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ABSTRACT: 

 

We discuss a direct volume rendering system for regular structured data imple-
mented on the T3D. This paper discusses how to efficiently deal with a large volume dataset
from an integrated scientific application, in this case, a global climate modeling system.
Because of the large size volume, workstations are inherently unsuitable for storing even one
volume let alone a series of time steps. Using the T3D SHMEM library, we were able to make
use of asynchronous data transfer and employ communications overlap with computation. In
addition, using an object space parallel decomposition of the dataset allows the algorithm to
reduce cache misses on access to the volume data. The system is currently being tested and
implemented on the T3D at JPL and we report on the results obtained.

 

Introduction

 

Three-dimensional rendering is an increasingly important
tool for the visualization of scientific data sets. Applications
include visualization of the output from medical or scientific
instruments such as seismographs, radars and magnetometers.
Rendering is also widely used to visualize the data from numer-
ical simulation models, such as molecular models, ocean and
atmosphere models, etc. With the emergence of parallel super-
computers, the data volume generated from the supercomputer
simulation models will overwhelm any workstation visualiza-
tion tool. Therefore, it is important to create an interactive visu-
alization tool capable of visualizing very large data sets and
interacting with the scientific model in real-time where the data
is resident, that is, on the supercomputer.

In this paper, we discuss a direct volume rendering system
for regular structured data implemented on the Cray T3D. The
system consists of a parallel volume rendering Application
Programmers Interface (API) and an X/Motif-based Graphic
User Interface (GUI). The API is similar to the OpenGL API
both syntactically and semantically. It provides a suite of
routines for viewing transformation, lighting, shading, and clas-
sification. It also has additional support for parallel processing,
such as input data decomposition and output image compos-
iting. The core of the API is a parallel direct volume renderer
using the splatting approach. The renderer adapts both object
space decomposition and image space decomposition for more
efficient, better load-balanced and more scalable computation.
The goal of this project is to provide an interactive visualization
system which is capable of rendering very large 3D, 4D, or even

5D datasets produced by supercomputer-based scientific
modeling applications; here 4D means 3-D in space and 1-D in
time and 5D means 4D data with multiple parameters per data
point. The rendering API may be incorporated into application
programs to produce image products or real-time display. The
advantages of the API are two fold: 1) It helps debugging and
verifying the correctness of the model thus reducing the model
building and development time; 2) It converts large volumes of
raw model data into condensed image format which saves both
storage space and data transfer time.

The X/Motif-based GUI is designed to run on a user's local
workstation with a network interface to the parallel renderer on
a remote machine. Our eventual goal is to combine scalable
parallel rendering, efficient network interface, and friendly user
interface to provide a seamless environment for distributed
interactive visualization at the scientist’s desktop. In this paper,
we describe the design and the implementation of the parallel
volume renderer on the T3D and some preliminary performance
results. We also discuss our plans for further functional and
performance enhancement.

 

Background

 

In recent years, there has been a fair amount of work in
parallel volume rendering with the research equally divided
among the three main sequential algorithms: shearing, splatting,
and ray casting. Shearing is most unlike the other two in that it
is an image warping technique so we will focus on previous
work that is most relevant to the rendering technique employed
herein, splatting. Westover, the principal architect of the splat-
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ting algorithm, originated a design for a parallel splatter
[Westover90,Westover91]. He analyzed functional as well as
data decompositions, although his target architecture was a
small scale multiprocessor. This early work formed the basis for
later improvements.

Elvins [Elvins92] was the first to use the approach like
Westover for splatting on a general purpose multiprocessor, the
NCube machine. The idea here was to partition individual slices
across the processors in an interleaved fashion to facilitate load
balancing. Still, depending on the number of sheets available,
some processors might be too lightly or heavily loaded. A master
processor would then collect the image and send it to the host for
output. Elvins did not explore any load balancing techniques nor
any other decomposition methods.

