TPview: An On-line Visualization Tool and Its Application
to CFD on the Cray T3D

Steve WilliamsService Informatique Central, Ecole Polytech-
nigue Fédérale de Lausanne, Switzerlabdyid Cobutand
Mark L. SawleyInstitut de Machines Hydrauliques et de Méca-
nigue des Fluides, Ecole Polytechnique Fédérale de Lausanne,
Switzerland

ABSTRACT: An on-line visualization tool has been developed to overcome the problem of

storing the large amount of data generated by numerical simulations on a high-performance

parallel computer system. Data distributed across multiple processors are sent via UNIX

sockets to a remote graphics workstation for post-processing during the computation cycle. The
tool employs the inter-process communication library for processing the data by the Tecplot

visualization software. Examples of the use of this tool for Computational Fluid Dynamics simu-

lations on the Cray T3D will be presented and various issues associated with its performance
addressed.

Introduction For lack of a more convenient method, users often resort to a
])) ~_ batch visualizatiorapproach. This consists of saving datasets at
_ In the domain of high-performance computing of scientific \ a1joy5 times during the simulation. After the simulation has
simulations, productivity can be greatly increased through the,, \eteq; the files are manipulated into an appropriate format,

use of easy-to-use visualization tools. The researcher may bé?nd the datasets entered one at a time into a visualization

ovemhelmed .W'th thg quantity .Of data produced, and has littlg ackage, usually on a graphics workstation. This approach has
desire to manipulate files of various formats or to learn to use . .)

. ; . .~ a number of drawbacks, associated with the time needed to
variety of tools. In fields such as Computational Fluid

Dynamics (CFD), access to graphic representations of results ir;[)ampulate the data into the appropriate format, and the amount

imperative in order to verify the correctness of solutions, to gainOf disk space required to save all the intermediate steps. In addi-

physical insight into the computed flows, and as a means t6i°”' if the results of the simulation that requires many minutes
present this information to other people. ’ or hours are incorrect at the beginning, batch visualization does

The process of visualization can be divided into five discrete"! prgwde a def[ectmn means that "’,lHOWS termination ,Of the
phases: execution to avoid wasting computational resources. Finally,
the analysis of CFD simulations often requires an animation of

1. Computation the computed flow and not simply static images.

In our case, data computed on the Cray T3D is rendered on a
remote graphics workstation (Silicon Graphics Indigo2). The

Different visualization approaches can be categorizedgoals were to build a versatile tool that would:
according to how each of the above phases is accomplished. In

particular, for a heterogeneous computer network such as have as little impact as possible on the original simulation,
considered in the present study, it is important to distinguish on that is, the execution time overhead due to the visualization
which platform each phase is to be performed. be minimal,

2. Data Selection or Filtering This paper describes the development of a tool, TPview, to
3. Data Transfer (if necessary) allow on-line visualizatior{or run-time visualization) for which

4. Rendering the computation and visualization are performed concurrently.
5.

Display

172 CUG 1996 SpringProceedings

» require the user to make as few changes as possible to tli@ct be exploited by having those processors that have less calcu-

simulation code, lation to perform open the sockets and communicate with the
« be composed of as many “off-the-shelf” components as pOSr_emote machine. The user has control over how many sockets
sible are opened by setting the value of the TP_SEND_PES environ-

. . . . ment variable.
« enable the user to influence interactively the behaviour of the

simulation. Rendering

. . . . It may appear appropriate to perform the rendering phase on
TPview Selection Considerations the T3D (see e.g. [5]). However, no parallel renderers are
Computation and Data Selection currently available that provide the versatility that is required for

The computation phase is to be done by the user's code on tRd @Pplications. A second problem with this approach is that
Cray T3D. Since the data to be visualized is usually distributed€'forming a ren?e;lng .phalse. couli.grgatly mcregselthe ;Otal
amongst the processors, the data selection phase can also cution time of the simulation. This is not desirable when
accomplished in parallel with a low overhead sharing the computing resource amongst many users. Visualiza-

Particularly with large datasets, often only a subset of the datio" Olf dgt? fror]p C;L“y a sutl))lset Offtlh © grg clzassqrs mDOlg. p"’g““o”
from the simulation is to be viewed. A versatile method of indi-M2Y '€2d 10 & further probiem ot load balancing. Dedicaling a

cating the minimal amount of data to send is therefore requiredg.Ubset of the allocated processors to rendering may be consid-

