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ABSTRACT: 

 

The 

 

Application Visualization System (AVS)

 

 is an interactive tool for scientific
visualization distributed by Advanced Visual Systems, Inc.  The AVS source code is modularized
and highly portable, but is not vectorized to take advantage of the Cray Research, Inc. (CRI)
parallel vector architecture.  For this project, the following AVS modules were analyzed and opti-
mized for vector processing on a CRAY Y-MP M98 supercomputer:  Field Math, Interpolate,
Compute Gradient, Field to Mesh, Downsize, and Read Field.  Vectorization techniques included
the use of CRI library routines, compiler directives, inlining functions, loop unwinding, loop
transposition, data type conversion, and creation of temporary variables.  Based on user CPU
time, speedup factors of up to 345 were obtained through optimization, and vector MFLOPS
(millions of floating point operations per second) of up to 187 were attained in the vectorized
code.

 

1 Introduction

 

The goal of this project was to optimize several modules of
the 

 

Application Visualization System (AVS)

 

, an interactive visu-
alization product of Advanced Visual Systems, Inc., to run on a
Cray Research, Inc. (CRI) CRAY Y-MP supercomputer.  The
AVS source code is modularized and highly portable, but is not
vectorized to take advantage of the CRI parallel vector architec-
ture.  The Y-MP uses pipelining and vectorization to overcome
the inherent performance limitations of traditional 

 

von
Neumann

 

 style computer architectures.  Pipelining and vector
processing improve the speed at which a computer can perform
computations.  For this project, the following AVS modules
were analyzed and optimized for vector processing on a CRAY
Y-MP M98 supercomputer:  Field Math, Interpolate, Compute
Gradient, Field to Mesh, Downsize, and Read Field.

 

1.1 Vector Processing

 

A loop that is executed with vectorized code typically runs
10 times faster than when executed with scalar code. [2]  The
CRI compiling system automatically vectorizes code when it
determines that the changes will not affect the program results.
Certain conditions preclude automatic vectorization, however,
and require manual intervention by the programmer.  Code that
is already vectorized may also be further optimized to increase
vector lengths.  This project shows that minor code changes can
yield significant performance improvements on vector proces-
sors such as the CRAY Y-MP.  Vectorization techniques used
include the use of CRI library routines, compiler directives,

inlining functions, loop unwinding, loop transposition, data
type conversion, and creation of temporary variables.

These techniques, combined with pipelining, can yield very
high performance.  As a result, huge amounts of data may be
generated in a short time period.  Analyzing the data becomes a
new challenge.  Data visualization tools greatly facilitate the
seemingly insurmountable task of interpreting page after page
of numeric information.  A typical visualization may require
processing more than a million data points for a single image.
Smooth animation requires at least twelve images per second.
Since visualization ideally occurs interactively in real time,
optimization for speed becomes a particularly meaningful
consideration.

 

1.2 Y-MP Architecture

 

The CRAY Y-MP is a vector-register machine--all vector
operations except load and store are performed between the
vector registers.  Each CPU consists of registers and functional
units.  In addition to address and scalar registers, each CPU
contains eight 64-element vector registers.  An element is 64
bits long.  A vector length (VL) register specifies the number of
elements in the vector register to be processed by the vector
instruction.  A 64-bit vector mask (VM) register represents a
selection of vector elements stored in a V register--each bit in
the VM register corresponds to a single element in the vector.
Each functional unit implements portions of the instruction set
and can be accessed by one group of registers:  address func-
tional units are Address Add and Address Multiply; vector
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functional units include Vector Add, Vector Shift, Full Vector
Logical, Second Vector Logical, and Vector Population/Parity;
scalar functional units consist of Scalar Add, Scalar Shift,
Scalar Logical, and Scalar Population/Parity/Leading Zero; and
floating-point functional units are Floating-point Add,
Floating-point Multiply, and Reciprocal Approximation.
Because the functional units operate independently, operations
can occur in parallel.  [2].

The system used for this project, 

 

Denali

 

, is a CRAY Y-MP
M98 supercomputer located at the Arctic Region Supercom-
puting Center (ARSC), University of Alaska Fairbanks.  It has
a clock speed of 6.0 nanoseconds (167 Mhz.) and is currently
configured with  eight processors and  one gigaword (8
gigabytes) of main memory.  The theoretical peak floating point
performance is 333 MFLOPS for each processor.  Codes
achieving sustained rates of 100 MFLOPS or more are consid-
ered to be well optimized.

 

2 Application Visualization System (AVS) 
Overview

 

AVS is a software tool designed to facilitate the analysis of
scientific data using real-time interactive display techniques.
The AVS structure embodies the principles of modularization,
abstraction, and information hiding.  The package is composed
of modules written in C and FORTRAN, each of which
performs a specific function.  Using these building blocks, AVS
users can interactively construct their own visualization
programs by combining the modules into executable flow

 

networks

 

.  Implementation details are completely hidden from
the user, and no knowledge of programming or programming
languages is necessary.  The user connects the various modules
through graphical interface ports to build applications tailored
to their particular needs.  Figure 1 shows an example of a flow
network.

