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ABSTRACT:

 

  

 

A remarkable new algorithm for solving problems arising from finite element discreti-
zations has been in development at the University of Pittsburgh for about three years now.  There are
few papers on the method, but an upcoming article in Numerische Mathematik may change that.

The Parallel Finite Element Method (PFEM) was first described in 1992 by Bill Layton and Patrick
Rabier of the Mathematics Department at Pittsburgh.  Since then, the basic algorithm has been imple-
mented on a variety of platforms, demonstrating exceptional scalability and performance in every case.

A review of the essential features of the method will be presented in order to provide a context for
discussion of data structures and implementation details.  Excerpts from CRAFT, shared memory, and
manually autotasked Fortran 90 sources will be used to illustrate the similarities and differences
between the designs.  We will conclude with a summary of our findings and a description of the ongoing
work at Pittsburgh.
All known papers that incorporate aspects of the Layton and Rabier method are referenced within,
hence the attached biblography represents a current survey of published material on this subject.
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Typical FEM Algorithms

 

• Conforming elements
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• Mesh

• Ritz-Galerkin methods

Ritz' method is based on the fundamental principle of minimum
potential energy. The Galerkin method corresponds to the prin-
ciple of virtual work.

 

PFEM Algorithm

 

• Non-conforming elements

• Mesh with coloring scheme

• Peaceman-Rachford operator splitting

Basic theorem states that if an operator on a space can be written
as A=A1+A2 where each Ai corresponds to a splitting associ-
ated with separation of variables, then a robust iterative method
for solving the equation 
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ζ

 

 = 

 

b

 

 exists.

• Parameter

 

ρ

 

optimal

 

A concise statement of the Peaceman-Rachford iterative
method taken from Layton and Rabier (1995) reads as follows.
Given a linear system
(1.1)
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 is an invertible matrix, the
Peaceman-Rachford procedure for the solution of (1.1)  consists
of splitting 

 

A

 

 into the form
(1.2)

 

A

 

 = 

 

A

 

1

 

 + 

 

A

 

2

 

and, given 

 

ξ

 

0

 

∈

 

R

 

N

 

, calculating the sequence (

 

ξ

 

n

 

, 

 

ζ

 

n

 

) 

 

∈

 

 

 

R

 

N

 

×

 

R

 

N

 

defined inductively by
(1.3)(

 

ρ

 

I

 

 + 

 

A

 

1

 

)

 

ξ

 

n

 

     =  (

 

ρ

 

I

 

 - A2)

 

ζ

 

n

 

 + 

 

b

 

,

(

 

ρ

 

I

 

 + 

 

A

 

2

 

)

 

ζ

 

n

 

+1

 

 =  (

 

ρ

 

I

 

 - 

 

A

 

1

 

)

 

ξ

 

n

 

 + 

 

b

 

Note that for the special case

, then (1.3) is

better known as the "alternating direction implicit" (ADI)
method.
The PFEM program is a research-level parallel finite element
code suitable for solving Dirichlet-Poisson boundary value
problems on a rectangular domain W in two dimensions:

- div (
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The solution surface is approximated by piecewise linear func-
tions with inter-element discontinuities along edges.
The original version of this program was written in CM Fortran
in July, 1992.  A Fortran 90 port was produced in 1994 to
support the Institute on Parallel Computing at PSC.  In
February, 1995, CRAFT and shared memory ports for the T3D
were completed.
PFEM is based on material developed by William Layton and
Patrick Rabier of the Department of Mathematics and Statistics
at the University of Pittburgh.
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Implementation Details - f90

 

 f90 stack variable excerpts.

 integerxB2Rperm(LBLK,T), yB2Rperm(LBLK,T)

 real*8fBLK(LBLK,T), xBLK(LBLK,T), old_xBLK(LBLK,T),
     ^REDresid(0:LRED,T), BLKresid(0:LBLK,T),
     ^BLKmatrix(LBLK,T,T), norm_delta_xBLK

  Compute the black residual.

!MIC$ DO ALL
!MIC$^SHARED (BLKmatrix, xBLK, BLKresid, fBLK, LBLK)
!MIC$^PRIVATE(k)
!MIC$^CHUNKSIZE(SIZE)

 do k=1,LBLK

 BLKresid(k,1) = fBLK(k,1) - (BLKmatrix(k,1,1)*xBLK(k,1)
     ^                           + BLKmatrix(k,1,2)*xBLK(k,2)
     ^                           +  BLKmatrix(k,1,3)*xBLK(k,3))

 BLKresid(k,2) = BLK(k,2) - (BLKmatrix(k,2,1)*xBLK(k,1)
     ^                           + BLKmatrix(k,2,2)*xBLK(k,2)
     ^                           + BLKmatrix(k,2,3)*xBLK(k,3))

