Medical Diagnosisusing the Cray T3D

Greg Johnson and Jon Genetti, Arctic Region Supercomputing
Center, University of Alaska, Fairbanks, AK 99775-6020

Abstract

Volume Rendering has produced accurate images of in-
ternal anatomy that are useful for both diagnosis and
education. While reasonable rendering performance can
be achieved on current workstation technology, the emer-
gence of higher resolution data (such as that from the Vis-
ible Human Data Set sponsored by the National Library
of Medicine) is fast eclipsing the CPU and RAM limi-
tations of single processor workstations. For this reason
we have implemented several volume rendering engines on
the Cray T3D that use an X client to display the results.

This paper focuses on a parallel rendering application that
allows a user to explore large, high-resolution medical data
sets. VolRender is a Cray T3D executable, controlled via
a graphical user interface created in AVS (Application V-
sualization System), and runs on an X client that s at-
tached to the T3D’s host vie HIPPI, FDDI or ethernet.
The current system provides display rates of up to 1 frame

per second over ethernet and up to 5 frames per second
over FDDL

1 Introduction

Direct volume rendering produces images of internal
anatomy that aid in diagnosis and education. By making
certain material types (like skin) mostly transparent, we
are are able to “see” the anatomy behind. By adjust-
ing the transparency and color of all the material types,
the user can emphasize the part (or parts) of the internal
anatomy they are most interested in. Figure 1 shows the
upper portion of a dog leg with all of the anatomy visible.
Figure 2 shows the same data set, but with all materials
except bone completely transparent.

While a static image provides a wealth of information, a
series of images from different viewpoints provides even
more. It becomes easier to detect spatial relationships
between parts of the anatomy, such as the position of the
bone chips in Figures 1 and 2. A set of images can be

70 CUG 1995 Spring Proceedings

precomputed and played back, but they often are not the
exact motion needed. Our goal is to allow a user complete
interactive control over the viewing position and to be
able to generate and display 10-15 images per second.
This would give the same interactive feel as rotating a
polygonal object on a modern graphics workstation.

2 Direct Volume Rendering

Direct volume rendering involves taking a raw data set
(composed of a 3D set of voxels), coloring each voxel
based on its material type (bone, skin, muscle, vein, etc),
applying a shading algorithm and then extracting a view.
For computed tomography (CT) data, the coloring step
is trivial. CT data measures the density at each voxel
and the density ranges of each type of material are con-
stant. For Magnetic Resonance Imaging data, the color-
ing step is still a time-consuming process. MRIs measure
the movement of molecules in response to a change in
a magnetic field and does not measure density directly.
Therefore, material types must be identified by a person
with a knowledge of anatomy.

The purpose of the shading algorithm is to simulate light-
ing and is based on the Phong reflection model [4]. This
model requires a surface normal and is calculated by ex-
amining the densities of the neighboring voxels. For voxel
D; j x, an approximate surface normal is calculated by
Nijk = (Dic1jk—Div1k Dij-1,6—Dij1,k, Dije-1—
D; jk+1)- A large difference between neighboring voxels
indicates a high likelihood of a surface passing through
that voxel. A small difference implies that the voxel is
in an area of homogeneous mass and the transparency
of that voxel will be increased. This is done so “bor-
ing” areas will become invisible and “interesting” areas
are highlighted. Since this is not a binary decision like
that used to produce a polygonal model with marching
cubes [7], it produces a more accurate image with more
information in it.

Figure1: All partsof the anatomy visible.

Once all of the voxels have been shaded, there is a set
of shaded slices that form the volume. There are many
ways to produce an image from these slices and VolRen-
der currently uses the “splatting” method [9] (see [5] for
an analysis of direct volume rendering algorithms on the
Cray T3D). Splatting is accomplished by projecting each
voxel onto the view plane in a front-to-back traversal with
respect to the view plane as shown in Figure 3. With a
parallel projection, the footprint (or projection) of a voxel
on the view plane will be constant for all voxels. Since
a voxel will not project onto exactly one pixel, a filter is
used to spread out the color and transparency to neigh-
boring pixels.

For multiple images from different viewpoints, there are
two choices—hold the light source constant or allow the
light to move with the volume as the view position is
modified. If the light source stays fixed, this requires
the shading process to be re-done prior to re-rendering
an image. If the light source can move with the volume,
the volume does not need to be re-shaded—just another
projection along the new view direction. In VolRender,
the light source moves with the object, but may be moved
while the view direction is fixed.