AVS also allows for easy development of new modules by
providing a "Module Generator" which serves as a template for
creating routines that conform to the standard AVS interfaces.
These new modules can be added to existing libraries, or new
libraries can be created.

 

2.1 Optimized Modules

 

Although hundreds of modules comprise AVS, time and
resource constraints allowed analysis and optimization of only
six for this project, all of which were from the 

 

Supported

 

module library.  A new library, 

 

Vectorized

 

, was created to
contain the optimized modules.  The modules that were opti-
mized for this project were chosen based on frequency of use
and potential benefit to be gained from optimization.  They
represent a cross section of the available types of modules and
are frequently used in the typical AVS network.  A brief
description [1] of each of these modules follows:

•

 

Field Math

 

 (Filter) - This module performs math operations
between fields.

•

 

Interpolate

 

 (Filter) - This module inputs a 2D or 3D scalar
field  (any data type, any vector length) and computes inter-
mediate values to change the size of the field.

•

 

Compute Gradient

 

 (Filter) - This module computes gradi-
ent vectors for 2D or 3D data sets.

•

 

Field to Mesh

 

 (Mapper) - This module transforms a 2D sca-
lar field to a surface in 3D space, represented as a geome-
try-formatted mesh.

•

 

Downsize

 

 (Filter) - This module accepts a 2D or 3D data
field (any data type, any vector length) and reduces its size
by sampling.

•

 

Read Field

 

 (Data input) - This module reads an AVS field
from a disk file or imports data files into AVS field format
(Native Field Input).

 

Figure 2: AVS Flow Network

 

2.2 Remote Module Execution

 

Another convenient feature of AVS is that it supports the
execution of modules on remote AVS hosts of heterogeneous
hardware types.   Multiple hardware types are possible because
the network communication and data transfer mechanism
between the AVS kernel and the remote module are based on
standard Unix TCP/IP network protocols, and data representa-
tion is based on Sun's External Data Representation (XDR) [1].
For this project, to avoid adding to the already heavy user load
on 

 

Denali

 

, the AVS kernel and modules other than the one
being analyzed/vectorized were run on an SGI Onyx, with a
single module running remotely on 

 

Denali

 

 at any given time.  

Remote module execution involves three aspects:  remote
system requirements; the local 

 

hosts

 

 file that AVS uses to
access remote modules; and the 

 

AVS Network Editor

 

 user inter-
face to remote modules. [1]
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3 Optimization

 

Computer performance is generally measured in terms of
either time (how long a program takes to execute) or rate (a
count of operations over a specified time period).  Time may be
defined in different ways, including elapsed time, user CPU
time, and system CPU time.  The measures of performance used
in this project are user CPU time for each module and millions
of floating point operations per second (MFLOPS).  Both of
these are industry standards, and CRI's 

 

Perftrace

 

 [3] utility
readily provides the desired information.

 

3.1 Perftrace  

 

Perftrace

 

 is a utility that provides statistics about CRI
computer hardware performance, detailed for individual
program units.  

 

Perftrace

 

 monitors scalar activity, hold-issue
conditions, memory use, and vectorization.  It can be enabled
with FORTRAN, C, and Pascal compilers by using the 

 

-F -lperf

 

command line option with the compile/load commands.  [3]

 

Perftrace

 

 statistics were collected for each module before and
after optimization.

After running a program with 

 

Perftrace

 

 enabled, the 

 

Perf-
view

 

 command can be used to generate either a default or
custom designed report from the raw-format output.  

 

Perfview

 

has a number of command line options that allow reports to be
generated in either interactive or noninteractive modes.  An

 

X-Window

 

 interface is available but not required.

 

3.2 Vectorizable Expressions  

 

Most vectorization criteria are based on the requirement that
a vectorized program produce the same results as its scalar
counterpart.  In general, a 

 

for

 

, 

 

while

 

, 

 

do while

 

, or 

 

goto

 

 loop is a
candidate for vectorization as long as it is an 

 

innermost

 

 loop and
consists entirely of vectorizable expressions. The following
conditions inhibit vectorization [2]:  

• Subprogram calls

• I/O statements

• Nested Loops (except the innermost loop)

• Complexity of expressions within the loop 

• Backward branches (except "increment-test-jump" to the
top of a loop)

• Bit field manipulations

• Statement branch into a loop from outside the loop

• Data dependencies that produce different answers in scalar
mode vs. vector mode

• Ambiguous subscript or pointer references

• Calling functions that do not have a vector version

• Explicitly turning off vectorization via compiler directives
or command line options

 

3.3 Common Vectorization Techniques  

 

CRI provides vector versions of many commonly used

 

library routines

 

 such as 

 

MIN

 

, 

 

MAX

 

, 

 

PACK

 

, 

 

UNPACK

 

.  If used

within a loop, these routines can allow the loop to vectorize.
Outside of loops, the routines can speed up processing because
they are written specifically to take advantage of the vector
processing capabilities of the machine.  

The compiler is sometimes unable to determine if an expres-
sion is "safely" vectorizable (i.e., it will produce the same result
in both scalar and vector calculations).  If the programmer can
determine that the loop is free of dependencies, a 

 

compiler
directive

 

 can be explicitly stated that will force vectorization of
a loop.

