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A distributed memory parallel computer with a global address space can be programmed very
efficiently using a one-sided message passing programming model [6]. To support this programming
model using a Fortran-like syntax, we previously proposed a parallel extension to Fortran 77 [5].
The programmer added processor indices to an array reference whenever the array was located in
another processor’s memory. Processors lived on a grid in the same way that data lived on a gnd.
The programmer added processor grid coordinates only when needed to point to remote memory.
Otherwise all memory references were local.

In this paper we present similar extensions to Fortran 90. Processor coordinates are enclosed in
square brackets just as data coordinates are enclosed in parentheses. For example, the statement

x(:) = y(:)[remote_pel

copies the array y from the memory of the remote processor to the array x in the local processor.
We have extended the syntax to include the Fortran 90 pointer and the Fortran 90 derived type.
These extensions allow the programmer to handle dynamically allocated, irregular arrays on different
processors and to point to them in a natural way. The problem of irregular data structures is still a
research topic for data parallel extensions to Fortran such as High Performance Fortran (HPF) [3]
or Vienna Fortran [7].

1 Scalars and Arrays

F~~ adds a single notational extension to Fortran 90. It borrows square brackets from the C
language to enclose global processor information into a coordinate grid in the same way that it uses
parentheses to enclose local data information into a coordinate grid. For example, the Fortran 90
declaration

real, dimension[npes] :: s
tells the compiler to allocate a real scalar s on each processor. The declarations

real, dimension(n) [npes] :: ¥y
real, dimension(n,m)[npes] :: z
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tell the compiler to allocate a real array y of length n and a two dimensional real array z of size
n x m on each processor. Processor coordinates may be multi-dimensional, for example,

real, dimension(n,m)[np,nql :: z

The compiler computes the processor number from a linear rule in the same way that it computes
the address of a variable from a linear rule. For example, processor [r, s] in grid [np, nq] is linearized
to the logical processor number

pe(r,s) = base(pe) + (s — 1) xnp+r —1 (1)

relative to the base processor

base(pe) = pe(l, 1). (2)

If the programmer wishes to number processors from a base other than one, the dimension statement
can be modified to indicate the lower bound of the processor coordinate. For example, the declaration

real, dimension(n,m)[0:np-1,0:ng-1] :: =z

defines a processor grid with zero as lower bound.

The meaning of F~~ notation is quite different from that of the HPF [2],[4] or Vienna Fortran [1]
extensions to Fortran 90. In HPF, the dimension of a distributed array is its global dimension. The
global dimension is distributed to processors according to some distribution rule defined by HPF
compiler directives. The dimension of an F'~~ array is the local dimension on each processor. HPF
may coerce global data to local data through a directive or across a subroutine boundary. F~~
coerces local data to global data through a set of processor coordinates. The two points of view are
entirely opposite. HPF adopts an implicit model; F~~ adopts an explicit model.

Processor coordinate syntax is necessary only at those points in the code where explicit com-
munication is taking place. In the absence of processor coordinate syntax, the processor number
defaults to the local processor. For example, the executable statement

t =s
copies the local value of s into the local scalar £. On the other hand, the statement
t = slql

copies the scalar s from processor g into the local scalar ¢. A statement like this one is an assertion to
the compiler to execute the copy. Since the other processors may be modifying data in ways unknown
to the local processor, it may not be safe for the compiler to optimize around these assertions. In
the same way, the statement

x(:) = y(:)[remote_pel

tells the compiler to copy the entire array y from a remote processor to the local array x; the
statement

x(:) = y(row,:)[remote_pel
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copies a row of a matrix; the statement
x(index(:)) = y(jndex(:))[remote_pel

gathers data from a remote processor and scatters it locally; the statement
x(:) = ylindex(:)]

gathers data from a list of remote processors. If one processor has been designated master, it may
broadcast variables to other processors with the simple statement

if(me.eq.master) x[:] =y

The programmer is responsible for inserting any necessary synchronization around such statements.