This is achieved using a concept borrowed from PORTAL aered, however this would have a considerable impact on the

tool developed at the Argonne National Laboratory [1]. The usewr't'.ng of the code, contrary to one of the above-mentioned
selects the data to send with a call to a library routine in whicﬁje‘c"gn goals. . .

he specifies the size, type and location of the data. This has th% If_ the rgndenng Is to performed on another machine, the
advantage of being rather versatile, and allows the calls to pgnoice exists between the front-end of the T3D (Y-MP) or a

added or removed from the code without any modification to thegraphics workstation connected to the network. For the present
rest of the program work, the second of these choices has been selected for a number

of reasons:
Data Transfer « there are more visualization packages available on worksta-

Since the data selection and rendering phases are performedyjons and thus a higher probability that a suitable one
on different computer systems, a data transfer phase must be already exists,
undertaken. Transfer of data from the T3D to the visualization
computer system on the local network is undertaken using UNIX at our site, the Y'N.IP IS heaV|Iy. loaded, whereas essentially
sockets [2]. This method was chosen over message passing (s ededlcated workstations are available,
e.g. [3]) for the following reasons: « if the rendering was done on the Y-MP, the image would still

» sockets can be manipulated without any explicit use of the have to be transferred elsewhere for displaying

front-end machine of the T3D (i.e. Y-MP) — the system calls* compatibility of IEEE floating-point formats on the T3D and
are still handled by the Y-MP, but in a completely transparent Workstations (the Y-MP uses Cray floating-point format),

manner, * the successor to the T3D system does not require a front-end,

» the message passing library needs to be installed on eash as a design feature, this tool should be made available on as
machine that communicates with others — sockets are a part large a number of different machines as possible,

of sta.ndard UNIX, and are therefore available on all UNIX , graphics workstations are quite common at sites that have
machines, parallel machines, and it should be possible to take advan-
* message passing uses sockets as its underlying transfer tage of their hardware that often has rendering power equiva-
mechanism, so the direct use of sockets should avoid the lent to many general purpose processors such as on the T3D.

extra overhead required for buffers and daemons. When searching for a suitable rendering tool, an obvious

Using sockets for data transfer between the T3D and a remotandidate was the commercial visualization package Tecplot [6].
workstation over Ethernet, transfer rates have been measured T{éis package has been chosen by the Fluid Mechanics Labora-
Mbits per second) that are approximately half of the maximumtory at the EPFL as its standard visualization tool, since it is
available bandwidth. Further discussion on communicationcapable of generating the types of plots needed with a conve-
issues involved with the TPview tool can be found in [4]. nient input format, and because it is available on virtually all

In our local T3D configuration, it is currently not possible to common single-processor machines. Tecplot can use datasets
open more than 16 output sockets at one time. This means that@mprised of multiple zones, corresponding directly to data
most 16 (and often fewer) processors can transfer data to trdistributions employed on a parallel system, each processor
remote workstation per iteration. This problem has been overeontaining a “block” or multiple blocks of the global dataset.
come by re-grouping the entire dataset onto a subset of proces- A non-negligible advantage of Tecplot for the rendering
sors, which is then involved in the data transfer. This idea can iphase lies in the fact that the immediate target user-community

CUG 1996 SpringProceedings 173

for TPview is already familiar with Tecplot. Our experience haswhich case it is called global value), or whose value can be
also demonstrated that Tecplot has a higher throughput thadifferent on different processorsl@ral value), that is updated
commonly employed Modular Visualization Environments on the screen at each send iteration.
(MVE), such as AVS or Explorer [7]. Tecplot is delivered with As a first step, the user describes the user interface through
an Inter-Process Communication (IPC) library that allows acalls to the TPV library. This includes details on items such as:
user-written program to employ Tecplot as a slave, by sending the set of parameters available for modification during the visu-
commands and by passing data generated at run-time. alization by means of sliders, and the set of display values. Data
. selection is then undertaken, again using a series of calls to the
Display TPV library
Ideally the simulation results should be displayed either on a S
The visualization process starts by one processor of the T3D

framebuffer connected to the T3D, or on an X-Windows display.