• If source code is available, functions and other subprograms
may be 

 

inlined

 

 to allow vectorization.  Note that the inlined
subprogram must also consist entirely of vectorizable
expressions in order for the loop in which it is contained to
vectorize.

• If an innermost loop contains a small number of iterations
compared to an outer loop, 

 

unrolling

 

 

 

the

 

 

 

inner loop

 

 to allow
the outer loop to vectorize can increase performance.

•

 

Inverting the order of loops

 

 can remove data dependencies
or increase vector lengths to improve performance.

• Character types and bit operations are not vectorizable.

 

Temporary

 

 conversions to other types can allow vectoriza-
tion.

• Temporary variables may be created to eliminate dependen-
cies and simplify complexities that inhibit vectorization.

•

 

Switch Statements

 

 may be converted to equivalent
if-then-else structures.

 

4 Performance Analysis

 

Perfview

 

 may be run either interactively or in batch mode to
examine the performance results of the run.  Of particular use is
the 

 

Perftrace Statistics

 

 

 

Report

 

 showing traced routines sorted
by CPU time.  The following column headings are included in
this report [3]:

•

 

Name

 

 - The name of the individual routine or marked sec-
tion of code. 

•

 

Called

 

 - How many times the named routine was called.

•

 

Time

 

 - The total CPU time spent in the named routine.

•

 

Avg Time

 

 - The average CPU time for each routine call.

•

 

Ex %

 

 - The execution time percentage of the named routine
relative to the total execution time of all routines in the
module.

•

 

SMips

 

 - Scalar MIPS (millions of instructions per second)
achieved for the named routine.

•

 

V I/L

 

 - Vector integer/logical operations per second.

•

 

VMflops

 

 - Vector megaflops achieved for the named rou-
tine.

The report includes totals for all columns.  Figure 2 shows
the 

 

Perftrace

 

 

 

Statistics

 

 

 

Report

 

  generated for the Compute
Gradient module.  From observing the execution times, it is
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readily apparent that most of the CPU time is being spent in
routines 

 

x2d_grad

 

 (43.4%), 

 

y2d_grad

 

 (39.7%), and

 

compute_gradient_compute

 

 (15.1%).  The other thirteen
routines combined used less than 2% of the total time (Figure
3).

 

Figure 3: Proportional CPU Times

 

It is important to direct optimization efforts toward the areas
of code that use the most execution time. Therefore, in the

Compute Gradient module, 

 

x2d_grad

 

, 

 

y2d_grad

 

, and

 

compute_gradient_compute

 

 are the routines that are good
candidates for optimization.  After determining which routines
are using the most CPU time, an analysis of the optimization
report generated by the C compiler shows which parts of the
code are candidates for vectorization.  

Figure 4 shows a portion of the baseline optimization report
generated for the Compute Gradient module.  The messages in
this report provide information about vector and scalar code
optimizations that were attempted by the compiler, including
whether the attempts were successful and reasons for success or
failure.  These messages indicate that the loops starting at lines
2622 and 2628 are candidates for vectorization.  A complete
explanation of these and other compiler messages is found in
[2].

 

4.1 Code Changes

 

An incremental change and test approach was taken.  Code
was recompiled and tested during intermediate stages to assess
the performance impact of individual changes and to facilitate
debugging when problems occurred.  Source code changes were
made conservatively, with the general philosophy that the fewer
changes required the better.  In many cases, loops are not auto-
matically vectorized simply because the compiler cannot deter-
mine if data dependencies exist, particularly when pointers are
involved.  Often, it easily can be determined by the programmer
if these loops are actually safe.  If so, the addition of the
compiler directive "

 

#pragma _CRI ivdep

 

" can cause a loop to be

Compute Gradient Mod
 (2D baseline) y2d_grad

4 0 %

x2d_gra
4 3 %

Others
< 2 %

compute_
gradient
compute

1 5 %

 

Figure 2: Perfview Statistics Report Showing CPU Time, Sorted by Time Used
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vectorized.  Changes of this type were made first.  

 

Switch

 

 state-
ments easily can be converted into equivalent 

 

if-then-else

 

 state-
ments.  Unvectorizable character data can be converted to long
integers for intermediate processing and reconverted to bytes
afterwards using the vectorized CRI library routines, 

 

_unpack

 

and 

 

_pack

 

.  Changes of these types were made next.  Additional
changes, described in greater detail in the following sections,
were made based on the remaining compiler messages gener-
ated for each module.  After loops were vectorized, nested loops
were examined to determine if better vector lengths could be
achieved by reordering the loops.

 

4.2 Testing

 

To verify that the vectorized code produced the same results
as the baseline code, the 

 

Write Field

 

 module was included in
each AVS test network for baseline modules, connected directly
to and immediately following the module being optimized.
This module writes the input field to a specified file.  The same
AVS networks were used to test the optimized modules except
that the 

 

Write Field

 

 module was replaced with the 

 

Compare
Field

 

 module, connected directly to the optimized module on
the left port and connected to the baseline 

 

Read Field

 

 module
on the right port to input the previously written baseline data.
The 

 

Compare Field

 

 module accepts two input fields and either
shows the differences between the fields or indicates that the
fields are alike.

