

CUG 1996 Spring

 Proceedings

119

Parallel Approaches in Relational Database Systems

Cormac Burke

, Cray Research Business Systems Division

Introduction

With the relatively recent development of new parallel
implementations in Open Database Systems and the coming to
market of new parallel System Technologies there is a great deal
of confusion as to how these technologies can address the data
processing requirements of today's corporate IS departments.
This paper will attempt to present an overview of the primary
applications of today's IS departments, an overview of different
database/systems architectures, and a discussion of how these
applications may fit into such architectures. For the purposes of
this discussion we'll put the primary business applications into
two categories; Online Transaction Processing (OLTP) and
Decision Support Systems (DSS). The OLTP side can be char-
acterized by large numbers of users (1000s), relatively
small/simple transactions, high update activity, and a require-
ment for minimum downtime. OLTP data is typically consid-
ered 'Operational', and contains the data generated by the
transactional activity of a business (e.g. financial data from
sales, banking transactions, etc.). DSS applications can be char-
acterized by a smaller user community (e.g. < 100 users), more
complex transactions which tend to be read only and often will
require table scans. Decision Support applications often utilize
operational data to determine trends, which will then influence
business decisions (e.g. inventory levels for particular location,
marketing strategies, sales forecasts, etc.).

The ways in which different database systems and computer
architectures address the requirements of these two applications
vary widely. To approach the problem I'll first describe the
current database approaches, move onto different computer
architectures, and them discuss how the different database prod-
ucts map onto the computer architectures.

DBMS Architectural Overview

In the past 18 months, both Oracle and Informix have come
to market with new parallel systems to enhance their perfor-
mance and functionality, with major emphasis on parallelization
of Decision Support workloads. Additionally, Sybase has
released their Navigation Server product, another implementa-
tion of a parallel database system. While all of the new systems

are going after the same basic function (parallelization of
queries), they do so with very different approaches.

With Oracle version 7.1, Oracle released their Oracle Parallel
Query option (PQO). This approach at parallelization basically
extends the standard, process based Oracle model of paralleliza-
tion by creating 'Query Servers', which are OS level processes
that are used to simultaneously read/sort/join data. The parallel-
ization is done from an operating system level (with Oracle's
Query Coordinator deciding how to divide work among slaves),
and the optimizer is actually unaware of the parallelization.
Some number of Query Servers reads data, then passes data on
to other servers (this is considered a producer/consumer rela-
tionship) We've seen near linear scaling on certain DSS queries
with Oracle Parallel Query on the Cray 6400. Some functions,
such as Index Creation, are still relatively immature in terms of
ability to run in parallel, and present Oracle Corporation an area
to enhance their product. Oracle Parallel Query Option can also
run on Oracle's Parallel Server product, which is a shared disk
system, described below.

Informix brought a new architecture to market with their
version 7.1. Referred to as Informix-Online Dynamic Server,
this version of their RDBMS is multithreaded internally, which
gives it the capability to run on parallel processors by virtue of
a small number of Unix processes or 'Virtual Processors'.
Informix utilizes Operating System threads to parallelize func-
tions internally. In addition to multi-threading in the RDBMS,
Informix implemented new functionality to enhance parallel
query performance. Two key components of this are 'fragmen-
tation' and hash joins. Fragmentation basically allows data to be
'striped' or evenly distributed from within the RDBMS, and
provides some control as to what algorithm determines how data
is spread (e.g. round robin or value based distribution). Scaling
appears to be near linear with some queries in Informix 7.1 on
the CS6400. Informix's next release, version 8 (also called
XPS), will run on MPPs as a shared nothing. It is described in
more detail below.

The Sybase Navigation Server is basically an extension or
amalgamation of Sybases' Virtual Server Architecture. This
DBMS is parallelized by running multiple instances of the
server, with an internal threading mechanism to handle sched-
uling of work. Queries are not parallelized, but can be spread to
different database/servers by going through the Navigation
Server, which will route queries. Given that Sybase is not
currently available on the CS6400, scalability data is not readilyCopyright © Cray Research Inc. All rights reserved.

120

CUG 1996 Spring

 Proceedings

available. However, it is generally acknowledged that Sybase
does not scale much beyond 8 processors, and given that the
Navigation Server is not generally available it seems unlikely
that this approach to parallelism will work well.

Systems Architecture Overview

There are 3 primary architectural trends in the Open Systems
market today; Shared Everything, Shared Disk, and Shared
Nothing. One can draw correlation to known technologies as
follows: Shared Everything and Symmetrical Multiprocessors,
Shared Disk and Clusters (such as the VAX Cluster), and Shared
Nothing and MPPs. Different database systems are available on
some but not all different architectures. To take into account the
various different potential combinations I'll touch briefly on the
systems architecture first, then go into specific database imple-
mentations on various architectures.