3 Parallel Splatting

High level language compilers for parallel systems are rel-
atively new and unsophisticated. They are not yet adept
at hiding many of the major issues which are peculiar
to parallel programming. Consequently, the programmer
must take into consideration such factors as the distri-
bution of the data, distribution of the workload, syn-
chronization and more. As with most things computer-
related, each different configuration of solutions to these
issues has its advantages and disadvantages. Fortunately,

Figure 2: Everything but boneistransparent.

the dimensions of the main data structures involved in
this problem are minimal (the shaded slices forming the
data volume, and the raster) and a nearly optimal con-
figuration is easy to pick out.

3.1 Distribution of the Data

The distribution of the data across multiple processors
is inextricably linked with the distribution of the work-
load. A successful data distribution is one which mini-
mizes internal and external IO, does not generate a signif-
icant level of work to achieve, and allows for a relatively
equal distribution of the workload across all processing
elements. For reasons which will become clear in the sec-
tions below, the distribution of the raw data slices is as
follows. Contiguous regions relatively equal in size are
distributed to each processing element as shown in Fig-
ure 4.

Note that if the number of slices n is not evenly divisible
by the number of processing elements p, [n/p| + 1 slices
are distributed to the first n — |n/p| * p processors, and
[n/p] slices to the remaining processors. No provision is
made for allocating parts of a slice to one or more pro-
cessors, so the size of the processing group is chosen to
be some number equal to or less than the number of raw
slices in the data set to be rendered.

3.2 Distribution of the Workload

3.2.1 Shading

The calculations required to create a shaded slice z in-
volve only the data contained in the raw slices z — 1, z,
and z 4+ 1. Consequently, a processor can shade its par-
tition of raw slices independently of the rest, as this is
essentially the shading problem applied to a smaller data

CUG 1995 Spring Proceedings 71

view plane/raster

Figure 3: Splatting voxels.

set. Clearly shading a voxel based on its six neighbors
does not effect a data or work dependency on any other
processor performing similar calculations on a different
slice. Furthermore, once the shading process is complete,
every processor is left with exactly the shaded versions of
the slices in its partition, thereby maintaining the orig-
inal data distribution. At this point the raw slices are
discarded as they are not used any further in the render-
ing process.

3.2.2 Splatting

For every processor to determine the color and opacity
contribution of its partition of shaded slices to the same
pixel, each must be aware of the general orientation of the
data volume with respect to the view plane, and which
corner of the volume is closest. Because a parallel view
1s used, the orientation of a processor’s partition with
respect to the view plane is the same as the orientation
of the entire volume. All processors can determine which
traversal order is appropriate, along with which splatting
filter is best. Note that these calculations are identical for
every processing element (PE). Clearly all processors can
perform the computation required to generate the partial-
color components for any particular pixel simultaneously
and without concern for data or work dependencies. At
this point, each processor p; contains a full-size image, I;,
created from its set of shaded slices.

72 CUG 1995 Spring Proceedings

shadedglices

e

v

%

OOOE

processors

Figure 4: Distribution of the shaded slices.

3.2.3 Compositing

One caveat associated with this data distribution is that
every pixel in an image I; must visit every processor be-
fore a final image is created. Unfortunately, to complete
an mxn pixel raster, this means that mxnx(p — 1) pixels
worth of data must be moved between p processing ele-
ments. However, consider that the size of the raster is
very likely to be less than the cumulative size of the raw
data slices. Clearly, fixing some section of the raster in
the memory of each processor, and shuffling around all of
the slices of the volume as required to color each section
is much less efficient than fixing a partition of the data
volume in each PE’s RAM and shuffling around the pixels
of the raster as required.

To this end, the tiling arrangement shown in Figure 5 is
used. In terms of this four processor example, the com-
positing works as follows. Once the PEs have calculated
a partially colored raster, processor I fetches the Ith 1/p
section of processor I + 1’s partially colored raster, and
composites it with the corresponding section of its own
raster. At the same time, processor I + 1 fetches the
I + 1th 1/p section of processor I + 2’s partially col-
ored raster, and composites it with the corresponding
section of its own, and so on. At stage t, processor I
fetches the Ith 1/p section of processor I + (¢ mod p)’s
raster, and combines it with the corresponding section
of its own. Note that since every processor is operating
on a unique section of the image, data dependencies are
avoided. This process continues until ¢ becomes equal
to p, at which time every processor will own a 1/p sec-
tion of the completed image. Clearly the workload is well
balanced. Furthermore, this configuration allows the sec-
tions of the raster to be written virtually simultaneously.
The efficiency of this approach is clearly dependent on the
hardware. The ARSC Cray T3D is currently equipped
with two MIOGs to the host Y-MP. As a result the writ-
ing of the tiles cannot occur entirely in parallel, though
the 10 gateways are more likely to be used to capacity