The use of a framebuffer provides potentially higher visualiza-Sendlrlg a request to the TPview daemon on the remote worksta-

tion throughput. However, while a framebuffer would generallyt'on' which uses the arguments of this request to start the TPview

be located at a distance from the user's office, the X-WindowénOdUIe' This program then starts, initializes a shared memory
' egment between Tecplot and itself using the IPC library, and

display can be placed on the user's desk. In addition, a fram& . A

buffer may not be available on the parallel system. (Indeed thtgtarts the user interface module. It then initializes a socket from
T3D system at the EPFL employed for the present study does n ‘?'f t? a Tf’hD processor, ?d waits for SOCk:: tch(_)nnctactlon(sj t?
have an attached framebuffer.) For these reasons, and also sifftlve from the various sending processors. Al this stage, data
tput sockets to TPview are initialized. All initialization done

a goal of the project was to produce a tool that is accessible to %Jth' tep. including th iulati f Kets. is t i
many users as possible, the display phase is handled usit thle?ljsee?, Inciuding the manipulation of SOCKELS, Is transparen

X-Windows. . . L .

At each send iteration, the T3D application makes a library
call to send a new data subset via the sockets to TPview, which
then writes the data into the shared memory segment and updates

A schematic diagram of the layout of the TPview tool is any parameters or display values. It then instructs Tecplot to
presented in Fig. 1. As introduced above, three differentender the newly received data. At any time during processing,
computer systems are employed: a high-performance paralléhe user can interact via the user interface module to send any
system (Cray T3D), a graphics workstation for rendering and amser input to TPview, which will then forward it to the T3D
X-Windows display. using its output socket. All output from the user interface

Before describing the operation of the system, some termimodule and from Tecplot can be displayed on any X-Windows
nology needs to be defined. Bsrameteywe mean any variable display by setting the appropriate value for EHEPLAY envi-
in the user's code that is modifiable through the user interface. fonment variable.
display values a variable, either common to all processors (in The TPV library also has the following features:

TPview Description

CRAY T3D

Workstation
900

TPview
maodule

user
interface

Figure 1: Schematic diagram of TPview.

174 CUG 1996 SpringProceedings

* in a case where only the data from certain processors are of CALL TPSendCommand(WRITEBITDUMP,
interest, the user can work with a subset of the entire dataset; & "~user/cascade.rm"”)

this could leave some processors free to do other work, ELSE

* 8-byte entities from the T3D are converted into 4-byte enti- Eﬁngll_:TPSendCommand(APPENDBITDUMP,O)
ties before sending to the remote machine, since worksta- ENDDO
tions normally work with 32-bit IEEE data — this also CALL TPEnd()

decreases the transmission time,

* an option exists to suppress any user interface, in which casggyre 2: Code segment using the TPV library.
the workstation is treated as a slave, and no synchronization
between it and the T3D is necessary,

» callable from C and Fortran code.

A display value is defined with the next callT®Display-
Value. In this case, a local variablesid is contained on each

. . .. processor. This value is to be displayed with the title "Residual”,
To illustrate the use of TPview, a code segment containing . . .
. . S . ith at each send iteration the root mean square calculated and
calls to the TPV library is shown in Fig. 2. In this example, each

processor has a subset (corresponding to a zone or block) ofg;:aasf?rll?éeg tct)héwgogscslg]a%grl]?ciﬁsll:iA sze;:oorniedlsr)ol S;l \\//E;Irlij:b;:
distributed array containing a multi-component physical vari- y 9 9: 9

able. The data is stored in a local array callizd vector Th t call t6TPZ invol the dat lecti h
containing five two-dimensional variables, each of gtien by € next call tof"zone Involves he data selection phase.
The arguments are defined as follows: the zone or block number;

ydim . : .)
During the visualization loop, one T3D processor needs tothe data type to be sent (i.e. real, integer, etc.); the X, ¥ and Z

communicate with the workstation in order to receive feedbaclg'menSIcmS of the source array; a flag to indicate the dimension

from the user. This processor will then broadcast this informa-" which the variables can be found in the source array; the size

tion to all processors in the group. This processor is called th8f the first dimension of the source array; the number of vari-

mastermprocessor. The call fIi°PMaster determines which of the ables to send from the source array (in this case, variables 1, 2
processors will be the master. For load balancing reasons, ﬂnd 3 are sent, corresponding to the pressure and the X and ¥

should normally be the processor that has the least Computgpmponents of thg velocity vector); and finally a pointer to the
tional work to perform. If the user omits the call to TPMaster, goource array. Multiple zones may be defined per processor, and

master is automatically selected. The argument given can eith&”’1Ch processor may have a dn‘.ferent number of zones.
be a PVM task id, or (in the case of the T3D) a processor The TPSetSendinterval routine call sets the frequency at
number ’ which datasets are actually sent to the workstation. Usually the