 BLKresid(k,3) = fBLK(k,3) - (BLKmatrix(k,3,1)*xBLK(k,1)
     ^                        + BLKmatrix(k,3,2)*xBLK(k,2)
     ^                         + BLKmatrix(k,3,3)*xBLK(k,3))

 end do

  Map black residual into red ordering.

   do i=1,T

!MIC$ DO ALL
!MIC$^SHARED (REDresid, yB2Rperm, xB2Rperm, BLKresid, LBLK, i)
!MIC$^PRIVATE(k)
!MIC$^CHUNKSIZE(SIZE)

   do k=1,LBLK
     REDresid(yB2Rperm(k,i),xB2Rperm(k,i)) = BLKresid(k,i)
   end do
   end do

  Compute global RMS-norm.

        norm = 0.0

!MIC$ PARALLEL
!MIC$^SHARED (perm, x, y, Lc, T, i, norm)
!MIC$^PRIVATE(k, local_norm)

        local_norm = 0.0
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        do i=1,T
!MIC$ DO PARALLEL
!MIC$^CHUNKSIZE(SIZE)
        do k=1,Lc
          if (perm(k,i) .ne. 0) local_norm = local_norm
     ^                                     + (x(k,i)-y(k,i))
     ^                                     * (x(k,i)-y(k,i))
        end do
        end do
!MIC$ GUARD
        norm = norm + local_norm
!MIC$ END GUARD
!MIC$ END DO
!MIC$ END PARALLEL

        norm = SQRT (norm/real(M))

 

Implementation Details - CRAFT

 

  CRAFT stack variable excerpts.

CDIR$ GEOMETRY G1(:BLOCK,:)
CDIR$ GEOMETRY G2(:BLOCK,:,:)

  integer B2Rperm(LBLK,Tn), xB2Rperm(LBLK,Tn), yB2Rperm(LBLK,Tn)

  real*8norm_xBLK, norm_delta_xBLK, 

     ^ fBLK(LBLK,Tn), xBLK(LBLK,Tn), old_xBLK(LBLK,Tn),
     ^ BLKresid(LBLK,Tn), REDresid(LRED,Tn),
     ^ BLKmatrix(LBLK,Tn,Tn)

CDIR$ SHARED norm_xBLK
CDIR$ SHARED (G1) :: B2Rperm, xB2Rperm, yB2Rperm
CDIR$ SHARED (G1) :: fBLK, xBLK, old_xBLK, REDresid, BLKresid
CDIR$ SHARED (G2) :: BLKmatrix

  Compute black residual.

CDIR$ DOSHARED (k) on BLKresid(k,1)

  do k=1,LBLK

          BLKresid(k,1) = fBLK(k,1) - (BLKmatrix(k,1,1)*xBLK(k,1)
     ^                              +  BLKmatrix(k,2,1)*xBLK(k,2)
     ^                              +  BLKmatrix(k,3,1)*xBLK(k,3))

          BLKresid(k,2) = fBLK(k,2) - (BLKmatrix(k,1,2)*xBLK(k,1)
     ^                              +  BLKmatrix(k,2,2)*xBLK(k,2)
     ^                              +  BLKmatrix(k,3,2)*xBLK(k,3))

          BLKresid(k,3) = fBLK(k,3) - (BLKmatrix(k,1,3)*xBLK(k,1)
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     ^                              +  BLKmatrix(k,2,3)*xBLK(k,2)
     ^                              +  BLKmatrix(k,3,3)*xBLK(k,3))
  end do

  Map black residual into red ordering.

 do i=1,T

CDIR$ DOSHARED (k) ON B2Rperm(k,1)

 do k=1,LBLK
    REDresid(yB2Rperm(k,i),xB2Rperm(k,i)) = BLKresid(k,i)
 end do
 end do

  Compute global RMS-norm.

 norm_delta_xBLK = 0.0

CDIR$ MASTER
 norm_xBLK = 0.0
CDIR$ END MASTER

CDIR$ DOSHARED (k) on xBLK(k,1)

 do k=1,LBLK
   norm_delta_xBLK = norm_delta_xBLK
     ^                  + (xBLK(k,1)-old_xBLK(k,1))
     ^                  * (xBLK(k,1)-old_xBLK(k,1))
     ^                  + (xBLK(k,2)-old_xBLK(k,2))
     ^                  * (xBLK(k,2)-old_xBLK(k,2))
     ^                  + (xBLK(k,3)-old_xBLK(k,3))
     ^                  * (xBLK(k,3)-old_xBLK(k,3))
 end do

CDIR$ CRITICAL
 norm_xBLK = norm_xBLK + norm_delta_xBLK
CDIR$ END CRITICAL

CDIR$ MASTER
 norm_xBLK = SQRT(norm_xBLK/real(M))
CDIR$ END MASTER

 

