

CUG 1996 Spring

 Proceedings

155

Volume Rendering of Large Datasets on the Cray T3D

Greg Johnson

, Arctic Region Supercomputing Center, Univer-
sity of Alaska, Fairbanks, AK 99775-6020,

Jon Genetti

, Depart-
ment of Mathematical Sciences, University of Alaska, Fairbanks,
AK 99775-6660

ABSTRACT:

We have produced a memory optimized volume renderer called

Splatter

 for the
Cray T3D. Splatter can render the 512x512x1877 CT dataset (1 GB) from the Visible Human
Project in 6.14 seconds on 128 PEs and 11.64 seconds on 64 PEs.

Splatter

 can also render a
1024x608x1877 version of the cryosection dataset from the Visible Human Project in 11.8
seconds on 128 PEs and 23 seconds on 64 PEs. An AVS interface gives the user control of the
resolution of the shaded data, so large datasets are more likely to fit in memory.

1 Introduction

Direct volume rendering of medical data involves taking a
set of raw data slices, processing them in some way (shading),
and extracting a view. There are many ways to extract a view
from shaded slices and

Splatter

 currently uses splatting [6] (see
[2] for an analysis of the ray casting and splatting algorithms on
the Cray T3D). The volume is projected voxel-by-voxel onto
the raster in a front-to-back traversal. With a parallel projection,
the footprint (or projection) of a voxel on the raster is constant
for all voxels. Since a voxel rarely projects onto a pixel exactly,
a filter spreads out the color and transparency to neighboring
pixels.

When creating multiple images from different viewpoints,
the volume must be re-shaded prior to extracting a new view,
unless the position of the light source relative to the volume is
fixed. In

Splatter

, the light source moves with the volume but
the user can also move the light source independent of the
viewing position.

2 Visible Human Project

The National Library of Medicine has provided several large,
high resolution medical volume datasets through the Visible
Human Project (VHP). These datasets will be referred to as
CTmale, CTfemale, RGBmale and RGBfemale in this paper.
CTmale is an axial CT scan of a frozen male cadaver taken at 1
mm intervals that contains 1877 slices at 512x512 x 2 byte reso-
lution (930 MB). CTfemale is an axial CT scan of a fresh female
cadaver taken at 1 mm intervals that contains 1734 slices at
512x512 x 2 byte resolution (890 MB).

A novel part of the VHP is the generation of cryosection
slices by taking digital color images of the cadaver while
removing 1 mm (for the male) or 1/3 mm (for the female) after
each image. An example from the female head is shown in
Figure 1.

The male dataset contains 1878 slices of RGB data at
2048x1216x3 byte resolution (13 GB). The female dataset
contains 5189 slices of RGB data at 2048x1216x3 byte resolu-
tion (37 GB). By cropping the images to the smallest rectangle
of real data, the male dataset can be reduced to 4.8 GB and the
female dataset to 9.6 GB. RGBmale is a half-resolution
(1024x608) version that requires 1.6 GB for the shaded slices
(1.2 GB + 0.4 GB for the alpha values). RGBfemale is a
half-resolution (1024x608) version that requires 3.2 GB for the
shaded slices (2.4 GB + 0.8 GB for the alpha values).

Figure 1: A cryosection slice.

156

CUG 1996 Spring

 Proceedings

3 Cray T3D Architecture

The Cray T3D system is a massively parallel superscalar
multiprocessor architecture. The processing elements (PEs) are
Digital Equipment Corporation’s 150 MHz Alpha
micro-processor model EV-4 and are paired off into nodes.
Inter-node communication occurs via the T3D’s high perfor-
mance interconnect network which has a 3D toroidal topology.
Each node contains one network switch with a peak transfer rate
of 300MB in each of six directions (bidirectional in each of the
three dimensions). The primary memory of the T3D is physi-
cally distributed with between 16MB and 64MB per PE, but
globally addressable. Consequently, remote memory accesses
require more time than local memory accesses.

The Cray T3D used to develop

Splatter

 at the Arctic Region
Supercomputing Center (ARSC) is currently configured with
128 PEs arranged in a 16x4x2 torus. Each PE is equipped with
64MB of RAM for a total of 8GB. The T3D is hosted by a Cray
Y-MP M98 system with 8 processors and 8 GB of RAM.
Communication between the T3D and the Y-MP take place via
2 I/O gateways.

4 Parallel Splatting

4.1 Data Distribution

The distribution of the data across multiple PEs is tightly
linked with the distribution of the workload. Contiguous regions
of the data volume relatively equal in size are distributed to each
PE as shown in Figure. 2 If the number of slices

n

 is not evenly

divisible by the number of PEs

p

, $\lfloor n/p \rfloor +1$ slices
are distributed to the first $n-\lfloor n/p \rfloor *p$ PEs, and
$\lfloor n/p \rfloor$ slices to the remaining PEs. No provision is
made for allocating parts of a slice to one or more PEs, so $n \ge
p$.

