

138

CUG 1996 Spring

 Proceedings

CS6400 Domains and Partitions

Omar Hassaine

, Cray Business Systems, San Diego, CA

ABSTRACT:

The domains feature on the Cray Superserver 6400 provides the ability to subdi-
vide the machine into separate single-board systems, which can later be reconfigured back into
the rest of the machine. The partitions feature provides the capability to partition the CS6400
processing power into disjoint processor sets that can be independently scheduled. Partitioning
also provides support for establishment of minimum working sets of memory. This paper covers
the basic design issues, the user’s expectations, and a high level description of the user interface
provided for both features.

1 Introduction

The

domains

 and

partitions

 features of the Cray Superserver
6400 (CS6400) help the system administrator deliver the power
of 64 SPARC processors to meet his user’s needs. Domains split
the machine into separate systems each running a distinct
instance of Solaris Unix. Partitions allocate the processors
within one system to different portions of that system’s work-
load.

1.1 Domains

Domains are a well-known feature in the mainframe world.
They provide the ability to run a separate instance of the oper-
ating system on a portion of the hardware that has been isolated
from the rest of the system. Domains on the CS6400 are created
by isolating a single system board from the rest of the system.
This system board (with four processors, a gigabyte of memory,
and four SBus I/O slots) is then a completely independent
Solaris system.

Domains add to the availability of the CS6400 by creating a
separate environment for safely bringing up and testing new
software. A domain may be used to test and debug new
mission-critical application software, or to break-in a new
Solaris release without impacting production users. Because a
domain is physically isolated from the four-XDBus system
interconnect, software and hardware errors inside the domain
cannot affect the rest of the system. Equally, errors in the
remaining portion of the system will not affect the domain.

Because each domain is its own computer system, it must
have appropriate peripheral and network connections. Each
domain must be configured with a disk to boot from, a network
connection, and sufficient memory and disk space to accom-
plish the intended task.

A system board can be dynamically detached from the main
system — without affecting that systems’s continuing operation
— to create a new domain.

Solaris can then be booted up on the new domain, and it is
available for immediate use. Each domain has its own host-id,
and operates as a completely separate computer system.
Single-board domains can be created, used separately, and then
later added back into to the main system — without requiring a
re-boot of the main system:

1. The operator requests that a system board be logically de-
tached. The kernel flushes all the processes, swaps out the
user pages, and physically remaps the kernel pages away
from the board. The board’s XDBus interface is set to ignore
bus transactions.

2. The operator boots a new instance of the kernel on the single
board. The board is used as a separate system, for example,
to use a new release of Solaris.

3. Later, when the single-board system is no longer needed, the
operator shuts down that instance of Solaris.

4. The operator requests that the board’s XDBus interface begin
again to send and receive XDBus transactions to and from
other system boards. The multi-board kernel begins to use
the inserted board by adding that board’s processor, memory,
and I/O resources back into the system.

1.2 Partitions

Partitions allow flexibility in workload management. They
allow a system administrator to split up the disjoint parts of a
workload between groups of processors so that resources are
predictably divided among users. Historically this capability
was provided in the processor scheduling algorithms with the
goal of guaranteeing a certain percentage of each processor to
specific workloads. In a cached system with many processors,
such as the CS6400, it is much more efficient to dedicate aCopyright © Cray Research Inc. All rights reserved.

CUG 1996 Spring

 Proceedings

139

percentage of the processors to a workload than to dedicate a
percentage of each processor to a workload. Space sharing is
more efficient than timesharing.

The system administrator can set up the partitions, giving
them access permissions and symbolic names, and assigning
processors and attributes to them. He then assigns particular
process sets to run in particular partitions, or allows users to
choose their own partitions from among those for which they
have permission.

The processors in a partition give priority to the processes
assigned to that partition. Optionally, idle processors can tempo-
rarily borrow processes from other partitions, and can loan
processes to idle partitions. A partition can be set up to service
SBus I/O interrupts, or it can just compute.

