow Water Equa-
tions’, Technical Report, Institute of Marine and Coastal Sciences, Rutgers
University, N.J., (1993).

[Ma-93] Ma H., ‘A Spectral Element Basin Model for the Shallow Water
Equations’, J. of Comp. Phys., 109, pp. 133-149, (1993).

[Mpa-89] Maday Y., Patera A., ‘Spectral Element Methods for the Incom-
pressible Navier-Stokes Equations’, A. K. Noor and J. T. Oden Eds, (1989).

[PDM-94] Pase D. M., Mac Donald T. Meltzer A., ‘MPP Fortran Program-
ming Model’, Cray Research Technical Report, Cray Research Inc.,
Eagan,MN (1994).

[Sew-88] Sewell G., ‘The Numerical Solution of Ordinary and Partial Differ-
ential Equations, Academic Press, Inc., (1988).

[T3D-94] ‘Cray MPP Fortran Reference Manual’, SR-2504 6.2 , Cray Research
Inc., (Nov. 1994).