Neumann [Neumann93] analyzed and implemented all three
algorithms and concluded that splatting was consistently the
fastest of the three. He derived a taxonomy and analyzed
approaches as to where it was appropriate to decompose the
domain object space vs. image space as well as whether it was
suitable to group the data contiguously vs. interleaved or use
task assignment to processors statically vs. dynamically. He
concluded that an object space partition using block data regions
(rather than slabs) uses the least amount of communication. This
is the method we have chosen to implement here.

State et al. [State95] use a ray casting renderer combined with
parallel compositing engines for implementation on the UNC
Pixel Planes 5 system. While our design is similar to theirs, we
do not have the luxury or limitations of this graphics hardware
and we do not need to functionally partition the algorithm into
different sets of processors as they do.

In the previous Spring CUG proceedings, two parallel algo-
rithms were presented. Johnson and Genetti [Johnson95]
distribute slabs of data to each processor where each slab is a
contiguous set of slices. Each processor renders its local data and
parallel compositing is done by constructing an image manipu-
lation pipeline where portions of the image (contiguous sets of
scan lines) are passed round robin amongst the processors. Our
algorithm is similar in concept to this one in the data decompo-
sition phase but we improve on the decomposition of the data to
allow better load balancing and our final image composition is a
more sophisticated technique with less communication and
work. Hansen et al. [Hansen95] describe a ray caster with binary
swap compositing. As in the previous approach, all processors
perform compositing but less work is done than in Johnson’s
algorithm because the compositing is built up in stages over a
tree and smaller regions are done at the lower stages. This algo-
rithm works well but requires more communication and
synchronization than our approach. 

 

Interface and Data Input

 

The input files are in Network Common Data Form (netCDF)
[Rew93] format. NetCDF is developed and maintained by
Unidata, a National Science Foundation sponsored program.
NetCDF functions as an I/O library callable from C or Fortran.

It is designed to be machine independent and self describing for
storing and retrieving scientific data. We chose netCDF as our
data format because of the machine independent nature and that
netCDF is well known in the scientific computing community.

The GUI to the renderer is designed to run on a remote work-
station capable of X. The GUI provides a user-friendly, interac-
tive environment to view and control the renderer. The GUI
running on the workstation communicates with the renderer on
the T3D via a TCP socket. A networking layer on the T3D
manages the communications between the GUI and the renderer.
The GUI issues simple ASCII commands to the T3D, and the
networking layer calls the renderer using the renderer's API.
This layer also retrieves image data from the renderer and sends
it to the GUI.   The GUI supports both 8-bit and 24-bit displays
and the network interface supports real-time display via either a
low-speed or a high-speed network. It is equipped with multiple
control panels for interactive control of various rendering
parameters. It is not only used as a GUI to the renderer, it will
also control the interaction and execution of the model program
when the model and the renderer are running together. 

The ASCII commands used by the GUI are simple one word
commands with optional parameters. The networking layer on
the T3D parses each command and issues the renderer API calls
necessary to accomplish the requested task. The networking
interface also reads the netCDF data files and passes the data to
the renderer. The GUI can also request information from the
T3D, such as the dimensions of the data and the types of vari-
ables available. The networking layer sends this “meta” data
back to the GUI on request.

When the renderer completes an image, it has the option of
saving to file, passing the image back to the GUI, or send it to a
HiPPI frame buffer. The user can select the different options
from the GUI. The image output file format currently is the
Portable Pixmap (PPM) format although support for others may
be added in time. If the user requests the image to be sent back
to the GUI, the network layer will send a compressed image back
to the GUI, and the GUI will convert the image to an X image.
Finally, the user can specify a HiPPI frame buffer, and the
network layer will send the image to the specified buffer.

 

Algorithm Description

 

In this section we describe the volume renderer and in partic-
ular the splatting algorithm. We then illustrate the enhancements
to the renderer to support parallelism.

 

Sequential Algorithm

 

Splatting, as defined by Westover, is a feed-forward voxel
projection algorithm in which a filter is applied to each voxel and
the resultant filtered voxel is projected onto the screen. The
overview of the sequential volume renderer is provided in Figure
1. The reader is referred to Westover’s paper for an excellent
overview of the actual splatting process. Basically, the voxels
are processed in sheets, with a sheet being the set of voxels in a
2-d grid of the rectilinear volume which is most orthogonal to the
viewing direction at the current time. The sheets can be
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processed either front to back or back to front but the order must
be consistent. Each voxel in a sheet is projected to the screen and
its contribution to the underlying pixels is summed according to
the applied filter. Iso-surface extraction can be accomplished
using Marc Levoy’s algorithm [Levoy88].