The call to TPParameter fully describes the manner in time necessary to calculate one iteration is much smaller than the
which the user may interact with the chosen variable. In thi§Irne needed for Tecplqt to rgnder one image. If the send !”tefva'
case, a slider is created with values ranging from 1.0 to 20 {5 set too small, the simulation will wait until the rendering is
(with 1 decimal place), which will automatically control the completed before sending a new dataset. Thus it is the user's

value of the variablefl . The title of the slider will be set to the '€SPonsibllity to estimate an appropriate refresh rate. The send
string "CFL" interval is by default always available as a parameter. The

INCLUDE ‘tpview.inc default send interval is 1, however its value can also be set via a

REAL viz_vector(5,xdim,ydim) TPParameter call. . ,
The call toTPControl determines whether any special user

CALL TPMaster(pvm_tid(1))
CALL TPParameter(200,10,1,cfl,"CFL")
CALL TPDisplayValue(2,TP_LOCAL,TP_RMS,
& resid,"Residual™)
CALL TPDisplayValue(2, TP_GLOBAL,TP_AS_IS,
& ¢sq,"C squared")
CALL TPZone(blk_no, TP_REAL,xdim,ydim,1,
& TP_FIRST_DIM,5,3,viz_vector)
CALL TPSetSendInterval(15)
CALL TPControl(TP_ON)
CALL TPStart(TP_ACTIVE,"~user/tpv/ITPCON-
FIG")
DO n_iter=1,n_iter_max
CALL computation(update viz_vector)
CALL TPSendData(n_iter,result)
IF (result.NE.1) CALL TPENd()
IF (n_iter.EQ.1) THEN

interface is created; by default it is on. In this mode, communi-
cations between the workstation and the T3D are synchronized.
If the user chooses to have no control, no communication
between the master and TPview is necessary, so the simulation
data is sent whenever it is ready without having to wait for the
previous dataset to be processed. If, however, the user sends a
new dataset before TPview is ready to receive, the Y-MP
front-end will buffer the data until its buffers are full. When this
happens, if a new dataset is sent, the T3D process will have to
wait until buffer space has been freed on the Y-MP. This
phenomenon is termesturation

At this point, the system can be started withTtR&tart call.
The TPview module is created, which in turn starts Tecplot and
the user interface module. The data collected in the previous
TPV library calls are then transmitted to the workstation, and the
socket connections are made. At this stage there can be a delay

CUG 1996 SpringProceedings 175

of a few seconds during which the simulation waits for aone for data input. These steps can be called individually if, for
message from the TPview module, confirming that it hasexample, the user wants to update the parameters more
finished its initialization. TPStart has two arguments: thefrequently than he wants to send data.

processor state, and the path of a configuration file. TPSendData returns a value which informs the simulation

The configuration file contains the name of the machine orwhether TPview has exited. This would be the case if the user
which to start TPview and the path of a configuration file on theselects Quit through the user interface, or some unexpected error
remote workstation, which TPview needs to configure itself. occurs. At this point, any calls to the TPV library (other than

The possible states of a T3D processor are represented in FigPEnd — see below) are ignored. Thus, the simulation continues
3. A processor can either be ACTIVE or NOT_ACTIVE. Ifitis in its normal mode, without visualization.

NOT_ACTIVE, it will not be involved further in the visualiza- At any time after initialization, the user may send commands
tion process. The set of ACTIVE processors can further belirectly to Tecplot via a call t§PSendCommand The code
divided into two groups: SENDERs and DISTRIBUTORSs. A segment in Fig. 2 requests that a bitdump of the Tecplot window
DISTRIBUTOR will have local data but no socket connection. be created for the first iteration, and that bitdumps created for
A SENDER is a processor that will send its local data (if any)subsequent iterations be appended to it. This is often used when
plus (optionally) any data received from a DISTRIBUTOR running a long simulation to produce a movie of the results. The
through its socket to the workstation. For each send iterationst of possible commands is contained in Chapter 27 of [6].
datais re-grouped onto the set of SENDERSs before being senton When TPview is no |onger required' each active processor
to TPview. Note here that it is not requirEd for a SENDER tOCa”S TPEnd, which performs some C|eaning and closes the
have any of its own data to send, and that the master process@fcket connections. At this point, the simulation exits normally,
can be a member of any one of the sets. and the user is left with a usual session of Tecplot with the last
received dataset displayed.