 

5 Field Math Module

 

The Field Math module is used to perform arithmetic and
logical operations on fields such as 

 

NOT

 

, 

 

AND

 

, 

 

OR

 

, 

 

XOR

 

, left
shift, right shift, +, -, *, /, square, square root, and root mean
square.  The inputs consist of one or two fields of any type and
size.  Binary operations may be performed either with a single
field and a constant or between two fields.  The two fields must
have the same dimensionality, size, and vector lengths.  If data
types differ, the simpler type is converted to the more elaborate.

For computations, bytes are converted to integers, and shorts,
integers, and floats are converted to doubles.  Output values are
clamped to applicable ranges.  Values may also optionally be
normalized.  The output is a field matching the type and size of
the input.  This module is computationally intensive.

Before optimization, the Field Math module contained 157
loops, seventy-one of which vectorized fully.  Thirty-two loops
vectorized with a computed safe vector length. This means that
vector code was generated for the loops but depending on
run-time conditions, the vector code may be executed with a
vector length of only one (effectively, a scalar loop).  Eighteen
loops were unrolled.  Of the 54 loops that did not vectorize, 5
had pointer ambiguities, 40 contained character data, and 9
contained inner loops.  According to comments in the code, all
functions within the Field Math module except those that
performed byte operations had previously been vectorized for a
Stellar GS computer.

The AVS networks used to test the Field Math module are
shown in Figures 5-6.  The Field to Byte, Field to Int, Field to
Float, and Field to Double modules were used to convert data to
different types for each test case.  The Field to Byte module was
used to reconvert the data to a format suitable for displaying
images for the first test case.  The second, third, and fourth test
cases did not produce a display.  All modules except Field Math
were run on an SGI Onyx workstation.  The Field Math modules
were run remotely on 

 

Denali

 

.

The field used for the first test case (Figure 5) was the
mandrill image supplied with AVS version 5.0 as sample data
(

 

/usr/avs/data/field/mandrill.fld

 

 on 

 

Denali

 

).  This 500 x 480
two-dimensional field with vector length of four was multiplied
by -1, and 255 was then added to all elements (field * const +
const), producing the complement of the original image.  This

 

Figure 4: Excerpt from CRI Standard C Compiler Optimization Report
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test case was run separately with byte, integer, float, and double
data.

 

Figure 5: Field Math Module 

 

AVS Network for Test Case 1

 

For byte data, vector MFLOPS were zero, and the module
executed for 3.22 seconds.  With integer data, vector MFLOPS
were 3.9, and execution time was 1.95 seconds.

The routine attained 3.1  vector MFLOPS and executed for
1.84 seconds with float data.  For double data, vector MFLOPS
were 4.2, and CPU time was 1.36 seconds.

Test cases two, three, and four (Figure 6) used digitized
Alaska terrain elevation data (

 

/u1/uaf/woys/PROJECT/NETS
/dem1426x1051.fld

 

 on 

 

Denali

 

).  Test cases 2 and 4 were run
separately with byte, integer, float, and double data.  Test case
3 was run separately with byte and integer data.

Figure 6: Field Math Module AVS Network for Test Cases 2, 
3, 4

The second test case consisted of multiplying this 1426 x
1051 two-dimensional field by itself (field * field).  The '*'
operator rather than the SQR function was specified in the field
math routine.  

With byte data, the module executed 4.05 seconds with zero
vector megaflops.  CPU time was 3.02 seconds with integer
data, and vector megaflops were 4.2.  For float data, the routine
attained 1.5 megaflops and ran 2.93 seconds.  With double data,

vector megaflops were 4.2 and execution time was 1.08
seconds.

In the third test case, the terrain field was 'XOR'ed with
itselflf (field XOR field). Float and double data did not apply to
this test case since they are not legal types for logical opera-
tions.

 With byte data, vector megaflops were zero and CPU time
was 3.87 seconds.  The module attained 1.5 megaflops and ran
for 3.01 seconds with integer data.

For the fourth test case, the RMS (root mean square) oper-
ator was applied to the field.  For byte data, CPU time was 5.97
seconds and MFLOPS were zero.  The module attained 13.3
MFLOPS and ran for 3.15 seconds with integer data.  With float
data, 12.7 MFLOPS were obtained, and the module ran for 3.07
seconds.  CPU time was 1.28 seconds and vector MFLOPS
were 30.5 for the double data case.

The code optimizations for the Field Math module consisted
of the following:

1. Character data were converted to long using the vectorized
_unpack CRI library routine.

2. Pointer ambiguities were eliminated through the addition of
"#pragma _CRI ivdep" statements.

3. Nested loops were reordered to increase vector lengths.

4. The compiler option "-h inline3" caused 11 functions to be
inlined.

After optimization, the Field Math module contained 164
loops.  Of these, 130 (79%) vectorized fully and fourteen
vectorized with a computed safe vector length.  Thirty-six loops
were unrolled.

In the first test case (field * const + const), integer data
yielded 94.4 MFLOPS.  With float a speedup of 12.9 was
obtained, compared to a speedup of 10.7 for integers.  MFLOPS
for float data were 67.0.  For byte data, the speedup was 8.1, and
vector megaflops were 41.3.  With double data, speedup was
6.3, and megaflops were 44.3.