Shared Everything Architectures are probably most familiar,
common, and commercially acceptable architectures. They basi-
cally consist of a shared set of processors, with a single Oper-
ating System image, and shared memory and disk, all on a
common bus. These systems have been in existence for a
number of years, and are produced by most open systems manu-
facturers, including Sun, HP, IBM, and Cray. Typically the
performance and scalability of these systems has been limited by
the Operating System environment, application scalability, and
bus bandwidth. New releases of Operating environments such as
Solaris 2.4 have addressed the OS limits, latest generations of
RDBMS products have begun to address the application scaling
limitations, and systems like the CS6400 with 1.76GB of bus
bandwidth have begun to address the hardware limitations.

Shared Disk/Clusters evolved from the VAX Cluster prod-
ucts of the late'80s. They basically consist of multiple distinct
nodes sharing a disk farm. There is some dedicated interconnect
for inter-node communication (often Ethernet, fast Ethernet, or
ATM), but the key issue is that the nodes share disks and can
both concurrently access the disks. This approach has been
popular for Digital, and with the development of Oracle Parallel
Server has become a popular approach to parallelism with Open
Systems vendors such as Sequent, Pyramid and Sun. This
approach has also been used in some cases with MPP systems
such as Ncube and IBM’s SP2 (while this system is really a
shared nothing system, IBM uses a virtual file system layer to
allow non-shared disks to be seen by the application as shared
disks).

Shared Nothing/MPP systems are relatively new entries into
the commercial market. The key components of MPPs are sepa-
rate, distinct nodes, each running it's own instance of an oper-
ating system, with a dedicated disk/memory subsystem per node.
Typically the nodes are connected via some kind of high speed,
packet switched interconnect to attempt to minimize latency in
the internode communication that is required with these systems.
IBM's SP2 is probably the most widely known MPP. ICL Gold-
rush fits into this category as does the Meiko and the Pyramid
Meshine.

Database Implementations

All of the major database products are currently supported on
shared everything/SMP systems, with varying levels of scal-
ability. They take different approaches (e.g. Informix with
shared 'Virtual Processors' versus Oracle with dedicated server
or 'shadow' processes), but all run in a similar fashion on SMP
machines. The implementations differ much more distinctly as
you move into clusters and shared nothing environments, with
significant impacts on business applications.

In Shared Disk/Cluster systems, Oracle is currently the only
available product. Oracle Parallel Server is designed to run on
multiple nodes, which share a disk farm. There are multiple
instances of Oracle (each with it's own System Global Area and
Log devices) running, one per node. These nodes share the data-
base via some kind of shared disk interconnect(e.g. dual ported
SCSI disks), and are synchronized via the use of a Distributed
Lock Manager, or DLM. This approach requires a dedicated
interconnect for DLM traffic, ideally faster than Ethernet given
the traffic and impact of additional latency.

Oracle Parallel Server (OPS) and Clusters are typically sold
as a high availability option for a database server. This high
availability is accomplished through the ability to access the
database from any node, even if one node has failed. If one node
suffers a failure the other node will continue functioning, and
users connected to the failed node can reconnect to the live node.
There are important configuration issues to consider here, e.g. if
you are planning to implement a full failover system you may
need to have enough headroom for both user communities on
both nodes in order to maintain the throughput/response time
you had before a system failed. While the High Availability
functionality is a valid selling point for Clusters and OPS, some
vendors will attempt to sell this as a scalability solution. This is
particularly relevant to Cray with Sun's PDB product. While Sun
may claim that a Sun PDB built from 2 20 processor SC2000s is
equivalent to a 40 processor CS6400, the truth is that the scaling
realized from Clusters and OPS has been in the 10-30% range.
This scaling is dependent on how well the data can be partitioned
to minimize sharing of actual data blocks between nodes, some-
thing that is quite difficult for most OLTP applications (see
mention of block pinging, below)

Informix XPS (Version 8.0) is designed to run in loosely
coupled environments, without the requirement for shared disk.
It is a true 'shared nothing' system, in that it maintains separate
data sets which can be globally accessed via a single transaction
or query. The benefit here is in the ability to distribute work
evenly between several nodes in an MPP/distributed system,
with each node running in parallel. While this may work for
certain transactions where data is properly distributed and access
patterns are known and predictable, this architecture can be
problematic for either randomly accessed or volatile data. If a
user runs a query which focuses on a particular data set which
was not anticipated, this could cause the query to run exclusively
on the node where the pertinent data resides. Informix XPS is
built around the notion that queries will access data according to

CUG 1996 Spring

 Proceedings

121

the distribution/fragmentation algorithm. If a query does not
take advantage of the distribution algorithm specified, the
expected parallelism will not be realized.