Figure 2 illustrates the splatting process. After each sheet is
processed, it is composited with an accumulation buffer which
retains the information of the sheets behind (or in front if we are
going front to back). The compositing process is associative so
the order (front-to-back or back-to-front) is unimportant as long
as proper depth is maintained. Figure 3 illustrates the compos-
iting process.

ResampleResample
Opacities Colors

Composite

Transformations

Acquire Values
Read Data and Store in Data Structures

Prepare Data

ClassificationShade

Splat

next frame...

Re-compress

Output Image

Figure 1: Overview of Sequential Algorithm
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Filter 
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Figure 2: Overview of splatting process

 

Parallel Algorithm

 

The parallel algorithm is very similar to the sequential algo-
rithm with the following changes. First, each processor receives
a block portion of the volume and renders that part locally, splat-
ting and compositing the image. This creates an image of a
portion of the volume. This image is then sent to the appropriate
processor for the final compositing where all images are
collected that project to that portion of the screen. That is, the
rendered images in the first part will overlap each other in screen
space based on the average depth complexity of the
sub-volumes. These rendered images are then composited and
reconstructed into a final image for display. In figure “Overview
of parallel algorithm” on page 167, we illustrate this process. 

In the next section, we describe the individual data decompo-
sition schemes outlined here.

 

Object Space Decomposition

 

Each processor has 1/P portion of the input data volume,
where P is the number of processors. However, to afford load
balancing, we allow each processor to have multiple (R)
sub-volumes per processor, interleaved over the entire volume.

Composite to buffer 

a sheet at a time

Figure 3: Compositing into sheet buffers

Data In

Continue rendering next sub-volume asynchronously

When done, perform final compositing

Finish compositing and reconstruct image in parallel

Send to PE0 for output

Finished rendering, send to appropriate processor

Process Locally

Figure 4: Overview of parallel algorithm
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Since the work in rendering is not evenly divided among all the
voxels (because of classification), this allows minimal, albeit
static, load balancing. Figure 5 illustrates the object space
decomposition for the UNC head data set. We expect to work on
more sophisticated techniques in the future. Karia [Karia94]
implemented a very similar data decomposition on the Fujitsu
AP1000 in a parallel ray casting modification of the Hansen et
al. approach. He claims almost a 50% improvement over a
decomposition that does not support multiple interleaved
sub-volumes per processor. We have not specifically analyzed
the performance improvement in our algorithm. Our expecta-
tions are high that it will provide enhanced performance which
we will report on in detail in the future. 

 

 

Figure 5:

 

 

 

Object space decomposition

 

Neumann’s [Neumann93] approach to load balancing
involves copying additional data to each processor and then
adjusting the partition boundaries between processors. The
adjustment of the boundaries is based on the rendering times
computed in the previous frame for all processors. If the differ-
ence between a given processor’s time is lower then the average,
it’s boundary is adjusted to give it a larger sub-volume while the
opposite is true if it took greater than average in the previous
frame. This algorithm is an alternative to the approach we have
chosen for object space load balancing. It could be applied to our
approach and we may do so in the future.

 

Image Space Decomposition

 

After each processor has rendered a sub-volume, it has a
projected image which may overlap other sub-volume images in
depth. As such, a final compositing of these images needs to take
place. In order to evenly distribute the work load in this phase,
the image space is partitioned among the processors and is
multiply interleaved so that each processor receives some
number of screen space areas. Algorithms developed in the past
required that communication for final compositing be performed
after all rendering was completed. The reasons were: a) no buff-

 

ering is needed of the images on the remote processor, b) it is
suitable for message passing and c) with binary swap or image
partition compositing, all processors are involved in the compos-
iting operation.