The system administrator can execute the partitioning
commands dynamically, or can use scripts to partition the
CS6400 system during the boot process. She may choose to
assign specific processes, such as the NFS server and client
daemons, to run in a specific partition. Users may assign them-
selves to specific partitions as they log in, or may be automati-

P P P P

M M M M

IO

P P P P

M M M M

IO

1. Detach board from main system

4. Re-attach board to main system

Flush process-
es, user pages,
& kernel pages
to other boards.
Isolate board

from bus

P P P P

M M M M

IO

2. Boot new single-board instance of Solaris

P P P P

M M M M

IO

3. Shut down single-board system

The board is logi-
cally disconnected
from the XDBuses,
and a new Solaris
instance booted

Re-connect the
board to the bus.
Add processors
and memory to
the configura-

tion

Shut down the sin-
gle-board system

when it is no longer
needed

Figure 1: Creating and removing domains

cally assigned to partitions based on their user ID or upon
partition loading..

Partitioning can also help debug parallel applications
programs that tend to hang the system by restricting them to run
in a dedicated partition while debugging from another partition.

While we were in the design phase for our next-generation
product at Cray Business Systems, we chose to divide our
CS6400 server into two eight-processor partitions: one for inte-
grated circuit design and simulation, and the other for general
timesharing. This split kept either set of users from hogging the
machine’s resources.

2 Design issues

The two features are distinct from an implementation and
user interface point of view. Domains was implemented as part
of the System Service Processor software and its related
commands execute strictly on the System Service Processor
side. Partitions was implemented in the Solaris kernel and its
related commands and programs execute only on the CS6400.

2.1 Domains design issues

The domains project was a challenge for the design team
because the original system software requirements did not
include the domains concept. The major requirements that were
laid out for the domains project were:

1. There will be one master domain and up to 15 slave domains.

2. Only the master domain can have more than one board and is
not created using the domains user interface.

3. The slave domains execute only a subset of the System Ser-
vice Processor commands and daemons.

4. No change to the user interface.

P

ECAD

P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

Time-
sharing

Memory

P
P

P
P

P
P

P
P

P
P

P
P

P
P

P
P

Memory

P
P

P
P

P
P

P
P

Mem
ory

Data-
base

Figure 2: Example of processor partitioning

140

CUG 1996 Spring

 Proceedings

5. Domains can run different Solaris versions.

6. Dynamic Reconfiguration is a required feature for domains.

The following gives a list of the major issues that we resolved
in order to successfully complete the domains project:

2.1.1 Hostmon

Hostmon is the main daemon that runs on the System Service
Processor and is in charge of collecting various information
about the CS6400 and taking actions accordingly. Hostmon had
to be modified to support more than one machine within the
CS6400. We worked on the event dispatcher and make it check
which domain the event will affect.

2.1.2 Obp_helper

Obp_helper is a daemon that cooperates with the boot firm-
ware (OBP) and performs the task of the network console server.
This daemon had to be modified to run as a separate copy for
each created domain. We wrote another daemon (the
machine_server) that makes sure that console sessions talk to the
corresponding obp_helper.

2.1.3 Cray Virtual Console (CVC)

CVC is a network based console user session and requires a
TCP/IP port for communication with the CS6400 through the

obp_helper

 daemon. The modifications here required that the
console session passes the CRAY_HOSTNAME environment
variable to the

machine_server

 to get assigned the next available
TCP/IP port from the pool that is dedicated for all possible
domains that are allowed to be created in a CS6400.

Control
Board

System
Boards (Pro-

cessors &
Memory

Power
Supplies

Proc

Voltage and
temperature

JTAG

Ethernet

JTAG bus

System Service
Processor

Figure 3: CS6400 with System Service Processor

2.1.4 Support for multiple-versions of Solaris

The most challenging requirement for domains was for the
System Service Processor software to be able to monitor
multiple domains that run different versions of Solaris. We came
up with a scheme that divided the System Service Processor
commands into domain-independent and domain-dependent
categories, as illustrated in Figure 4.

The domain-independent set can be executed in the System
Service Processor environment that controls the master domain.
The domain-dependent set of commands can be executed in the
System Service Processor environment that controls the domain
whose host name is set to the

CRAY_HOSTNAME

 environment
variable.