Implementation Details - shmem

 

  SHMEM commons and stack variable excerpts.

        common / norm / local_norm_xRED, globl_norm_xRED,
     ^                  local_norm_xBLK, globl_norm_xBLK

        real*8  local_norm_xRED(MSIZE), globl_norm_xRED,
     ^          local_norm_xBLK(MSIZE), globl_norm_xBLK,

        integer xB2Rperm(T,LBLK), ypeB2R(T,LBLK), yosB2R(T,LBLK)
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        real*8  fBLK(T,LBLK), xBLK(T,LBLK), oldBLK(T,LBLK),
     ^          BLKmatrix(T,T,LBLK), BLKresid(T,0:N)

  Compute black residual.

        do L1=1,LBLK,20
           L2 = MIN (L1+19,LBLK)
           call pref (15, xBLK(1,L1))
           call pref (45, BLKmatrix(1,1,L1))
              do k=L1,L2

                BLKresid(1,k) = fBLK(1,k) - (BLKmatrix(1,1,k)*xBLK(1,k)
     ^                                    + BLKmatrix(1,2,k)*xBLK(2,k)
     ^                                    + BLKmatrix(1,3,k)*xBLK(3,k))
                BLKresid(2,k) = fBLK(2,k) - (BLKmatrix(2,1,k)*xBLK(1,k)
     ^                                    + BLKmatrix(2,2,k)*xBLK(2,k)
     ^                                    + BLKmatrix(2,3,k)*xBLK(3,k))
                BLKresid(3,k) = fBLK(3,k) - (BLKmatrix(3,1,k)*xBLK(1,k)
     ^                                    + BLKmatrix(3,2,k)*xBLK(2,k)
     ^                                    + BLKmatrix(3,3,k)*xBLK(3,k))
              end do
           end do

  Map black residual into red ordering.

        do L1=1,LBLK,20
           L2 = MIN (L1+19,LBLK)
           call pref (15, xB2Rperm(1,L1), yosB2R(1,L1),
     ^                    BLKresid(1,L1), ypeB2R(1,L1))
              do k=L1,L2
                 do i=1,T

                   if (ypeB2R(i,k) .eq. pe) then
                     REDresid(xB2Rperm(i,k),yosB2R(i,k)) = BLKresid(i,k)
                   else
                     call SHMEM_PUT (REDresid(xB2Rperm(i,k),yosB2R(i,k)),
     ^                               BLKresid(i,k),      1, ypeB2R(i,k))
                   endif

                 end do
              end do
        end do

        call BARRIER( )

  Compute global RMS-norm from the local vectors.

error_vec(1:T,1:Lc) = 0.0

do k=1,Lc
   do i=1,T
     if (perm(i,k) .ne. 0) error_vec(i,k) = (x(i,k)-y(i,k))**2
   end do
end do
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where the value of 
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is determined by substitution of the exact
solution, 
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 + 
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, into (3.1).
Problem 2
The coefficient functions of (2.1) are assigned the values 

 

a

 

 =
1 and 

 

q

 

 = 0. Boundary conditions are given as 

 

g

 

(

 

x

 

,

 

y

 

) = sin 

 

x cos
y.  The resulting form is as follows:

- div grad u = f   in Ω
u = g  on ∂Ω

where the value of f is determined by substitution of the exact
solution, u(x,y) = sin x cos y, into (3.2).

Problem 3
The value of the coefficient functions are are defined as a =

1 and q = 2 in the model equation (2.1).  Boundary conditions

are specified as g(x,y) = (x2 + y2) e(x+y) and so the problem state-
ment takes the following form:

- div grad u + 2u = f   in Ω
u = g  on ∂Ω

Computational Experiments

• Environment

The T3D at the Pittsburgh Supercomputing Center is currently
configured with 512 PEs, each of which has 8MW of memory.
Eight I/O gateways connect it to a Y-MP C90/16512 equipped
with a 512MW SSD.  Clock rates are 150 and 240 MHz respec-
tively.  The C90 runs Unicos 8.0 with AFS.  The T3D is running
the MAX 1.2.0.1 kernel.
The C90 executable was produced by the CF90 compiler
(1.0.2.5) and SEGLDR (8.0g).  T3D executables were produced
by the CFT77_M compiler (6.2.0.5) and MPPLDR (10.u).
MPP objects were linked to libsma (1.1.0.18).
All objects were produced using explicit compiler optimization
control. The Fortran 90 multitasked and single-threaded objects
specified “task1,scalar3,vector3" and “task0,scalar3,vector3”
respectively.  The CRAFT and shmem objects were built with
the “aggress, scalar” compiler switches. The shmem executable
was created using the "rdahead=on" loader switch.