Like Informix XPS, Sybase Navigation server is designed to
run in loosely coupled environments. However, rather than
having location reference in various data dictionaries, Sybase
routes transactions to their appropriate servers via an 'interme-
diary' server, or Navigation server. This technology was devel-
oped jointly by Sybase and ATT-GIS(formerly NCR), and was
never publicly benchmarked. Most sources indicate that it does
not perform well, and Sybase seems to have stepped back from
their belief that this would be their answer to scalability prob-
lems.

What really works???

With the variety of systems architectures, database imple-
mentations, and application types, it's apparent that there are a
number of different options and combinations for parallel data-
base processing. Some applications may work with some system
implementations while others will not. How does one determine
what will and will not work, and how does one make buying
decisions given the quantity and complexity of all this informa-
tion?

It is important to understand that application types will
greatly impact how the various different database products run
on the different architectures. For the sake of simplicity we'll
focus first on DSS and OLTP on Shared Disk/Cluster architec-
tures, and then move on to both application types and Shared
Nothing and shared everything. From there we'll analyze how
one finds the best compromise for their particular needs.

As discussed above, Clusters and Oracle Parallel Server
require a shared disk, with multiple nodes running multiple
instances of Oracle. Each instance/node runs transactions or
queries concurrently, depending on he Distributed Lock
Manager to ensure that the database remains consistent in spite
of updates from multiple nodes. This may work in cases where
the data being accessed by the user base is not shared (and subse-
quently requests for data do not clash), but unfortunately this is
rarely the case for the types of enterprise applications where
clusters are deployed.

As mentioned above, Oracle Parallel Server requires the
running of multiple Oracle ‘instances’, which run against a
common database. Updates to data are mediated by Distributed
Lock Managers, which run on each node. As mentioned above,
the occurrence of ‘block pinging’, which happens with concur-
rent updates adds both overhead and latency to update oriented
transactions in Oracle Parallel Server installations. Block
pinging occurs when one node requires a block which is already
in the cache, or SGA, of the other node, and that particular block
is ‘dirty’, or has been updated. The requesting node cannot
complete it’s read until the node which is holding the dirty block
has written it out to disk. In the meantime, both nodes have to
pass messages regarding the state of the block, adding both
latency and interconnect traffic and overhead to the transaction.

This appears to be one of the key issues pertaining to scalability
of Oracle Parallel Server, and has not yet been perfected by any
vendor. The only way to avoid block pinging is to partition the
database such that users from specific nodes do not require data
being used by other nodes. This is generally difficult to do, as
one of the primary features and benefits of relational systems is
access to shared data.

The issue of block pinging is primarily a problem for OLTP
applications. However, there are numerous issues pertaining to
DSS workloads in shared disk/OPS environments which impact
performance significantly. As mentioned above, Oracle handles
parallel query by dispatching work among query servers or
‘slaves’, using operating system level processes to run parallel
tasks. In order to do this efficiently the query optimizer and/or
query coordinator must submit work to query slaves evenly to
ensure that their tasks can be performed in parallel and without
clashing. This becomes increasingly problematic when the
dispatching occurs across nodes, which is a requirement of
parallel query in Oracle Parallel Server environments. Addition-
ally, the basic function of parallel query is one in which some
number of query servers are ‘producers’, and they read data off
of disk, while some number are ‘consumers’, and they process
(sort, join) data which comes off of disk. Data that is read by the
‘producer’ query servers is then passed off to the ‘consumers’,
and the data will be passed from server to server based on a hash
scheme which will go across nodes. Once again the issue of
traffic and added latency lead to degraded performance. One
other relevant issue pertaining to Oracle Parallel Server systems
is the fact that they are designed around a certain particular
architecture, namely a shared disk farm. For systems which do
not inherently support this (e.g. IBM SP2) this presents a
problem, as the vendor must then provide some layer to simulate
a shared disk environment (in the case of IBM this is done via a
virtual file system) which will typically have some performance
impact on the IO subsystem for all nodes.

Shared Nothing systems take a very different architectural
approach to managing database systems than do Shared
Disk/Shared Everything systems in that they actually run sepa-
rate databases or data ‘sets’, and spread these data sets across the
nodes in the system. This is actually not a very new idea, as the
notion of distributed databases managed with Two Phase
Commit has been around for many years. What is new is that
some Open Database vendors are supporting and selling this
concept, and basing next generation architectures on it. The
selling point for Shared Nothing systems is their theoretical
potential for scaling. Given that they do not share a bus or share
access to resources such as disks or memory they should scale
infinitely. However, scaling in commercial applications is
dependent on how the underlying software scales, and herein lies
the problem for Shared Nothing systems.