Tiling example for 4 PEs

PE #0 PE #1 PE #2 PE #3
e o e PO 1 beveeeanndd
- L eerennnnnd cycle 1
poscscanany ‘l -
o AL LELEE
PE #0 PE #1 PE #2 PE #3
- r...... eeneeennn
b rennananns - > [{ cycle2
feesnannnen d bassssssnesd
......... y
PE #0 PE #1 PE #2 PE #3
- ! E
T
.......... L cycle 3
. =1_ ... >
q e— P

partial-color rasters

destination of the part of the completed raster
which corresponds to the tile in this position
on each PE (compositing ''destination" tile)

* compositing ""source" tile

indicates the compositing of the source tile
with the destination tile

Figure 5: Compositing raster using a tiling approach.

when requested by multiple PEs.

4 The Complete System

The complete medical imaging system as currently run-
ning at the Arctic Region Supercomputing Center in-
cludes a graphical user interface along with a rendering
engine based on the parallel design detailed in the previ-
ous section.

The GUI is written in C, with the application framework
provided by the data flow visualization system AVS. As-
sembling the interface with AVS allows for a rapid pro-
totyping design model and reduces development time by
allocating widget communication and mouse event han-
dling tasks to the AVS kernel. The fact that no T3D
version of AVS exists, combined with dependency of the
Cray T3D on a host system for external 10 support, im-
plies a distributed application architecture in which the
interface runs under AVS on the Cray T3D host system
while the volume processing engine resides on the T3D
itself.

The parallel rendering engine is also written in C, with
parallelization achieved through calls to functions in
the PVM (Parallel Virtual Machine) and shmem (Cray
Shared Memory) libraries [1, 2, 3]. Specifically, syn-
chronization facilities are provided through the Cray
MPP version of the popular distributed computing library
PVM, while inter-processor communication is achieved
through the use of the shmem library.

4.1 Interface

The functionality of the interface provided by the AVS
module is accessed in the same way as that of other AVS
modules. The module is loaded into the AVS network
editor subsystem, and an instance of it dragged onto the
work area (see Figure 6). As the volume rendering module
itself is not intended as a standalone application, no effort
was made to handle the display of the resulting images
on the local host. Rather, this functionality is provided
through the AVS Imageviewer module, and the X Win-
dow display system. Therefore the typical AVS network
in which the VolRender module is expected to be used as
shown in Figure 6.

The output of the VolRender module is an AVS 2D 4-
vector byte regular field and the rendered images can be
read and post processed by a variety of other AVS mod-
ules. Some image post processing techniques currently
provided with AVS version 5.0 include convolution, con-
trast stretch, edge detection, image type conversion, crop,
and vector element statistics.

Once instantiated, the interface panels for the VolRender
module become available to the user. The 18 widgets in
this interface provide for two methods of feeding render-
ing parameters to the rendering engine. The first method
allows a user to set these parameters from the contents
of an ASCII file. The second allows the user to set them
interactively. The parameters are categorized by general
function and include view position, lighting, tissue cate-
gorization, color, and opacity, processor group size, image
size, and raw data characteristics.

4.2 T3D Executable

All of the work associated with the direct volume ren-
dering of an image is accomplished by the rendering en-
gine executing on the T3D. This executable is broken into
three distinct pieces including a control function, a func-
tion for shading the raw data slices, and a function for
splatting the shaded slices onto a raster. Control of the
rendering process is directed by the VolRender module
as described below. The control function is responsible
for reading the parameters required to shade or render
an image, and invoking the appropriate compute routine.
As indicated previously, parameters associated with the
lighting, color and opacity of the materials in the data vol-
ume, and raw data characteristics, are read and passed
to the shading routine after a widget associated with one
of these values is modified. The output is then rendered
to generate an updated image. Alternatively, parameters
dealing with the view direction with respect to the data
volume, and the size of the raster, are updated and passed
to the rendering function as required by the modification
of a related widget.

