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ABSTRACT: 

 

Numerical results of natural convection  in a  laterally insulated cubical cavity
filled with air (Pr=0.71) and heated from below  are compared with those obtained with linear
stability theory using a complete set of spectral functions for velocity and temperature. There is
agreement  in the predicted critical Rayleigh numbers and velocity fields  for the different
convective structures that develop at the onset of convection. 

 

1 INTRODUCTION

 

The first bifurcation observed in Rayleigh-Bénard layers
corresponds to the transition from the conductive state to
convection. The conductive state is characterized by the
no-motion of the fluid and by a linear distribution of tempera-
ture between the hot bottom plate and the cold top plate. This
situation is  stable until the Rayleigh number, or the dimension-
less temperature difference between both plates reaches a crit-
ical value. 

The conductive state is stable if the viscosity and the thermal
diffusivity of the fluid damp all possible perturbations caused by
unstable density gradients. The onset of motion in cavities has
been studied theoretically, experimentally and numerically by
several authors (Davis 1967, Heitz and Westwater 1971, Catton
1972 and Stork and Müller 1972). These previous investigations
reveal that the critical Rayleigh number depends strongly on the
aspect ratio of the cavity for aspect ratios lower than 2. Critical
values decrease rapidly with an increase in aspect ratio for ratios
smaller than one and tend asymptotically to the value of 1708
for aspect ratios of about five. On the other hand, in laterally
insulated cavities all the heat is transferred from the bottom to
the top plate yielding lower critical Rayleigh numbers than for
cavities of the same aspect ratio with perfectly conducting side-
walls.

In the cubical cavity with lateral adiabatic walls Catton
(1972) reported a critical Rayleigh number of 3446. This theo-

retical value agrees with the experimental work of Heitz and
Westwater (1971). For the cubical cavity with perfectly
conducting lateral walls Davis (1967) and Stork and Müller
(1972) reported a critical value of about 7000.

This work deals with the study of the onset of convection in
a laterally perfect insulated cubical cavity filled with air. This
system has been selected because it has no preferred lateral
direction and allows for higher multiplicity of convective struc-
tures. Natural convection in the cubical cavity heated from

below at low Rayleigh numbers (3.5x103 < Ra < 104) has been
numerically studied by Pallares et al. (1995) and Pallares et al.
(1996). Critical Rayleigh numbers for different stable convec-
tive structures reported by these authors were determined by
extrapolation in the Nusselt number versus Rayleigh number
plots. These critical Rayleigh numbers and the velocity fields
for two convective structures at the onset of convection are
compared with those obtained by linear stability analysis.

 

2 MODEL

 

The physical situation and the coordinate system is shown in
figure 1.

The two horizontal plates are isothermal and the four vertical
walls are considered perfectly insulated. Compressibility
effects, viscous dissipation and the variation of fluid properties
with temperature have been neglected, with the only exception
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of the buoyancy term, for which the Boussinesq approximation
has been used. 

The CFD code 3DINAMICS was used to obtain numerical
solutions of the following governing equations written in dimen-
sionless form.

(1)

(2)
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), respectively. 
3DINAMICS uses a finite volume formulation with second

order accuracy for the variation of all primitive variables with
respect to time and space. A centered scheme is applied for all
diffusive terms, a QUICK scheme for the convective fluxes and
an ADI method for time integration. The coupling of velocities
and pressure is solved following the predictor-corrector scheme
SMAC and the Poisson equation for the pressure with a conju-
gate gradient algorithm. More details about the code and of its
performance are given elsewhere (Cuesta et al. 1996).

The Galerkin method using a complete set of trial functions
within the cavity was used to solve the linearized equations that
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Figure 1: Physical model
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govern a disturbance of the conductive state. Terms with time
derivatives do not appear in the  linearized equations because, in
this particular problem, Sherman and Ostrach (1966) proved that
instability sets in via a marginal stationary state.

The method used in selecting trial functions, is that of Catton
(1972). Catton takes advantage of the fact that working with trial
functions that satisfy boundary conditions and continuity elimi-
nates pressure and reduces the linearized perturbation equations
to an eigenvalue problem. However the set of trial functions
used by Catton (1972) were not complete within the cavity. In
this work several functions were added to those of Catton in
order to achieve a complete set of trial functions. For example,
the trial functions used for velocity are:

where

u = θijk∑
ijk
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3 RESULTS AND DISCUSSION

 

A complete description and discussion of the topologies and
the heat transfer rates for the steady structures obtained numeri-
cally can be found elsewhere (Pallarès et al. 1995 and Pallarès et
al. 1996). Figures 2.a.1-2 and 2.b.1-2 show the dynamic and
thermal fields of two (a single roll and a toroidal roll) of the five

possible convective structures at Ra=104 and Pr=0.71 in terms
of isosurfaces of the second invariant of the gradient of the
velocity tensor, together with some particle paths, and in terms
of isosurfaces of temperature, respectively. 

The dynamic and thermal fields showed in figures a.1 and b-1
indicate that this structure is formed by a single roll motion. The
other structure depicted in figures a.2 and b-2 is a toroidal roll
with a single descending current at the vertical axis of the cube
and four ascending currents along the vertical edges. Tis toroidal
structure is an even combination of two x-rolls and two y-rolls.

Figures c-1 and c-2 show the vertical velocity contours in the
horizontal mid-plane predicted numerically at the lowest
Rayleigh number, while the contours obtained by linear stability
analysis at the onset  of convection are depicted in figures d-1
and d-2. Quantitative and qualitative agreement is found when
comparing the velocitiy fields predicted by the two approxima-
tions.

Critical Rayleigh numbers for the insulated cubical cavity
obtained with the complete set of spectral functions used in the
present work are compared with literature values in Table I.

 

Table 1.

 

 

 

Comparison of critical Rayleigh numbers

 

Present 
work.

Linear stabil-
ity 

Catton 
(1972)

Linear sta-
bility

Pallares et 
al. (1996)

Type of 
structure

3389 3446 3500 Single rolls

5903 - 6000 Four roll

7458 - 7800 Toroidal 
roll

 

The first critical Rayleigh number of about 3400 corresponds
to the bifurcation from the conductive state to single roll convec-
tive structures similar to the one depicted in figure a-1. This  crit-
ical value agrees with the one reported by Catton and with finite
difference calculations. Critical Rayleigh numbers of about 6000
and 7800 have also been determined for a four roll type structure
not shown in figure 2 and for the toroidal roll structure depicted
in figure a-2. There is agreement between both finite difference
calculations and predictions from linear stability analysis.
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a.1 b.1 c.1 d.1

a.2 b.2 c.2 d.2

Figure 2. Two flow structures in the cubical cavity heated from below. Figures (a.1 and a.2). Isosurfaces of the second invariant
of the gradient  of the velocity tensor at Ra=104,  a.1 P=-4000,  a.2 P=-1000. Figures (b.1 and b.2). Isosurfaces of temperature at
Ra=104, T=-0.4, T=-0.2, T=0, T=0.2 and T=0.4. Figures (c.1 and c.2). Numerically predicted vertical velocity contours in the hori-
zontal midplane (z=0.5) at the onset of convection. Figures (d.1 and d.2). Contours predicted by linear stability analysis.