In the second test case (field * field), speedups were 29.8,
9.4, 22.5, and 8.8 for float, byte, integer, and double data,
respectively.  112.1 MFLOPS were obtained in this test case
with integer data, compared to 76.4 for float data, 45.3 for byte
data, and 61.1 for double data.    

In the third test case (field XOR field), CPU time was
reduced to 0.116 seconds for integers, a speedup of 25.9.
Vector megaflops were 103.3.  For byte data, the speedup was
12.0, and vector MFLOPS were 32.6.

The most impressive speedup in terms of vector megaflops
occurred in the fourth test case as shown in Figure 7.  187.4
MFLOPS and a speedup of 11.93 were obtained with integer
data.  Floating point data yielded 149.5 MFLOPS and a speedup
of 10.9.  Double data performed nearly as well, with 135.2
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MFLOPS and a speedup of 4.1.  For byte data, MFLOPS were
105.0 and speedup was 11.0.

Figure 7: Optimized Field Math Module 
(Root-Mean-Square(field))

6 Interpolate Module

The Interpolate module uses either point sampling or
bi/trilinear sampling to compute intermediate values to change
the size of a field.  The input consists of a two-dimensional (2D)
or three-dimensional (3D) scalar field of any data type.  Inter-
polate changes the size of its input data either by subsampling
or interpolating.  The algorithm first selects, for each output
point, its floating-point position in the input data set.  With the
point sampling method, it selects the closest pixel (voxel) to the
computed one.  With bilinear (2D) or trilinear (3D) sampling, it
finds the four pixels (2D) or eight voxels (3D) around the
computed point and does linear sampling for in-between fields.
Point sampling is much faster than bi/trilinear sampling.  The
output is a proportionally resized field matching the type and
dimensionality of the input.  This module is computationally
intensive.

Prior to optimization, the Interpolate module had a total of
32 loops, none of which vectorized.  The number of vector
MFLOPS was zero for both 2D and 3D test cases, all interpola-
tion methods, and all data types.  No loops were unrolled.  

The AVS networks used to test the Interpolate module are
shown in Figures 8-9.  The Field to Byte, Field to Int, Field to
Float, and Field to Double modules were used to convert data to
different types for each test case.  The Field to Byte module was
used to reconvert the data to a format suitable for displaying
images for the 2D test cases.  For the 3D test cases, the Isosur-
face and Volume Bounds modules were used to produce a
displayable geometric image.  All modules except Interpolate
were run on an SGI Onyx workstation.  The Interpolate module
was run remotely on Denali for all test cases.

The field used for the 2D test cases (Figure 8) was the same
mandrill image that was used for the Field Math module.  It was
interpolated with an x-factor of 2.0 and a y-factor of 1.5 for both

point and bilinear methods.  Separate runs were made for byte,
integer, float, and double data, a total of eight runs to test two
interpolation methods and four data types.

For 2D point interpolation, baseline CPU times were 4.87
seconds, 3.29 seconds, 3.09 seconds, and 3.11 seconds for byte,
integer, float, and double data, respectively.  Bilinear interpola-
tion times for respective data types were 10.0 seconds, 6.03
seconds, 6.52 seconds, and 5.81 seconds.

Figure 8: Interpolate Module AVS Network for 2D Test Cases

Figure 9: Interpolate Module AVS Network for 3D Test Cases

The 3D test cases (Figure 9) used another field supplied with
AVS, a 120 x 120 x 34 element representation of a lobster
(/usr/avs/data/field/lobster.fld on Denali).  It was interpolated
with an x-factor of 1.5, a y-factor of 1.0, and a z-factor of 2.0 for
both point and trilinear methods.  Again, separate runs were
made for byte, integer, float, and double data for the two inter-
polation methods.  

For 3D point interpolation, byte data ran 6.72 seconds,
integer data ran 4.99 seconds, float data ran 4.84 seconds, and
double data ran 4.86 seconds.  Trilinear interpolation was
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slower, requiring 27.4 seconds, 17.7 seconds, 15.4 seconds, and
16.0 seconds, respectively, for the four data types.

The code optimizations for the Interpolate module consisted
of the following:

1. Switch statements were converted into nested if-then-else
statements.

2. Byte data were converted to type long using the vectorized
_unpack CRI library routine.  

3. A temporary float output buffer was created to achieve an ac-
ceptable mix of integer and floating point operations.

4. Loops were reordered to achieve greater vector lengths.

5. The "#pragma _CRI ivdep" was inserted before innermost
loops.

After optimization, there were a total of 46 loops, 26 of
which vectorized (57%).   For the 2D test cases, maximum
vector MFLOPS were 72 and minimum were 45.  The
maximum speedup was 7 and the minimum was 5.  For the 3D
test cases, a maximum of 85 MFLOPS and a minimum of 50
MFLOPS were obtained.  The maximum speedup was 16 and
the minimum was 6.

For the 2D point test case, speedups of 5.1, 8.3, 10.1, and
10.2 were obtained for byte, integer, float, and double data,
respectively.  Vector megaflops for these respective data types
were 45.4, 65.4, 56.7 and 56.1.