CUG 1995 Spring Proceedings 73

4.3 Communication

The distributed nature of this volume rendering appli-
cation requires a system of communication for handling
process spawning, and inter-process synchronization and
data movement. These tasks are accomplished with
three separate communication facilities provided by ver-
sion 8.0.x.x of the UNICOS operating system.

4.3.1 execvp

Once the VolRender module has been loaded into AVS
and instantiated, the module loads the commands and
parameters necessary to begin execution of the volume
rendering engine into a character array. This array is
then passed to the UNICOS command execvp to spawn
the T3D executable responsible for the rendering.

4.3.2 Signals

Synchronization between the VolRender module running
on the T3D host and the rendering engine running on the
T3D itself is accomplished through the use of UNIX sig-
nals. This system provides a number of pre-defined inter-
rupts which can be issued to a particular process to mod-
ify its operation. In addition, Cray UNICOS makes avail-
able two undefined signal values (SIGUSR1 and SIGUSR2),
to which a user definable function can be attached. A
process receiving one of these signals temporarily halts
execution while the action attached to that interrupt is
processed.

From the VolRender module perspective, the receipt of
SIGUSR1 indicates that the rendering engine has com-
pleted an initialization routine and is ready to render an
image. The receipt of SIGUSR2 indicates that the T3D
executable has completed a rendered image. Conversely,
the receipt of SIGUSR1 by the T3D process indicates that
the value of a parameter in the VolRender interface which
requires that the raw data be re-shaded and rendered,
has been modified, while the receipt of SIGUSR2 by the
T3D process indicates that the value of a parameter which
requires that the data volume be re-rendered, has been
modified.

With this in mind, the order of execution of the VolRen-
der module and the rendering engine is as follows. Af-
ter instantiation, the VolRender module spawns the T3D
process and waits until this process signals that it is ini-
tialized. At that time, the T3D executable waits until the
VolRender module signals that a parameter has changed
and an image needs to be rendered. After this signal is
sent, the VolRender module waits until the rendering en-
gine signals that an image has been completed, at which
time it reads the image and passes it downstream to the
AVS Imageviewer module for display. Meanwhile the T3D
process waits once more for the VolRender module to sig-
nal that a parameter has changed and a new image needs
to be rendered. The transfer of execution control contin-
ues in this manner until the VolRender module process

74 CUG 1995 Spring Proceedings

is killed. At that time a termination signal is sent to the
T3D process.

Synchronization in this manner helps prevent data de-
pendency situations in which the VolRender module at-
tempts to read an image before the rendering engine has
completed it, or the T3D executable attempts to read a
set of parameters before the VolRender module can finish
updating them.

4.3.3 Process Table

The movement of parameters and image data between
the VolRender module and the T3D rendering engine is
handled through the use of the process table. This ta-
ble allows the T3D executable to read from and write to
sections of memory on the T3D host. The process on
the T3D references the host memory as though it were a
standard disk file. Reads and writes to this “process file”
by the T3D are transparent to the host. It is this fac-
tor which necessitates the inter-process synchronization
described in the previous section.

In this application, two forms of data transfer are re-
quired. The first involves getting the shading and render-
ing parameters from the VolRender process to the ren-
dering engine. This is done by first storing all parameter
values in a C structure. The address of this structure
in memory is then passed to the T3D executable via the
command line as it is spawned. The rendering engine ac-
cesses these values by opening the process file (the name
of which is also passed to the T3D process at spawn time)
and seeking to the appropriate address for a particular pa-
rameter value. As the structure of floating point values
varies between the T3D and the host, parameters with
floating point values are encoded as integer values prior
to storage in the parameter structure, and decoded after
being read by the T3D executable.

The second form of data transfer involves getting a com-
pleted image from the T3D back to the host. The render-
ing engine does so by seeking to the appropriate location
in the process file and writing the data. Correct updates
of the image display by the VolRender module requires
that the memory associated with an image on the host
be freed and reallocated each time a new image is pro-
duced. Consequently the address in memory to which the
T3D process writes an image may shift as new rasters are
produced. Therefore this address is part of the parameter
structure mentioned above, and is re-read by the render-
ing engine prior to writing an image.

5 Results and Analysis

The target performance of this application requires that
the data volume be projected onto a raster, and the re-
sulting image updated on a user’s display in coordination
with the user’s modification of the viewing parameters,
at a rate sufficient to be termed interactive. This implies
that any useful measurement of its performance must take

into consideration not only the time required to render an
image but also the time required to transfer the image to
the user’s local display.