The Domain-dependent commands include a peculiar class of
System Service Processor commands called the
Solaris-version-dependent commands. These commands have
an intimate relationship with the Solaris operating system
running on the CS6400. For each version of Solaris supported,
there may be a separate version of the Solaris-version-dependent
System Service Processor commands residing in the software
package. The software packaging on the System Service
Processor had to be redesigned to fit the new version scheme so
that the execution of Solaris-version-dependent commands is
transparent to the user. We put a constraint on all the
non-Solaris-version-dependent commands to be backward
compatible so that only a single binary is needed regardless of
the different version of Solaris running in the various domains.

2.1.5 Hostview

The Graphical User Interface was significantly augmented to
support domains. A new paradigm had to be devised to allow the
various System Service Processor tasks to take place if and only
if a domain is selected from the main hostview screen. The
pre-domains hostview had no concept of select first and then
perform operation.

System Service Processor commands

Run on SSP envi-
ronment that con-
trol either a master
or a slave domain

Run on master-domain SSP
environment only

Domain-dependent
commands

Solaris-version de-
pendent commands

Domain-inde-
pendent com-

mands

Figure 4: System Service Processor command categories

CUG 1996 Spring

 Proceedings

141

2.1.6 Dynamic reconfiguration

Dynamic reconfiguration [3] (DR) is a feature that allows a
board to be dynamically attached and detached from a running
system. The domains feature introduced a new machine config-
uration file (

machine_config

) that reflects the various domain
configurations running on the host. The format of each file entry
is as follows:

domain_name:Os_version:system_board_list

The dynamic-reconfiguration operation needs to update the

machine_config

 file after each successful operation. In the
attach case, the board number of the attached board needs to be
added to the

system_board_list

 of the master domain. In the
detach case, the board number must be removed from the corre-
sponding list. The correct behavior of the domains feature relies
on the integrity of the

machine_config

 file.

2.1.7 Boot heuristics

Boot heuristics is an algorithm used by Hostmon to reboot the
machine by degrading its physical configuration following
multiple panics in a relatively short period. With the introduction
of the domains feature, the boot heuristic algorithm was modi-
fied to affect only the master domain and make sure that a reboot
action will not try to include a live slave domain board into a
newly reconfigured master domain.

2.2 Partitions design issues

The design of partitions focused mostly on how to minimize
extensions to the various parts of the kernel by adhering to the
following requirements:

1. The number of partitions is at most equal to the number of
processors in the system.

2. The boot processor (

cpu0

) always belongs to the system par-
tition and system threads always run in this partition.

3. Workload sharing can occur among partitions that allow it.

4. The Solaris scheduling strategy is preserved within each par-
tition except for thread borrowing/loaning between consent-
ing partitions.

5. Threads inherit partition assignment from their parent.

6. Provision for user and application interface to the various par-
titioning services.

7. Each partition can be assigned its own memory Resident Set
Size (RSS).

The implementation of this feature has impacted several areas
in the kernel and modified major kernel data structures. The rest
of this section gives a brief overview of the main modifications
required to support the partitioning feature:

2.2.1 Dispatcher

The Solaris thread dispatcher assigns threads to the various
processors for execution. The algorithm used by the original
dispatcher had to be modified to take note of which partition a

thread is assigned and restrict it to run only in its partition or in
another partition with the proper attribute.

2.2.2 p_online(2)

The

p_online()

 system call changes the on-line or off-line
status of a processor and can query the status of a processor.
When a processor is put off-line it does not lose its partition
assignment. This system call had to be modified to support the
case when the very last processor of a partition is put off-line.
Typically, when a processor is put off-line, its processes are
reassigned to the remaining processors in the same partition. If
the last processor in a partition is put off-line then we must flush
out all of the processes running in the partition and assign them
to the system partition.

2.2.3 Dynamic reconfiguration

Dynamic reconfiguration affects also the partitioning feature.
When a board is attached, its processors are automatically added
to the system partition. During the detach operation, the proces-
sors need to be put off-line one at a time by following the rules
laid out in the previous section.