For the 2D bilinear case, speedups for byte, integer, float,
and double data were 10.0, 6.0, 6.5, and 5.8, respectively.
Vector MFLOPS were 64.6, 71.7, 62.0, and 62.0. 

Figure 10: Optimized Interpolate Module (3D Point Method)

As demonstrated in Figure 10,  CPU times for the 3D point
case were reduced to 1.0 seconds for byte data and less than a
second for integer, float, and double data--0.4, 0.3, and 0.3
seconds, respectively. Speedups of 6.6, 12.2, 15.3, and 16.0 and
vector MFLOPS of 50.1, 74.3, 63.9, and 63.8 were obtained for
the four data types.

The 3D trilinear case obtained speedups of 9.9, 10.2, 9.2, and
9.1 for byte, integer, float, and double data.  MFLOPS were

74.9 for bytes, 85.7 for integers, 68.4 for floats, and 65.0 for
doubles.

7 Compute Gradient Module

The Compute Gradient module is used to compute gradient
vectors for 2D or 3D data sets.  The input consists of a scalar
byte field. This module computes the gradient vector at each
point in a 2D or 3D field of scalar byte data.  Data values are in
the range 0-255.  A "nearest neighbor" approach is used to
compute the gradient:  in each direction, the component of the
gradient vector is the previous data minus the next data.  This is
backwards from the standard definition of a gradient which
usually subtracts the previous value from the next.  The reason
for the change is that the standard definition yields gradients in
which the Z components typically point in the negative direc-
tion.  A "FLIP" button is included in the module which will
calculate the gradient in the conventional fashion.  The output
is a field matching the dimensions of the input but each field
element is a 3-dimensional vector of reals representing the
gradient at a particular point.  The gradient can be used as a
"pseudo-surface normal" at each point.

Originally, only 10 of the 55 loops vectorized.  Four required
too much run-time analysis to be vectorized; in nine loops, the
compiler perceived aliased variables; five loops contained char-
acter data, and 26 contained inner loops.  

The Compute Gradient module accepts only byte data.  The
AVS network used for the 2D test case is shown in Figure 11.  

Figure 11: Compute Gradient Module AVS Network for 2D 
Test Case

The 2D case used the same Alaska digitized terrain field that
was used for testing the Field Math module (Section 5).  Read
Image, Extract Scalar, Compute Gradient, and Display Image
modules were run on an SGI Onyx workstation while the
Compute Gradient module was run remotely on Denali.  This
network reads an image and uses the computed gradient for
shading of particular regions in the digitized terrain image.  The
2D test case required 0.5 seconds CPU time and achieved 18.5
MFLOPS.
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The 3D case used the lobster field that was  used for testing
the Interpolate module (Section 6).  The AVS network used for
this test case is shown in Figure 12.  Read Field, Generate
Colormap, Colorizer, Gradient Shade, Euler Transformation,
Tracer, and Display Image modules were run on an SGI Onyx
workstation while the Compute Gradient module was run
remotely on Denali.  This network causes various regions of the
lobster image to be shaded based on computed gradient values.
The 3D test case ran for 0.7 seconds and attained 12.3
MFLOPS.

Figure 12: Compute Gradient Module AVS Network for 3D Test 
Case

The code optimizations for the Compute Gradient module
consisted of the following:

1. Invariant expressions calculated inside loops were moved
outside the loops.  

2. Pointer ambiguities were eliminated by the addition of
"#pragma _CRI ivdep" statements.

3. A loop with a safe recurrence was vectorized with the addi-
tion of a "#pragma _CRI ivdep" statement.

4. Character data were converted to type long using the vector-
ized  _unpack CRI library routine.

After optimization, fifty-three percent (29) of the 55 loops
vectorized fully.  Figure 13 shows the results for the Compute
Gradient module.  Speedups of 3.2 and 2.0 were obtained for the
2D and 3D cases, respectively.  Vector MFLOPS were 88.6 for
the 2D case and 73.5 for the 3D case. 

8 Field to Mesh Module

The Field to Mesh module is used to transform a 2D scalar
field to a surface in 3D space.  The input consists of a field of
any type.  Each element of the field is mapped to a point in a
base plane.  The height of the mesh above each point in the
plane is proportional to the scalar value of the field.  For irreg-
ular fields, the 2D grid of field elements is mapped into 3D
space using the coordinate array included in the field descrip-
tion.  An optional colormap colors each vertex of the mesh

according to the data value at that point.  The output is a geom-
etry-formatted mesh.

Figure 13: Compute Gradient Module

None of the loops in the unoptimized code vectorized.  20
loops were nested, 2 loops contained character data, 4 loops
were too complex, 6 loops contained function calls, and 16
loops had pointer ambiguities.

The AVS Network used to test the Field to Mesh module is
shown in Figure 14.  Read Field, Downsize, Generate
Colormap, and Geometry Viewer modules were run on an SGI
Onyx workstation while the Field to Mesh module was run
remotely on Denali.  The test cases for this module used the
same Alaska terrain data field that was used for the Field Math
and Compute Gradient modules, as described in Section 5.

CPU times for integer and float data were 8.04 seconds and
8.12 seconds, respectively, for the regular field.  For a recti-
linear field, times were 1.97 seconds and 1.96 seconds for the
two data types.  Vector MFLOPS were zero in all cases.