4.2 Shading Slices

This step requires that the raw slices be read from the file-
system on the T3D host. In most cases, the slices are in files

Figure 2: Distribution of the shaded slices.

under 1 MB, which lowers the transfer rates between the Y-MP
and the T3D.

Splatter

 has all of the PEs read their own data files
and the reads are issued for the entire file. This results in transfer
rates of 3-7 MB/sec, so a 1 GB dataset like CTmale takes 3-4
minutes to load.

4.2.1 Shading CT Slices

The calculations required to create shaded slice

z

 involve only
the data contained in the raw slices

z

-1,

z

, and

z

+1. Conse-
quently, a PE can shade its partition of raw slices independently
of the rest, as this is the shading problem applied to a smaller
data set. Once the shading process is complete, each PE is left
with the shaded slices needed for the original data distribution.
The raw slices are discarded when no longer needed to allow
more shaded slices to fit on a PE.

4.2.2 Shading Cryosection Slices

Since cryosection slices are RGB images of actual anatomy,
applying a shading model is not required. Only the transparency
(or alpha value) of each voxel needs to be calculated.

Splatter

currently sets alpha to a small value based on the color of the
voxel, enhancing the mostly red muscle tissue and internal
organs.

4.2.3 Memory Requirements

The number of shaded slices that fit on a PE is determined by
the size of the slice and memory required to store a shaded voxel.
The

sample resolution

 is defined as the number of bytes used to
store each component (R, G, B and A).

Splatter

 currently
supports sample resolutions of 1, 2, 4 or 8 bytes, resulting in a
voxel requiring 4, 8, 16 or 32 bytes. For a 512x512 slice, this
would result in a shaded slice of 1, 2, 4 or 8 MB.

4.3 Splatting

Because a parallel view is used, the orientation of a PE’s
partition with respect to the view plane is the same as the orien-
tation of the entire volume. This allows each PE to indepen-
dently determine which traversal order is appropriate and which
splatting filter should be used. Clearly, each PE can then
generate an image from its partition of shaded slices independent
of any other PEs and without concern for data or work dependen-
cies.

4.4 Compositing

Once all

p

 PEs are finished splatting, the

p

 images must be
combined to form the final image. Inter-node data transfer is the
achilles heel of parallel processing, and is often to blame for the
poor scalability/efficiency of some massively parallel applica-
tions. Ideally all PEs should be performing useful work at all
times during this stage, especially as the number of PEs
increases. Figure 3 shows the tiling arrangement currently used
in this application.

The compositing process works as follows. PE

p

i

 fetches the

i

th 1/

p

 tile of PE

P

i

+1

’s raster, and composites it with the corre-

sponding tile of its own raster. At the same time, PE

P

i

+1

 fetches

the

i

+1th 1/

p

 tile of PE

P

i

+2

’s raster, and composites it with the

CUG 1996 Spring

 Proceedings

157

corresponding tile of its own raster, and so on. At stage

t

, PE P

i

fetches the

i

th tile of processor

P

(

i

+

t

)

mod

p

’s raster, and combines

it with the corresponding tile of its own raster. Since every PE is
operating on a unique section of the image, data dependencies
are avoided. This process continues until

t

=

p

, at which time each
PE owns a 1/

p

 tile of the completed image.
Such an arrangement insures that the workload is well

balanced and can allow the tiles to be written to the host virtually
simultaneously. The efficiency of this final step is clearly depen-
dent on the hardware. The ARSC Cray T3D used is equipped
with two I/O gateways to the host Y-MP. Because of the over-
head associated with many PEs vying for access to two gate-
ways,

Splatter

 transfers all of the tiles to a single PE which is
then responsible for transferring the raster to the T3D host.

5 Splatter

Splatter

 is written in C, with parallelization achieved through
calls to functions in the PVM (Parallel Virtual Machine) and

Figure 3: Compositing raster using a tiling approach.

Figure 4: AVS network for viewing volume data.

shmem (Cray Shared Memory) libraries. Synchronization facil-
ities are provided through the Cray MPP version of PVM, while
inter-processor communication is achieved through the use of
the shmem library.

Splatter

 is broken into three distinct pieces: a control func-
tion, a function for shading the raw data slices, and a function for
splatting the shaded slices onto a raster. Control of the rendering
process is directed by an AVS module,

Splatter

, running on the
T3D host (see [3] for a more detailed description). The control
function is responsible for reading the parameters required to
shade or render an image, and invoking the appropriate compute
routine.