2.2.4 Processor/process related functions

All the processor/process related system calls such as

processor_bind

,

processor_info

 and others are affected
by this feature. Their return values are evaluated in a context of
partition. A system call invoked by a non-privileged user will
cover only the set of processors/processes belonging to the parti-
tion. A reference to a processor outside of the non-privileged
partition will be treated as a reference to an off-line processor. A
process with effective superuser uid can reference all processors
in the system. A privileged process running in one partition, for
instance can bind a Light Weight Process (LWP) to a processor
in another partition.

2.2.5 Processor_info(2)

The

processor_info()

 system call returns the type and
status of a processor. A non-privileged call to

processor_info()

 has access to the processors in the parti-
tion of the calling light-weight process. Other processors in the
system appear as off-line processors.

A privileged call to

processor_info()

 has access to all
processors in the system.

2.2.6 Changes to the cpu structure

cpu_partition_mask

. A bit mask of the processors in the
partition to which the processor belongs

cpu_partitionp

. A pointer to the partition structure for the
processor (a two-byte index into the partition table)

2.2.7 Changes to the thread structure

Two fields were added to the thread structure:

1.

t_partition_mask

. A bit mask of the processors in the
partition to which the thread is assigned.

2.

t_partitionp

. A pointer to the partition structure for the
partition to which the thread is assigned. (a two-byte index
into the partition table).

142

CUG 1996 Spring

 Proceedings

2.2.8 Changes to disp_cpulist handling

The function of the

disp_cpulist

 array is to provide a
dispatching processor a quick way to determine which proces-
sors have generally runable high priority threads enqueued. If
the highest priority is higher than any thread enqueued to the
dispatching processor, the dispatching processor steals it.

2.2.9 New data structures

The partition table is an array of 64 partition structures. A
partition structure has the following fields:

• partition ID

• partition lock

• processor bit mask

• partition attributes

• pointer to the

disp_cpulist

 for this partition

•

disp_cpulist_lock

 variable for this partition

• pointer to the

disp_cpu_map

 variable for this partition

•

max_unbound_pri

 for this partition

3 User Interface

3.1 Domains user interface

The domains user interface can be executed either from the
command line interface or the Hostview Graphical User Inter
face (GUI). The GUI is a much simpler interface to use and it
only takes a couple of steps; the first one is to select the board
used as a domain and any function selected will apply to that
domain only. As to the command line interface, Figure 5: illus-
trates the user interface:

You can configure any CS6400 machine for domains
provided the following conditions are met:

• The board is present and not in use.

• The board has a network interface

• The board has sufficient memory to support itself as an
autonomous host

• The name given to the new domain is unique.

3.1.1 Domain creation

Many of the instructions from the

suninstall

 section of the
Solaris installation guide have been modified to reflect Cray
specific changes. The System Service Processor User’s Guide
describes step by step the creation and removal of domains. This
section will be limited to basically cover the main logical steps
that lead to the creation of a domain. It is also assumed that the
administrative logistics on the host side is ready for booting the
single board domain.

1. Logically disconnect the system board from the host by using
the Dynamic Reconfiguration detach or gracefully shut down
the host, blacklist the board and then bringup the CS6400.

2. If the board is blacklisted, unblacklist it and execute the

domain_create

 command:

domain_create domain_name board_number

3. Create a System Service Processor window where the envi-
ronment variable

CRAY_HOSTNAME

 is set to

domain_name

. In
this window, all commands executed such as:

bringup

,

sysreset

,

check_host

 will all be applied only to the do-
main created.

3.1.2 Domain Removal

This operation can be performed either from Hostview or
from the command line interface. Removing a domain basically
consists of first gracefully shutting down the domain and run the
domain_remove command on the System Service Processor
environment that controls the master domain.

3.1.3 Domain Status

It is possible to view the status of the system with respect to
domains from the Hostview GUI. Each domain board is high-
lighted with a different color and can also be viewed indepen-
dently from the menu bar

view

 function. No command line user
interface was implemented to show the status of domains.
However; the contents of the

domain_config

 file hold the
information on each domain present in a particular system.