To illustrate the type of graphical interface the user would
observe, the code segment in Fig. 2 has been implemented into
a parallel multi-block solver [8] to compute the incompressible
flow through a turbine cascade. For this example, 16 ACTIVE
processors were employed with 8 SENDERs. A pressure
ACTIVE contour plot with superimposed flow streamlines for a
two-dimensional slice through an inter-blade channel is
rendered for each send iteration, according to a user-defined
style file. (The style file can be changed during the course of the
simulation by sending a READSTYLESHEET command with
the TPSendCommand call.)

For the present example, the computational mesh does not
change during the simulation. To avoid unnecessary data
transfer, the mesh coordinates are therefore stored in a file on the
workstation that is read during initialization. Little effort would
be required to handle adaptive mesh applications if this is

If the user does not explicitly define the set of SENDERs andlesired.

DISTRIBUTORSs, it will automatically be done for him. This is In addition to the standard window, a separate window is
undertaken by choosing TP_SEND_PES (an environment variebserved on the left hand side of Fig. 4, containing a menu of
able) SENDERs from the set of ACTIVE processors. Currently,commands, a set of display values and a set of parameters. Each
the selection criterion is the processors that have the largegtarameter is controlled by a sliding scale. The user is free to
amount of local data. The data on the non-sending processors aredify the corresponding variable on the T3D, and if the T3D
then distributed to the SENDERs so that each SENDER hagrogram changes the value of that variable, the scale value will
approximately the same amount of data to transmit to the workalso change. The iteration number of the currently displayed

DISTRIBUTORS

socket connections to graphics workstation

Figure 3. Processor states defined for the TPV library.

station. image is shown as the first entry of the display values.
Following this initialization stage, the program now runs as Each user-defined display value has a title field, a value field,
usual, updating the contents wiz_vector . When it is a method menu and a plot menu. The value is calculated

required that data be sent, a callT®SendDatais made, with according to the current method selected, and depending on
an argument specifying the corresponding iteration number. It isvhether the corresponding variable is local or global. The rms
at this point that the dataset is re-grouped on the sending procegalue of the local variable labelled “Residual” and the value of
sors, sent on the sockets, and also when any parameters tbe global variable “C squared” are displayed in Fig. 4. The plot
control from the user interface are updated. TPSendData is imenu allows the user to follow the variation of these values
fact implemented as two distinct steps — one for data output anduring the simulation by invoking separate plot windows.

176 CUG 1996 SpringProceedings

Currently, a global value can be plotted versus the iterationinfluence the visualization has on the execution time of the simu-
number, while a local value can be plotted versus the iteratiotation has also been investigated.
number, or the values for each zone can be plotted versus the |n the case of TPview, the bottleneck of the system is gener-
zone number. ally the time needed for Tecplot to render an image. The user
The menu of commands consists of buttons with thetherefore has to make an estimation of how long Tecplot needs
following functionalities: to produce an image, and the time needed for an iteration of the
) simulation on the T3D. An appropriate send frequency can then
’ _l?;gaig/ gltlaﬁr]tbbgtgpr)ezzlr?(?ir:glzlr?;t:joe?téae?g:;i Itiseitnetr;otig:w e chosen so that the time nee_:ded _for the simulation to calculate
number. WhenDetach is pressed, the button changes to t_he corres_pondlng number of |f[er_at|ons is at least as long as the
Attach Which if pressed, will in’struct the simulation to time requwec_j by T_ecplo_t._lf this is not .the case, the execution
’ . ' time of the simulation will increase significantly.
recommence sending data.) e ,
Studies conducted to date have indicated that for operation
* Step: pause at the current image (this also pauses the simulghen saturation does not occur, the overhead due to visualiza-
tion on the T3D) when pressed for the first time. For eachion is minimal. However, saturation — due to e.g. an excessive
subsequent press the next iteration dataset will be sent arfine for rendering a complex image — can result in a significant
rendered. overhead (up to 30% has been measured). When dealing with
« Pause/ContinuePauseis the equivalent to the firStep large dgtasets, the v'isualization qverheaq can bgcome very large
press. After pressingtepor Pause this button becomes ©V€N without saturation, thus the interest in sending only a subset
Continue PressingContinuereturns the simulation to nor- ©f the dataset.
mal processing mode (i.e. send data without waiting for a Calls to the TPV library may also require tuning to take into
message from TPview). account:

- Quit: close all connections with the T3D, release control of,* Whether the simulation can be balanced so that processors
and exit TPview. After pressinQuit, the simulation contin- with a greater computational work can employ other proces-
ues execution but will no longer send information to TPview. ~Sors to send their data (this is done by designating certain
Tecplot remains open, so the user can manipulate the data Processors as SENDERs or DISTRIBUTORs explicitly),

from the last image rendered. whether by increasing the number of sending processors

(TP_SEND_PES), the overhead is decreased (for a discus-

Performance Issues sion on this topic, see [4]),

As described above, TPview appears to fulfil the function-» whether there is a certain buffer size above which send per-
ality design goals set out at the beginning of the project. The formance decreases.