5.1 Compute Time

The computation time required to project the data vol-
ume onto a raster using a splatting approach is the pri-
mary reason why this project could not be successfully
completed on workstation level computing equipment.
Consider the rendering of a 256x256x64 voxel data set
onto a 300x300 pixel raster. Memory limitations aside,
this task requires 30 seconds to a minute on a Silicon
Graphics Indigo? workstation. Note that the specialized
polygonal rendering hardware of this machine is not use-
ful to a direct volume rendering application such as this.
Now consider the compute times shown in Table 1 for
various rendering configurations on the Cray T3D.

Notice that the numbers along a row relate to a nearly
constant workload per processor for varying numbers of
processors, and that these numbers do not significantly
increase as the number of processors is increased. Recall
that the composition of the rasters on p processors in-
volves the transfer of p * (1 — p) messages, each of which
is 1/p times the size of the raster in length. As additional
processors are added, larger numbers of smaller messages
flood the interconnect network of the T3D. One might ex-
pect network contention via message collisions and conse-
quently the rendering time to increase, as more processors
are added. Clearly, at least for the workload configura-
tions shown in the table, this does not seem to be the case.
The minimization of collisions is likely due to the bidirec-
tionality of the interconnect network switches, along with
the dimension ordered message routing scheme.

Furthermore, notice that the numbers along a column re-
late to a varying workload per processor for a constant
number of processors, and that these numbers increase
by nearly a constant as the workload per processor is
increased by a constant. As indicated previously, the
amount of inter-PE IO is dependent upon the size of the
raster and the number of processors only. Therefore the
quantity of IO within a column is static. The fact that
a constant increase in the rendering workload leads to a
nearly constant increase in rendering time indicates that
the rendering engine is compute bound, rather than IO
bound. Were the latter true, it would indicate that this
parallel implementation is not well suited to the architec-
ture of the T3D system.

Finally, with respect to scaling the problem size, the ren-
dering times clearly favor maintaining a constant 1:1 slice
per PE ratio, while varying the number of processing ele-
ments. An intuitive expectation is that there should exist
a point at which this ratio is no longer desirable. Such a
situation may exist when the number of PEs is increased
to the point that the time required for a message to travel
the distance of the diameter of the network becomes a
significant factor. However this number seems to be well
beyond the 128 PE capacity of ARSC’s T3D.

5.2 External IO Considerations

In addition, the distributed design of this application
hints at several potential areas where bottlenecks can oc-
cur between the major system components. Specifically,
bottlenecks are most likely to appear either in the trans-
fer of an image between the T3D and Y-MP, or in the
transfer of an image between the Y-MP and the display
of the local host.

5.2.1 T3D - Y-MP Communication Time

Currently, the T3D system at the Arctic Region Super-
computing Center is operating under phase 1 of Cray Re-
search’s three phase external 10O plan for the T3D prod-
uct. Under phase 1, all IO requests from the T3D to
devices external to the machine are handled through the
T3D host system. The transfer of data and control be-
tween the T3D and its Y-MP host at ARSC occurs via
two 1O gateways. The limited number of gateways to pro-
cessing elements (128 in the ARSC T3D) gives rise to the
possibility of resource contention for the use of these gate-
ways, and a subsequent bottleneck. Furthermore, as all
IO requests must be serviced by the host system, such re-
quests must compete with native processes for host CPU
time.

Despite these issues, consider the transfer timings listed
in Table 2. These timings show the total quantity of data
transferred per second of wall-clock time. Note that the
values within a column are reasonably constant, as the
data transferred (pieces of the final raster) is not related
to the size of the data volume on each PE. What variance
between values in a column exists, is likely the result of
fluctuations in available CPU time on the T3D host. Mul-
tiple entries per column are merely intended to provide
an indication of the magnitude of these fluctuations, and
their corresponding effect on the transfer times.

The maximum number of processors most users are able
to access in interactive mode on the ARSC T3D is 32
or less. Recall that the current implementation of the
rendering engine can produce up to 3 300x300 pixel (4
bytes per pixel) images per second. Clearly, at the 32
processor level, the transfer of these images between the
T3D and its host is not the primary factor limiting the
performance of this application.

5.2.2 Y-MP - Local Host Transfer Time

Perhaps the most significant potential for a bottleneck sit-
uation lies with the transfer of a rendered image between
the T3D host system and the display of the user’s local
computer system. The magnitude of this bottleneck is
obviously dependent upon the distance, usage, and form
of the network between the two systems. Our experi-
ence here at ARSC with running this application across a
heavily loaded 10Mbps local ethernet network, has been
delay times between 0.5 and 116 seconds.