• Model Problems

Problem 1
In the model equation (2.1), the value of the coefficient func-

tions are defined as a = 1 and q = 0.  The boundary conditions
are given as g(x,y) = x + y, thus example problem 1 has the
form:

local_norm(pe+1) = 0.0

do k=1,Lc
   do i=1,T
     local_norm(pe+1) = local_norm(pe+1) + error_vec(i,k)
   end do
end do

call SHMEM_PUT (local_norm(pe+1), local_norm(pe+1), 1, mgr)
call BARRIER( )

if (pe .eq. mgr) then

  globl_norm = local_norm(1)

  do i=2,npes
    globl_norm = globl_norm + local_norm(i)
  end do

  globl_norm = SQRT(globl_norm/real(M))

endif

call BARRIER( )
call SHMEM_GET (globl_norm, globl_norm, 1, mgr)

(3.1) {

(3.2) {

(3.3) {



368  CUG 1995 Spring Proceedings

where the value of f is determined by substitution of the exact

solution, u(x,y) = (x2 + y2) e(x+y), into (3.3).

• Data for each problem is presented in tabular form with
respect to partition size, ie. each table represents a particu-
lar problem and partition size.

• Timing and scaling curves were produced from data asso-
ciated with Problem 1. Curves for problems 2 and 3 were

quite similar and hence were not included.

• Good starting values for the r-parameter were determined
empirically for small problem sizes. Values of r for larger
problems were set a priori by holding the ratio r/h approx-
imately constant.

• For all cases, convergence was pushed to at least seven
digits of precision.

Solution Surfaces

Problem 1
Problem 2

Problem 3
(z-axis constrained)
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Experimental Data - Problem 1
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Experimental Data - Problem 2
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Experimental Data - Problem 3
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Observations

• The PFEM algorithm performs very well on a variety of
architectures. In fact, it is competitive with contemporary
preconditioned conjugate gradient solvers when imple-
mented serially [Layton and Rabier, 1995].

• Speedups are near-linear throughout the range of available
partition sizes. On fixed partitions, run times scale with the
problem size like O(n3/2).

• The availability of such a method has significant implica-
tions. Memory requirements are minimized, hence larger
problems become tractable. Its exceptional performance
and scalability allows finer resolutions along spatial and
time dimensions to be considered.

• Problems involving over 6 million degrees of freedom
(DOF) were solved on the C90 in less than 3 minutes.
Similar problems were solved on PSC's T3D in under 2
minutes. We were also able to solve problems comprised
of over 12 million degrees of freedom in less than 7 min-
utes on the T3D.

• Use of the cache prefetching technique described by
Brooks (1994) yielded better than a factor of two improve-
ment in run times. The current communication to compu-
tation ratio is approximately 1:1.

• For comparison purposes, we also took a quick look at a
LAPACK banded matrix solver. When operating on
smaller systems constructed from similar meshes of con-
forming linear elements, the SGBTR_ routine was found
to be an order of magnitude slower than our Fortran 90
PFEM code. For a discussion of PFEM performance with
respect to conjugate gradient solvers, see Layton and
Rabier (1995).

• Performance of the single-CPU Fortran 90 code was mea-
sured at 434 MFlop/s on the C90.

• The Fortran 90 code consistently required additional itera-
tions to converge to the set tolerance (1E-7). We attribute
this to the difference between the Cray and IEEE floating
point systems.

• The Fortran 90 compiler at its maximum tasking level was
not effective for our original source form.  Directives were
inserted manually.  Measured speedup on the C90 indi-
cates that the PFEM code is better than 99% parallel,
which prompts us to make a point.

When citing cost-performance figures tied to C90 CPUs, exam-
ination of performance with respect to a single CPU as well as
multiple CPUs is relevant.  For our shared memory code, the
ratio of PEs required to match the performance of one C90 CPU
is around 36:1.  However, the performance of 16 CPUs is
surpassed by about 400 PEs for smaller problems and by 430
PEs for larger ones.  Related ratios are about 25:1 and 27:1
respectively.

• The CRAFT model provides a very nice intermediate

stage from which data parallel codes may be ported to the
shared memory model.  The ability to mix Fortran 90 array
syntax with CRAFT directives and shared memory calls
can be very handy.  Performance is acceptable. For smaller
problems (~200,000 DOF), the CRAFT code was able to
match the timings of 16 C90 CPUs on a 512-PE partition.

• Current work by Layton and Rabier et al. includes a study
of fluid flows characterized by high Reynolds numbers and
implementation of full “h-p” adaptivity.  Among other
things, these works have produced new theorems in linear
algebra and graph colorings and led to the formulation of
higher degree nonconforming finite element spaces.

• Continuing work at PSC will center on issues related to
the integration of such a method into a commercial FEM
package.
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