3.2 Partitions

In this section, we will present an overview on partition
management, Light Weight Processes assignment to partitions
and miscellaneous partition functions. This section is particu-
larly useful to a system administrator that wants to get familiar
with the partitioning feature. The manual page for

parti-

tioning(1M)

 and

partn(1M)

 in the CS6400 reference related

CS6400

System Service Processor

CRAY_HOSTNAME
is set to Domain A

CRAY_HOSTNAME
is set to Domain B

SSP window 1 SSP window2

Domain BDomain A

Figure 5: SSP user interface windows with domains

CUG 1996 Spring

 Proceedings

143

to partitions are the next step because they cover the mechanics
of partitions administration.

3.2.1 Partition Management

This section will discuss a generic case of system partitioning
that will illustrate the concept of partitions management. The
example below covers all the specific attributes related to
processor and physical memory assignment that are provided by
the partitioning feature.

 Figure 6 shows the example of 64 processors that have been
partitioned into four sets of 16 processors each (P1, P2, P3, P4)
and each of the partitions has been assigned a memory Resident
Set Size (RSS). Thread set A always runs on processors in P0
unless a processor in the other partitions, P1 and P2, has no
work. Since partition P0 can loan threads to other partitions and
partitions P1 and P2 can borrow, processors in P1 and P2 can
borrow threads from P0 when they are idle. Since P0 does not
have the attribute

can borrow

, it is restricted to running threads
assigned to partition P0 only. Since partitions P1 and P2 do not
loan, other partitions cannot run threads assigned to P1 or P2.
Thus thread set B is confined to run in partition P1 and thread set
C is confined to run in partition P3.

Partition P3 is a dedicated partition. It neither borrows nor
loans. Processors belonging to P3 can only execute thread set D,
and thread set D can run in partition P3 only.

3.2.2 Assigning LWPs and processes to partitions

By default all threads in the system are assigned to the system
partition. Light-weight processes may be assigned to a different
partition in the following groupings:

1. current LWP

2. the indicated LWP in the current process

3. all LWPs of the current process

4. all LWPs of the indicated process

Partition P2

Processors 32-47

Partition P3

Processors 48-63

Thread Assignments

Thread Set A: Partition P0 with attributes can loan

Thread Set B: Partition P1 with attributes can borrow

Thread Set C: Partition P2 with attributes can borrow

Thread Set D: Partition P3

System Partition P0

Processors 0-15

Memory RSS: 2 GB

Processors 16-31

Memory RSS:1 GB

Memory RSS: 1 GB Memory RSS: 2 GB

Partition P1

Figure 6: Example partitions

5. all processes of the indicated uid

6. all processes of the indicated process group

7. all processes of the indicated session.

A light-weight processes can be assigned to a single partition
only. An assignment of a light-weight processes to a partition
replaces its previous partition assignment.

A bound light-weight processes cannot be assigned to a parti-
tion that does not contain the processor to which the light-weight
processes is bound — it must first be unbound.)

By default a processor having bound light-weight processes
cannot be reassigned to a different partition. This rule can be
explicitly overridden.

3.2.3 Miscellaneous functions
Partition information . The information that can be retrieved

from the system about partitions is the number of partitions, the
partition ID of each partition, its processor set bit mask, and its
attributes.

Altering partitions . Processors can be added to a partition.
This operation causes the indicated processors to be removed
from their current partitions and placed in the specified partition.
If this operation causes a partition to become empty, the threads
assigned to the partition are assigned to the system partition.

Clearing partitions. When a partition is cleared its members
are returned to the system partition. The system partition may
not be emptied.

4 Programmatic Interface for partitions

The domains feature does not support an application inter-
face. However; the partitioning feature does provide a header
file and an exhaustive list of library calls that allow applications
dynamic access to partitioning services.

4.1 Partitions library header file
The file /usr/include/partn_mgt.h is provided and

contains the definition of the interface exported by the library
routines. The function prototypes, manifest constants and struc-
ture definitions are in this file

4.2 Partition Management Library Routines
Partition management library routines are provided to assign

processors to partitions, to set the attributes of partitions and to
display information about partitions. Note that read access to a
partition is required to display information about it and root priv-
ilege is required for the other partition management operations.

4.2.1 partn_open
Open the partition and return the partition number. The parti-

tion number is the minor device number of the partition’s pseudo
device. A partition must be opened prior to accessing it.
The partition number is used as the first parameter to the parti-
tion management routines.