A large benefit of using AVS for the user interface is the
wealth of available public-domain modules for extending the
capabilities of this data-flow visualization system. Manipulation
of the viewing position can be handled via the display tracker
module as shown in Figure 4. Doing so allows the user to
interact with the projected volume directly, in a manner similar
to a virtual trackball. In fact, the

Splatter

 module can be used
with any AVS module that provides a viewing transformation
matrix or a module that displays an AVS RGB image. This is
demonstrated in Figure 5, where the

Spline Animator

 modules
are used to produce animations of volume data. (See

http://www.arsc.edu/~genetti/VisibleHuman.html

for some animations created using

Splatter

 and

Spline
Animator

.)

6 Results

The Splatter render times for cubic datasets are shown in

Table 1. The times for the 128

3

 dataset are approximately 8

times faster than the 256

3

 dataset, which are approximately 8

times faster than the 512

3

 dataset. There is also a nearly constant
decrease of rendering times as the number of PEs is doubled,
further illustrating that

Splatter

 scales well.
Figure 6 shows CTmale (512x512x1877) rendered on 128

PEs in 6.14 seconds or on 64 PEs in 11.64 seconds. Over 83
million voxels were splatted in the process. For comparison, the
same image requires over 17 minutes on an SGI Onyx with a 150
MHz R4400. Note that on the SGI, all the raw data must be read

Figure 5: AVS network for creating animations.

158

CUG 1996 Spring

 Proceedings

(and therefore shaded) for each image as it takes at least 2GB of
RAM to store the shaded slices.

Figure 7 shows RGBmale (1024x608x1878) rendered on 128
PEs in 11.8 seconds or on 64 PEs in 23 seconds. Over 233
million voxels were splatted and the same image requires over
24 minutes on the SGI Onyx. Note that the per-voxel perfor-
mance of Splatter applied to RGBmale is slightly better than that
of CTmale. The cropped nature of RGBmale reduces the number
of “dead” voxels through which the rendering algorithm must
interate.

7 Conclusion

Splatter

 is capable of rendering very large volume datasets on
a Cray T3D at interactive rates. With a total of 8GB of RAM
distributed over 128 PEs, the entire Visible Male (at half resolu-
tion) can be rendered in under 12 seconds. Since Splatter is scal-
able, smaller portions can be rendered on smaller numbers of
PEs in interactive times. In addition, an AVS interface gives a
user tremendous control over exploring and creating animations
of volume data sets that are too large for workstations.

8 Future Work

Since the cryosection data is relatively new, further research
needs to be done on how to “shade” it. While Splatter can

Table 1. Render times (in seconds) for splatting n3 datasets onto a
n × n raster.

generate multiple frames per second with 128

3

 datasets, a
parallel version of the shear-warp transform [4] or the fourier
projection-slice [5] algorithms may be necessary to get the same
performance for larger datasets.

9 Acknowledgements

This research was supported by Cray Research Inc. and the
National Science Foundation. We would also like to thank the
National Library of Medicine for providing the volume data
from the Visible Human Project.

10 References

[1] Mark Astley and Mitchell Roth. Spline animator: Smooth camera motion for
avs animation. In

Proceedings of the 1994 International AVS Users Confer-
ence

, pages 142–151, 1994.
[2] Greg Johnson and Jon Genetti. High resolution interactive volume rendering

on the cray t3d. In

1994 Fall Proceedings (Cray User Group)

, pages 119–
125, 1994.

[3] Greg Johnson and Jon Genetti. Medical diagnosis using the cray t3d. In

1995
Spring Proceedings (Cray User Group

), pages 70–77, 1995.
[4] Philippe Lacroute and Marc Levoy. Fast volume rendering using a

shear-warp factorization of the viewing transformation. In Andrew S. Glass-
ner, editor,

Computer Graphics (SIGGRAPH '94 Proceedings

), pages 451–
458, 1994.

[5] Takashi Totsuka and Marc Levoy. Frequency domain volume rendering. In
James T. Kajiya, editor, Computer Graphics (SIGGRAPH '93 Proceedings),
volume 27, pages 271–278, August 1993.

[6] Lee Westover. Footprint evaluation for volume rendering. In Forest Baskett,
editor,

Computer Graphics (SIGGRAPH '90 Proceedings

), volume 24, pages
367–376, August 1990.

CUG 1996 Spring

 Proceedings

159

Figure 6: 512x512x1877 CT dataset rendered in 6.14 seconds on
128 PEs.

Figure 7: 1024x608x1878 cryosection dataset rendered in 11.8
seconds on 128 PEs.