2 Pointers
F~~ syntax for Fortran 90 pointers adds processor dimensions to the pointer declaration, for exam-
ple,

real, dimension(:)[np,*], pointer :: ptr

The processor grid tells the compiler to allocate the pointer itself at the same address in each
processor’s memory. Data dimensions may be deferred for pointers but processor dimensions may
not be deferred. When a pointer is assigned to a target, the pointer retains its own processor
dimensions, which may be different from those of the target. If the array y is a target array

real, dimension(n)[*], target :: y
then the pointer assignment
ptr =>y

creates an alias for the variable y with a two dimensional processor grid rather than a one dimensional
grid. The statement

x(:) = ptr(:)[p,ql

generates a copy of the array y from processor [p,q] in the grid. In other words, the programmer
can freely change the processor grid anywhere in the program where it makes sense to do so.

Pointers provide a mechanism for one processor to tell another processor about irregular or
dynamically changing data structures. For example, suppose processor [p, q] allocates an array z(n)
on its local heap and then assigns a pointer to it with the statements

n = some_function(me)
allocate(x(n))
your_ptr => x

Another processor may then assign a second pointer to the first pointer on processor [p, ] with the
assignment statement
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my_ptr => your_ptrlp,ql

The second pointer now contains information about the remote array x so that with the following
statements,

allocate(y(size(my_ptr)))
y(:) = my_ptr(:)[p.q]

the local processor allocates an array y of the appropriate size and copies the array z from the
remote processor.

3 Derived Types

The Fortran 90 derived type is similar to a structure in the C language. For example, the derived
type

type z
real, dimension(n) :: a,b

end type z

contains two component arrays of length n. To declare a variable of this type on each processor,
F~~ syntax adds a processor grid to the variable declaration, for example,

type(z), dimension[np,*] :: ¥y
Then the executable statement
y4b(:) = y%ha(:)[p,ql

copies the array component a of variable y from processor [p, q] into local array component b of the
local variable y. The processor grid is attached to a variable of the type, not to the type itself nor
to its components. Processor grids are illegal inside a derived type definition.

4 Dynamic Memory Allocation

Fortran 90 allows dynamic allocation of memory through allocatable variables. If an allocatable array
will be used to communicate between processors, a processor grid must be added to the declaration,
for example,

real, dimension(:,:)[np,*] allocatable :: a
At an allocation statement,
allocate(a(n,m))

the compiler generates implicit barriers before and after the statement. The programmer is respon-
sible to see that all processors reach the barriers and that each processor asks for the same size array.
Deallocation also requires implicit barriers generated by the compiler.
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5 Stacks, Heaps and All That

A data declaration statement with square bracket notation signals the compiler that it must know
how to locate the variable in the memory of each processor. Static memory allocation is the easiest
way to satisfy this requirement. If the base address of the array variable z(n, m) is the same on each

processor,
base(z) = loc(z(1,1)) = constant , (3)

the address computation for element z(i,j) in any processor’s memory can be linearized in the
normal way

loc(2(¢,j)) = base(z) + (j —1)*n+i-1. (4)

Since the base is the same on all processors, knowing the location of the array on one processor is
sufficient to know it on all processors. This convention makes global address computation simple
and efficient.

Other rules may be used in place of the simple but restrictive one given by equation (3). For
example, on a shared memory machine the array z(n, m)[npes] might be allocated to a contiguous
block of memory of size n x m x npes with each processor owning its own section of size n x m. In
that case the base depends on the processor number

base(z, pe) = loc(z(1, 1){1]) + (pe — 1) * nx m (5)

On a virtual memory machine, the array might be located on different pages on different processors
so that the rule for finding the base address requires a global virtual memory map such that

base(z, pe) = vm_map(z, pe) (6)

On a cluster of workstations finding the base address of a variable might require a trip through the
operating system while on a network of machines it might require an internet address such as a
Uniform Resource Locator (URL), for example,

my_screen = applet¥screen_display["http://www.java.server"]

The compiler probably requires a switch that tells it how to interpret the meaning of the processor
grid information so that it can generate the correct code at compile time.

6 Summary

Simplicity is the greatest attribute of the F~~ programming model. Its syntax can be explained
in just a few pages of text that is easily understood by any Fortran programmer. We picked the
processor grid notation deliberately so that it looks and behaves very much like normal Fortran array
syntax. F'~~ is simple not only for a programmer to understand but also for a compiler developer
to implement. The compiler always knows whether data is local or remote. No analysis is necessary;
either the square brackets are there or they aren’t. If not there, the reference is local; if there,
computing the processor number is simple and efficient.
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