Name may be [0-63] or a symbolic link to
/dev/partn/[0-63] . The partn_open routine looks in the
directory /dev/partn for the filename.

144 CUG 1996 Spring Proceedings

4.2.2 partn_close
Closes the partition with minor device number indicated by

the partition number. It is semantically similar to closing a file.

4.2.3 partn_get_number
Given a partition filename return the partition number. The

symbolic links in /dev/partn to the partitions [0-63]

provide the translation mechanism from symbolic name to parti-
tion number.

4.2.4 partn_get_name
Given a partition number return the partition name. Places the

leaf filename of the symbolic link to the /dev/partn/[0-63]

file into a buffer buf of size bufsiz. The value of bufsize must be
at least one greater than the filename to be returned. The
symbolic link must be in the same directory as the
/dev/partn/[0-63] files. If there is no symbolic link, the leaf
filename of the /dev/partn/[0-63] file is returned.

4.2.5 partn_assign_processors
Assigns the processors referenced in the cpulist array to a

partition. If the force flag is not set, this operation will fail if
there are any light-weight processes bound to one of the proces-
sors. If the force flag is set, the processor will be moved and the
light-weight processes bound to it will be reassigned to run in the
new partition.

4.2.6 partn_clear
Removes all processors from the partition. Moves the proces-

sors in partition pno to the system partition. Light-weight
processes assigned to the partition are reassigned to run in the
system partition. If the force flag is not set, this operation will
fail if there are any light-weight processes bound to a processor
in the partition. If the force flag is set, the processor will be
moved and the light-weight processes bound to it will be reas-
signed to run in the new partition.

4.2.7 partn_get_processors
Places the processor IDs of the processors assigned to a parti-

tion into a buffer and returns the number of processor IDs
returned.

Note that the upper bound of ncpus can be determined by
calling sysconf(3C) naming _SC_NPROCESSORS_CONF.

4.2.8 partn_set_attributes
Set the attributes of a partition. The three possible attributes

are as follows:

1. PARTN_ATTR_CAN_BORROW. If a partition becomes idle, it is
allowed to temporarily borrow work from other partitions
that allow it.

2. RTN_ATTR_CAN_LOAN. The partition allows idle processors
in other partitions to temporarily borrow light-weight pro-
cesses to run.

3. PARTN_ATTR_NO_SBUS_INTS. The processors in the parti-
tion will not participate in SBus interrupt servicing. This at-
tribute is invalid for the system partition.

4.2.9 partn_get_attributes
Get the attributes of a partition. Same as for

partn_set_attributes() plus PARTN_ATTR_SYSTEM:
PARTN_ATTR_SYSTEM. This partition is the system partition.
Only partition 0 has this attribute. It cannot be assigned to a
different partition.

4.2.10 partn_snap_runqlen
Get a snapshot of the length of the partition’s dispatch queue.

It returns the current length of the partition’s dispatch queue.
This is the sum of the lengths of the dispatch queues of all the
processors in the partition.

4.2.11 get_ref_processor
Get the processor ID of the reference, or boot processor. The

reference processor is the processor that the system booted on. It
cannot be removed from the system partition.

4.3 Process Management Functions
This section describes functions that assign light-weight

processes and processes to partitions and retrieve information
about light-weight processes and processes. Assigning processes
to run in partitions requires write permission to the partition and
the ability to signal the process. Retrieving information requires
read access to the partition.

4.3.1 process_assign_to_partn
Assigns the light-weight processes or processes specified to

run in a particular partition. The set of light-weight processes or
processes to which this function applies is specified by idtype
(type idtype_t) and an id list (a list of ids of type id_t).
These types are defined in <sys/procset.h> .

Note that system processes (pids 0, 2, and 3) may not be
moved from the system partition.

The caller must have write access to the partition and the
ability to signal the process.

4.3.2 procset_assign_to_partn
This routine is exactly like processor_assign_to_partn

except for the manner in which the set of light-weight processes
and processes to assign to a partition are specified by a structure
of type procset_t (refer to priocntl(2)).

4.3.3 process_get_partn
Get the number of the partition to which an light-weight

processes or a process is assigned. The scope of each of this
function is a single light-weight processes or process, which is
indicated by the idtype and id parameters. The idtype parameter
can be either P_LWPID or P_PID .