Shared Nothing systems have typically not been widely sold
as OLTP solutions. This is primarily due to the fact that the
update oriented nature of OLTP workloads requires 2 phase
commit support, and no Open Systems vendor has been able to

122

CUG 1996 Spring

 Proceedings

come up with a high performance approach to 2 phase commit.
The nature of 2 phase commit is to pass messages to ensure that
an update can occur across nodes while maintaining data integ-
rity (e.g. an update may span nodes, and in order to maintain
atomicity in a transaction the transaction must complete on all
nodes or on none at all). The latency and complexity which
accompany this message passing make OLTP workloads and
shared nothing architectures very difficult to implement, and for
the moment restricts OLTP workloads to Shared Every-
thing/Shared Disk systems.

Shared Nothing systems appear to be more suited to DSS
applications, given their read only nature. Data is distributed
among nodes (typically based on some key value), and when a
query is executed it is routed to the appropriate nodes. This
seems to be a reasonably sound approach if all queries are keyed
off of the distribution key, however it presents a large problem
for queries which don’t utilize the expected/defined key as a
qualifier. For example, if the distribution key is month, and all
sales data is distributed among the nodes based on month, this
distribution may work well for queries which require even
access to all months. However, for doing quarterly or month end
closing this could be problematic, as the data may be isolated to
1 or a few of the available nodes. Given that the majority of
queries executed in DSS systems are ad-hoc and subsequently
unpredictable, this presents a sizable problem for Shared Noth-
ings systems in DSS environments.

Given that Shared Everything Systems/SMPs are the under-
lying foundation of most Shared Nothing and Shared Disk
implementations, it should come as no surprise that commercial
applications function quite well on these systems. In OLTP envi-
ronments they do not suffer the impact of ‘block pinging’, as
there is only a single instance of the RDBMS running, and there
is no need to synchronize updates between instances. Since all
data is resident on a single node, there is no need for 2 Phase
Commit to ensure that updates are atomic. And in the realm of
DSS, all query routing occurs locally, so data does not have to
pass over an interconnect from producer to consumer. Addition-
ally, given that all data is local, there is no partitioning problem
as one sees with MPPs in Shared Nothing environments. All data
is local, and given the shared processors/memory queries cannot
bottleneck on a single node if the query does not follow the
predefined access patterns.

There are still numerous issues required to ensure high
performance in commercial applications on shared everything
systems. As mentioned above, the Operating System, RDBMS,
and Hardware Platform must all provide the appropriate scal-
ability to ensure that the applications perform sufficiently. In the

case of the Cray CS6400/Starfire series, the underlying OS is
Solaris 2.x. Industry benchmarks have proven that this is the
most scalable general purpose Operating System on the market,
and Cray has enhanced the OS significantly to add value and
extend the scalability. Among these enhancements are memory
and processor partitioning, improvements to memory manage-
ment, ability to address more memory/processors/busses, and
more highly parallelized data structures within the operating
system kernel. In the area of RDBMS scalability, Cray’s Stra-
tegic Applications Engineering organization works closely with
vendors such as Oracle and Informix to identify and address
scalability issues in their products. These issues include isolating
particular locks/latches within the RDBMS, determining
methods to improve query optimization, and enhancing how the
DBMS products utilize the base system IO. As far as the base
Hardware platform, Cray has utilized it’s years of experience in
highly parallel systems, coupled with the availability of
commodity components such as SPARC/Solaris/SBUS devices
to produce the highest bandwidth SMP system on the market
today.

Conclusions

While System and Database Vendors are aggressively
working to develop next generation systems based on Clusters
and possibly MPPs, these product combinations still have severe
limitations. It will most likely be 2 to 3 years before these prod-
ucts reach an appropriate level of maturity to realistically
address today’s business problems for the commercial world.
From both a performance and manageability point of view, there
is a great deal more work that must go into these products.

Given that the key point of these products is to address the
perceived limitations of the more traditional Shared Every-
thing/SMP machines, it seems to make sense that one would
look at the more sensible approach of improving on high end
SMP systems rather than pursuing radically different, immature
architectures such as Clusters/MPPs.

In the future it’s clear that the lines will blur between Shared
Everything/Shared Disk/Shared Nothing architectures. As the
software products mature to take advantage of new technologies,
the underlying systems will have capabilities to address multiple
architectures (via Domains, non-uniform memory architectures,
etc.). However, that capability is a ways off, and given the avail-
ability, scalability and manageability requirements of commer-
cial systems it only makes sense to trust known, proven
technology which can be leveraged in the future to capitalize on
new technologies.