As shown in Figure 6, the final compositing phase receives
data from processors after they render their local sub-volume.
Here we describe how this is accomplished. The three processors
on the left have created three images shown. Each portion of the
image overlaps some portion of a processor’s final compositing
area, shown in outlined regions here. The idea is that the single
sub-volume rendered image is then broken into components
which are then sent to the appropriate processors for final
compositing.

 

Figure 6:

 

 

 

Final compositing process

 

Communication

 

 As soon as a processor is finished rendering a sub-volume, it
may send the individual final compositing regions off to the
appropriate processors and then proceed to render the next
sub-volume. We save memory and communication by having
each processor wrap a bounding box around the sub-image and
only send the portion of the image which is actually relevant
(that is, no blank pixels if possible). This is accomplished using
the Cray SHMEM library with the 

 

shmem_put

 

 call. Shmem_put
allows the programmer to send data to a remote processor
without the processor having to receive it. All that is necessary
is that a memory location be set aside apriori. However, there is
a complication if more than one processor needs to send data to
a given PE simultaneously. This is remedied in the following
manner. Each processor maintains a pointer to the buffer in
which others will 

 

put

 

 into its memory. The pointer is atomically
updated by a processor which is sending the data. This is accom-
plished by adding the exact amount of data to be sent to the
address and putting the updated address back. The 

 

shmem_swap

 

routine facilitates this atomically. In fact, this is the only instance
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where a message passing implementation would have to differ
from our implementation. The data itself can be put anytime and
even potentially out of order from another processor since the
location to put the data is secured.

This one sided communication is very fast and since it
involves no overhead on the other processor, communication
can be overlapped with computation. In fact, because the image
data is not even used until much later, no cache coherency need
be maintained while the put is proceeding. It is certainly true that
each processor will have to send to many others but since
all-to-all communication will not be happening simultaneously,
it will be spread out in time over the execution of the splatting
renderer. The idea here was to make maximum use of load
balancing by spreading out the compositing work and also
spread out the communication in time and space so no single
processor is a hot spot or bottleneck. Based on the performance
analysis data in the next section, our current belief is that the
overhead of doing many small communications (even spread
out) is possibly too much and we expect to reduce this in a future
version to a few larger communications.

 

Image Output

 

After all processors have done final compositing on their
sub-images, we are now left with a disjoint set of images which
must be reconstructed and sent out as a contiguous image. The
contiguous image can either be sent to a HiPPI frame buffer,
disk, or X window display. In any case, sending all the
sub-images to PE0 would obviously result in a hot spot conten-
tion situation. Additionally, a pyramid reconstruction scheme
requires synchronization at each level in the pyramid, which also
reduces throughput. The scheme we devised is to have each
processor responsible for a given contiguous group of scan lines,
non-interleaved. As in the previous section, each processor will

 

Put

 

 its appropriate data to the processors with the given set of
scan lines for which the sub-image overlaps. This means all
processors are communicating to all which can bottleneck the
system. After all processors have sent their data, we end up with
each processor having a contiguous set of scan lines. These are
then 

 

Put

 

 to PE0 in the correct memory location and finally PE0
writes the image out.

 

Performance

 

Figure 7 indicates the speedup we measured. This is in refer-
ence to 

 

4

 

 processors as the baseline. Performance tailed off more
rapidly than we expected. We explain this tail off below.

 

Figure 7:

 

 

 

Speedup analysis

 

In table 1 we present a performance comparison for various
overheads. These were measured as a function of 100%. It is
interesting to note that at this point one can see that splatting
dominates the computation at less than 64 processors.  Our load
imbalance for splatting added to the cost of splatting, particu-
larly on the higher processor counts. The reason for this is the
size of the regions with voxels is not necessarily constant across
the processors. In addition, the classification scheme does not
equally distribute the workload among all voxels. We expect to
work more on the load balancing in the future. Setup cost is
essentially constant for all processors which is why it becomes a
higher percentage as the number of processors increases. This
includes the time to construct the filter table and matrix for
viewing. Shading and classifying are not included here since
those are typically one time costs. This does give the effect,
though, that the light source rotates with the object. For this
reason, we have used two light sources on opposite sides of the
object so that the effect is not objectionable. 