The code optimizations for the Field to Mesh module
consisted of the following:

1. Pointer ambiguities were eliminated through the addition of
"#pragma _CRI ivdep" statements.

2. Two loops that were too complex to vectorize were replaced
with function calls to the vectorized FORTRAN functions
ISMIN, ISMAX, INTMIN, and INTMAX.

After optimization, fifteen of the 46 loops vectorized fully,
and one vectorized with a computed safe vector length.
Speedups obtained were 1.1 for both integer and float data for
the regular field and 1.3 for the rectilinear field.  Vector
MFLOPS for regular and rectilinear fields, respectively, were
0.3 and 0.2 for integer data and 0.2 and zero for float data.  The
poor speedups were a result of the proportionally large amount
of time spent in unvectorized functions that were not inlined.
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Figure 14: Read Field, Downsize, and Field to Mesh Modules, AVS 
Test Network

9 Downsize Module

The Downsize module is used to reduce the size of a field
while maintaining its aspect ratio.  The input consists of a 2D or
3D field of any type.  The module extracts the Nth element of
the field along each dimension, where N is the value of the
downsize factor parameter.  This technique preserves the aspect
ratio.  The output is a field with the same dimensionality as the
input field but the number of elements in each dimension is
reduced.

In the baseline code, only one of the sixteen loops vector-
ized.  Six of the loops were not vectorized because of pointer
references, one loop contained character data, seven contained
inner loops, and one loop contained a function call. The module
processed all data types in a common loop by aliasing pointers
to access the data as characters.  In addition, portions of the code
were written with unnecessary conditional statements and
modulo operations that slowed processing and inhibited vector-
ization.

The AVS Network used to test the Downsize module is
shown in Figure 14.  Read Field, Generate Colormap, Field to
Mesh, and Geometry Viewer modules were run on an SGI Onyx
workstation while the Downsize module was run remotely on
Denali.  The test case for the Downsize module used the Alaska
terrain data field described in Section 5.  The CPU time for this
test case was 1.64 seconds for byte data and 4.93 seconds for
integer, float, and double data.  MFLOPS were 13.8 for byte
data and 4.6 for integer, float, and double data.

The code optimizations for the Downsize module consisted
of the following:

1. Pointer ambiguities were eliminated through the addition of
"#pragma _CRI ivdep"  statements.

2. The nested if statements and modulo operations were elimi-
nated by changing the index increments on the nested for
loops.

3. Byte data were converted to long using the vectorized
_unpack CRI library routine.

4. Integers were converted to floats temporarily to obtain a
proper mix of types for full vectorization.

5. Float and double data  were processed in separate loops that
maintained original types.

6. The order of loops was rearranged to achieve greater vector
lengths. The innermost loop required "#pragma _CRI ivdep"
statements before it would vectorize.

Figure 15 summarizes the results for the Downsize module.
Twelve of the 32 loops vectorized fully.  Three loops were
unrolled.  Of the 20 loops that did not vectorize, 19 contained
inner loops and one contained a function call.  Speedups of 28.0,
345.1, 345.1, and 329.1 times were obtained for byte, integer,
float, and double data, respectively.  Running times for the opti-
mized routines were 0.0655, 0.0144, 0.0144, and 0.0155
seconds for the four data types.  Since the optimized run times
decreased so drastically, Perftrace  could not gather reliable
statistics for MFLOPS.

Figure 15: Optimized Downsize Module

Because the speedups were so dramatic, additional analysis
was performed on the float test case to verify the results.  Code
changes were made incrementally with run times checked after
each additional modification.  It was determined that simply
removing the modulo operations and nested if statements
caused a speedup of 1.4 from the baseline.  Processing the data
as floats instead of bytes yielded speedups of 11.3 from the
previous case and 16.7 from the baseline.  Moving the short
vector loop to the outside caused speedups of 2.8 from the
previous case and 46.4 from the baseline.  Finally, the addition
of the "#pragma _CRI ivdep" to the innermost loops allowed
them to vectorize fully and yield speedups of 7.0 from the
previous case and 324.5 from the baseline.
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10 Read Field Module

The Read Field module is used to read an AVS field from a
disk file or import data file into the AVS field format.  Input
data may be in ASCII, FORTRAN unformatted or pure binary
form.  The output field is in AVS field format.  This module is
input/output intensive.

The Read Field module contained no loops.  It called another
routine, rf_read_field, to perform the majority of its work.  

The AVS Network used to test this module is shown in
Figure 14.  Downsize, Generate Colormap, Field to Mesh, and
Geometry Viewer modules were run on an SGI Onyx worksta-
tion while the Read Field module was run remotely on Denali.
The module required 159.0 seconds to read the Alaska terrain
field as float data and obtained zero vector megaflops.

The only code optimization performed for the Read Field
module was manually inlining the rf_read_field.  The inlined
rf_read_field function contained 42 loops.  Nine of these
vectorized fully and two vectorized with a short vector length.
Four loops were unrolled.  The optimized routine ran in 93.7
seconds, a speedup of 1.7 over the baseline case.  Vector
MFLOPS remained zero.  The results were poor for this routine
because it contained many function calls to routines that were
not available for inlining and no arithmetic computations.