CUG 1995 Spring Proceedings 75

St s b d e |

Ty | #favd Wl

PRI | e T L

AN Nty alir

i fo s Rasabaies

whow g lisn

Table 1: Average rendering times (in seconds) for splatting 256x256 dli es onto a 300x300 raster.

Shaded
Slices
Per
PE

Table 2: T3D-YMP transfer time (in MB/second) for 360,000 bytes (a 300x300 raster).

Shaded
Slices
Per
PE

76 CUG 1995 Spring Proceedings

= mmape v

1

2

Number of PEs

4

NS Mnlal Ly

8

16

32

64

128

0.26

0.27

0.28

0.28

0.28

0.33

0.30

0.31

0.71

0.72

0.72

0.72

0.72

0.73

0.73

0.73

1
2
31097
4

1.00

1.00

1.00

1.01

1.01

1.02

1.02

1.28

1.28

1.28

1.28

1.29

1.29

1.29

1.29

4

Number of PEs

8

16

32

64

128

36.32

5.51

8.47

5.76

5.19

3.07

0.47

0.33

36.59

6.26

8.47

6.63

5.19

3.19

0.96

0.50

36.17

5.53

8.37

6.39

5.44

1.47

1.27

0.28

SN~

36.77

5.55

8.20

6.37

5.32

3.12

0.50

0.28

6 Conclusion

The VolRender rendering engine demonstrates that medi-
cal imaging on a Cray T3D is feasible. The addition of an
AVS interface allows a user to interactively explore high
resolution medical data sets. When connected to the T3D
by FDDI, display rates of up to 5 frames per second give
an interactive feel. An ethernet interface is also provided
in part to serve remote users. While the display rates will
not be interactive, it allows a remote user the ability to
view data sets that are too large to render locally.

To achieve 10-15 images per second, a parallel implemen-
tation of shear-warp transform [6] or fourier projection-
slice [8] will probably be necessary. These two algorithms
give an order of magnitude speed up over the splatting
algorithm on single processor workstations. One of these
algorithms, displaying across HIPPI or FDDI, will pro-
vide interactive performance.

7 Acknowledgements

This research was supported by Cray Research Inc. and
the Strategic Environmental Research and Development
Program (SERDP) under the sponsorship of the Army
Corps of Engineers Waterways Experiment Station. We
would like to thank Dan Katz from Cray Research for his
assistance with transferring data from the T3D to the Y-
MP and Jim Snell of Texas A&M University for providing
the dog leg volume data set.

References

[1] Cray Research Incorporated, Minnesota. Mpp

[7]

Overview (TR-MPPOYV), 1st edition, 1993.

Cray Research Incorporated, Minnesota. MPP Soft-
ware Guide (SG-2508V), 1st edition, 1993.

Cray Research Incorporated, Minnesota. PVM and
HeNCE Programmer’s Manual (SR-2500/SR-2501),
3rd edition, 1993.

James D. Foley, Andries van Dam, Steven K. Feiner,
and John Hughes. Computer Graphics: Principles
and Practice. Addison-Wesley, Reading, Mass., 2nd
edition, 1990.

Greg Johnson and Jon Genetti. High resolution in-
teractive volume rendering on the cray t3d. In 199/
Fall Proceedings (Cray Users Group), pages 119-125,
1994.

Philippe Lacroute and Marc Levoy. Fast volume ren-
dering using a shear-warp factorization of the viewing
transformation. In Andrew S. Glassner, editor, Com-
puter Graphics (SIGGRAPH 94 Proceedings), pages
451-458, 1994.

William E. Lorensen and Harvey E. Cline. March-
ing cubes: A high resolution 3D surface construction
algorithm. In Maureen C. Stone, editor, Computer
Graphics (SIGGRAPH ’87 Proceedings), volume 21,
pages 163-169, July 1987. ‘

Takashi Totsuka and Marc Levoy. Frequency domain
volume rendering. In James T. Kajiya, editor, Com-
puter Graphics (SIGGRAPH ’93 Proceedings), vol-
ume 27, pages 271-278, August 1993.

Lee Westover. Footprint evaluation for volume ren-
dering. In Forest Baskett, editor, Computer Graphics
(SIGGRAPH ’90 Proceedings), volume 24, pages 367—
376, August 1990.

CUG 1995 Spring Proceedings 77