 

Table 1:

 

 

 

Performance Analysis

 

# Processors 4 16 32 64 128 256
Setup %

 

0.4 1.4 2.6 4.1 8.2 13.6

 

Splat %

 

51 42 39.7 30 31 23.7

 

Splat Load Imbalance %

 

11.4 23.2 27.2 41.2 33.8 39.5

 

Local Compositing %

 

35 31 27.8 21.7 23.3 17.7

 

Final Compositing %

 

0.3 0.5 0.9 1.2 2.2 3.5

 

Final Compositing Load Imbalance %

 

0.05 0.05 0.06 0.05 0.04 0.02

 

Communication %

 

1.7 1.7 1.7 1.7 1.3 1.9
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Local compositing, that is, compositing done as part of the
rendering of the local processor’s sub-volume amounted to a
fairly large portion of the time. The reason for this is that each
sheet in each processor needs to be composited with every other
sheet in that processor. While a front to back optimization does
employ early termination if full opacity is reached, the overall
work is not minimized significantly. Finally, the data here
involved using an approach where the bounding box for the
sheets are used for compositing. In our current enhancement, we
extract only those pixels that are rendered and composite only
these. There is some overhead with this approach and we have
not yet determined if there is a significant benefit gained using
this technique or not.

Final compositing was very small in proportion to the entire
rendering. The reason here is that each processor only has to deal
with several regions of the screen space and the depth
complexity corresponding to those regions is very low (when
compared to the number of sheets that are composited locally
during the splatting phase). There is a synchronization point here
which is included in the timings which explains why very little
load imbalance is noticed. The synchronization point occurs
after the image is finally composited before reconstruction and
sendout to PE0. This is included since obviously an image
distributed over the processors doesn’t constitute a final
rendering.

Communication was very small here as measured. This is an
important point because the measurement of communication
only included the time to actually make the call. We did not add
any additional time to make sure the message was received since
using the 

 

shmem

 

 mechanism did not require this nor did our
algorithm. Thus, this is a perfect example where communication
overlapped with computation can be a big win.

 

Conclusion

 

In this paper, we presented a parallel volume rendering algo-
rithm using the splatting approach. In our implementation, we
use both static object space decomposition and static image
space decomposition to achieve load balancing. Our algorithm is
a Sort-Last Sparse (SL-Sparse) algorithm based on Molnar's
[Molnar94] classification given the fact that the sorting is done
at the image space before the final compositing. We proposed an
asynchronous image compositing scheme which can be fully
overlapped with the splatting process thus hiding most of the
communication cost. Although the early results showed poor
load balance and increasing overhead as the number of proces-
sors increases, we believe the load imbalance will be improved
by tuning the size of the input blocks and the way they are inter-
leaved. Similarly, the communication overhead can be reduced
by selecting a proper image region size for compositing.

Interactive frame rate is an essential requirement for our
rendering system. We are still a distance away from achieving
this goal. We are investigating various alternatives for better
rendering speed: 1) performance tuning -- besides the load
balancing and communication overhead problems addressed

above, we will also look into ways to increase cache coherence
and improve cache performance; 2) other filters -- with a little
degradation of the image quality, we can replace the Gaussian
filter with a less-expensive one for splatting, such as a box filter;
3) data compression -- data pyramiding may be used to represent
a high resolution input volume and rendering may take place at
a lower resolution which matches the resolution of the image
space. On the other hand, data compression may be used to
represent a sparse natured data set and unnecessary computation
can be avoided by skipping through the invalid data points. 

Time-varying datasets are often too large to fit into the
memory of existing supercomputers. Therefore, off-the-core
rendering is the key function in order to support visualization of
time-varying datasets. It is an even bigger challenge to achieve
interactive frame rate for time-varying datasets because data
input and data classification are also accounted for in the
rendering time.   We will either optimize the input and data
preprocessing time or hide the overhead by overlapping the
operations in the rendering pipeline. This is an open research
area that requires careful study and design. Other capabilities we
are also looking into include the representation and visualization
of vector fields, arbitrary clipping planes, multiple iso-surfaces
and multiple parameters rendering.
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