If idtype is P_PID the function applies to the process with
process ID id .

If idtype is P_LWPID the function applies to the light-weight
processes of the current process with light-weight processes ID
id .

If id is P_MYID the specified process or light-weight
processes is the current one.

CUG 1996 Spring Proceedings 145

4.3.4 process_snap_lwpcnts
For a given light-weight processes or process, get a snapshot

of the number of its light-weight processes and bound
light-weight processes running in the indicated partition.

4.4 Memory Management Functions
This section describes functions that manage memory resi-

dent set sizes.

4.4.1 partn_get_prss
Upon successful completion, partn_get_prss returns the

partition’s reserved resident set size. The special value of 0x0

denotes an unlimited reserved resident set size and is the default
value when a new partition is created.

4.4.2 partn_set_prss
Set a partition’s resident set size reservation. The size of the

reserved resident set size is in megabytes. The special value of
0x0 is used to denote an unlimited resident set size as described
earlier.

4.4.3 partn_get_crss
This routine returns the current resident set size of a particular

partition. This is the sum of the resident set sizes of all processes
in the partition.

5 Future enhancements
5.1 Domains

The domains feature was added after the System Service
Processor software was released, so that several trade-offs were
made. The list below attempts to give an overview of the various
enhancements planned for the future:

1. The concept of master (main) domain and slave domains will
be eliminated so all domains are handled equally from the
System Service Processor software side. A consequence of
this concept is that there will be no restriction on certain Sys-
tem Service Processor commands to be executed from only a
particular domain environment.

2. Provision for domain status and domain history commands.
These commands will help the administrator have an easy in-
terface to find out the status of domains in a particular physi-
cal box. The history of inactive domains can help save
eeprom information about a certain domain and avoid confu-
sion of host ID information for later reuse.

3. Improve the System Service Processor software to make it as
independent as possible from the Solaris version in order to
control domains that run different versions of operating sys-
tems.

4. Provide support for more than a three domain configuration
in the same machine. Due to the System Service Processor ar-
chitecture that relates to polling JTAG, a performance penalty
was incurred when more than three domains are configured.
A new System Service Processor software architecture is be-
ing designed that will be event driven and distributed will al-
low more domains to be configured.

5.2 Partitions

This feature was implemented by surgically coding the
Solaris kernel and keeping the modifications to the possible
minimum. Due to schedule pressures, the feature was not
enhanced to a more desirable level. Possible improvements
would be:

1. Write a dynamic load balancer daemon that periodically
checks the workload in the various partitions and uses some
heuristic algorithm to reassign processes across consenting
partitions.

2. The concept of the system partition that contained the boot
processor made it easy to implement the feature but this has
hampered the assignment of system threads to other parti-
tions.

3. Solve the idle partition problem by periodically checking for
inactive partitions and reallocating some of its processors to
other partitions that desperately need the power.

4. Implement a set of scheduling policies (fair share, gang
scheduling, dynamic load balancing, etc.) for different parti-
tions. The selection of a scheduling policy together with a
partition will depend upon the intended use of the partition.

6 Summary and Conclusion

This paper gave an overview of the issues encountered during
the design phase of the related domains and partitioning
enhancements. Domains divide the machine into multiple
systems that act as separate machines with their own operating
system, hostname, IP address, boot disk and so on. Partitioning
divides the processing power of one system into disjoint groups
that may or may not share workloads and memory.

The software implementation of domains was strictly done on
the System Service Processor side with the help of the Dynamic
Reconfiguration feature, whereas the partitioning feature was
strictly done at the kernel level on the host side.

The paper also gave a high level description of the user inter-
face provided by both features and the application interface
supported by the partitioning feature.

7 References

[1] CS6400 Domains Design Specifications, Cray Research Inc. Internal Docu-
mentation, 1994.

[2] Process Control Extensions for CS6400: Functional Specifications, Cray
Research, Inc. Internal Documentation, 1994.

[3] Process Control Extensions for CS6400: Design Overview, Cray Research
Inc. Internal Documentation, 1994

[4] CS6400 System Service Processor User’s Guide. Cray Research Inc, 1994.