11 Summary

Figure 16 shows a summary of speedups and MFLOPS for
all test cases.  Blanks in the table indicate that the specified data

type was not applicable for the test case or that results did not
differ based on data type, except for the Downsize module,
where optimized run times were too short to gather accurate
MFLOP statistics.  The speedups ranged from a high of 345
times for the Downsize module to a low of 1.1 for the Field to
Mesh module.

12 Conclusions

This project demonstrated that minor code changes can yield
significant performance improvements for AVS modules
executing on CRI vector supercomputers.  Speedups of up to
345 times were obtained for CPU time, and up to 187 MFLOPS
were attained through the use of simple optimization tech-
niques.  Out of approximately 2200 lines of source code, only
350 lines (about 16%) were modified.  Optimization methods
used for each module are summarized in Figure 17 below.

Compiler directives, either in the form of command line
options or pragmas, were used for all six modules.  This type of
optimization leaves the source code completely portable.
Command line compiler directives do not affect the source code
at all, and pragmas are treated as comments by non-CRI
compilers.  The "#pragma _CRI ivdep" directive is particularly
useful in C code.  Because of the prevalence of pointers in C
programs, the compiler is unable to automatically vectorize
many loops due to the danger of different  pointers referencing
common memory locations.  This pragma can force the
compiler to vectorize loops that are not optimized automatically
because of  perceived pointer dependencies.  Forty-three loops

Figure 16: Summary of Optimization Results

           Speedup           MFLOPS
Byte IntegerFloat Double Byte IntegerFloat Double

Field Math
  field * const + const 8 .1 10.7 12.9 6 .3 41.3 94.4 67.0 44.3
  field * field 9 .4 22.5 29.8 8 .8 45.3 112.1 76.4 61.1
  field XOR field 12 .0 25.9 32.6 103.3
  RMS(field) 11 .0 11.9 10.9 4 .1 105.0 187.4 149.5 135.2
Interpolate
  2D point 5 .1 8 .3 10.1 10.2 45.4 65.4 56.7 56.1
  2D bilinear 10 .0 6 .0 6 .5 5 .8 64.6 71.7 62.0 62.0
  3D point 6 .6 12.2 15.3 16.0 50.1 74.3 63.9 63.8
  3D trilinear 9 .9 10.2 9 .2 9 .1 74.9 85.7 68.4 65.0
Compute Gradient
  2D 3.2 88.6
  3D 2.0 73.5
Field to Mesh
  Regular field 1 .1 1 .1 0 .3 0 .2
  Rectilinear field 1 .3 1 .3 0 .2 0 .0
Downsize 28.0 345.1 345.1 329.1     
Read Field 1.7 0 .0
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were vectorized as a result of using pragmas, each requiring
only a single line modification.

Function inlining is another optimization technique that
leaves the source program completely portable while providing
performance improvements in both scalar and vector code.  One
function was manually inlined in the Read Field module.  The
command line compiler directive "-h inline3" caused 17 func-
tions to be inlined automatically by the compiler.  The resulting
speedup was particularly significant in the Field Math module
which attained the most MFLOPS of all the optimized routines.
When functions cannot be inlined, performance increases can
be greatly inhibited, as is demonstrated in poor results obtained
in both the Field to Mesh and Read Field modules.  Although
many loops were vectorized in both cases, the majority of
execution time was spent in functions outside the modules.  The
limitations imposed by Amdahl's law prevail.

Other simple code modifications can be made that enhance
performance without hampering portability.  In the Interpolate
module, the conversion of switch statements to equivalent
if-then-else statements allowed several loops to vectorize.  The
creation of temporary variables in Field Math, Interpolate,
Downsize, and Compute Gradient modules allowed invariant
calculations to be moved outside loops and also allowed
conversion of character data to vectorizable types.  The conver-
sion of characters to another data type and then back to charac-
ters again might seem counterproductive to optimization
because of the time involved.  Speedups in the Interpolate,
Downsize, and Compute Gradient modules demonstrated,
however, that the overhead is more than compensated for by the
performance improvement obtained from resulting vectoriza-
tion.

Five of the six modules were modified to use vectorized CRI
library routines.  Although these modifications are not portable
to non-CRI machines, they are worthwhile nonetheless.

Because the library routines are written in assembly language
and are designed specifically to take advantage of the CRI
vector architecture, they can provide speedups that would not
be possible using high level languages such as C or FORTRAN.
Therefore, vectorized CRI libraries should be used whenever
possible.

Even after the majority of loops in a routine are vectorized,
performance will suffer if vector lengths are too short.  A proper
analysis of loop ordering to achieve optimal vector lengths
requires knowledge about minimum, maximum, and typical
input values.  In the Field Math, Downsize, and Interpolate
modules this information was available since these routines are
typically used for image processing in which field vector
lengths are limited to four or less to represent color data.

The performance improvements obtained in this project
clearly demonstrate the value of AVS code optimization for
vector processing.  Future work should focus on the AVS kernel
and on other AVS modules that are computationally intensive.
Poor candidates for optimization are those that contain few
loops or that are input/output intensive.
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Figure 17: Summary of Vectorization Techniques Used for Each Module
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