Residml vs Zane

G
A ez=diial annd

(U] e = |

T squared k] R
e l_ resiResisunl ¥ vs [Reretion
i el |

15
Interval

Figure 4: TPview user interface

CUG 1996 SpringProceedings 177

When dealing with very large datasets, the time required byConclusions
to render the image can become overwhelming, and it may there-

fore be preferable to consider the following options: It is considered that the on-line visualization tool, TPview,

i _ that has been developed fulfils the original design goals. It has
+ reduce the volume of data to render by only displaying & parminimal impact on the application code, in terms of both code

ticular area of interest, or by sending fewer dataset variablegygjfication and execution time, while being sufficiently flex-

» reduce the complexity of the image to be rendered, ible and easy to use. In particular, current users need acquire
Iiny minimal additional expertise to employ TPview.

The concept of distributed visualization described in this
paper could be adapted in a relatively straightforward manner
* perform the rendering on the parallel system (subject to softfor other applications for which the datasets are not mesh based.

¢ increase the rendering speed by running on a more perfo
mant computer system,

ware availability), For example, a molecular dynamics tool could be developed by
« perform batch visualization. replacing Tecplot with a visualization tool that renders mole-
cules.
Future Improvements While TPview is not designed to be the optimal tool for all

c | L | he T3D (ie. b visualization needs, experience to date indicates that it should be
urrently, communication internal to the (Le. etweenvery useful for a wide range of scientific visualization. In partic-

processors) is performed using PVM. Itis desirable for the TPVuIar, it has been found to reduce considerably the inherent diffi-

library to be able to use the optimum communication protocol, . in the analysis of large datasets generated by numerical

acco_rdir_lg tothe ha_rdware onwhichitis r“””ir_‘g- For this an M_Plsimulations on a high-performance parallel computer system.
version is also envisaged, plus a socket version for communica-

tion within a network of workstations. A previous version of Acknowledgements
TPview, using PVM, has been ported to Silicon Graphics and
Hewlett Packard workstations, in addition to the T3D.

Further experimentation with different algorithms for the
choice of the sending and distributing processors may be usef
The TPV library user should be provided with a choice of
methods in order to minimize the visualization overhead and
thus optimize the overall performance of his simulation code. References

The possibilities available in the user interface should be _ N

ded to allow. for example. a user to manipulate a datas[e]’g J.S. Rowlan, B.T. WightmanPORTAL: A communication library for
expande , ple, pule . run-time visualization of distributed, asynchronous d&t@ceedings of the
(e.g. zoom, rotate) after having paused at a given image. Scalable High-Performance Computing Conference (Knoxville, May 1994),
Currently, once all the zones are defined and initialization has__ PP- 350-356.

d. it i t ible to defi d thgll SunOS 5.3 Network Interfaces Programmer's Guitepter 8, Sun Micro-
commenced, It IS not possible to define new zones or send o systems, Inc., November 1993.

datasets than that which is already being sent. We would like t@] R. HaimespV3: A distributed system for large-scale unsteady CFD visual-
be able to define collections of zones with a given number of ization AIAA Paper 94-0321 (Reno, January 1994).

- . . S. Williams, M.L. Sawley, D. Cobu©n-line visualization for scientific ap-
variables, and to change the zones being viewed by the press 8k plications on the T3DEPFL Supercomputing Review, Nov. 1995, pp.

a button. 45-50.
TPview. in its current form. is not designed to render Very[S] C. Kirchhof, Cray Animation TheaterProceedings of the 34th Cray Users

. . Group (Tours, October 1994), pp. 114-118.
large datasets, or multiple frames per second. Parallel machm%? Tecplot User's Manual, Version &mtec Engineering, Inc., 1994.

will always be able to produce more data than workstations cafy] Modular Visualization Environments: Past, Present and FytGemputer
handle. To solve these more visualization intensive problems]gff’iBPh'(;?S»Zg ’éo-slthYDlglgf’- 4 and ML Sawkesrallel muli-block

. . . byrae, D. Cobut, J.-D. Reymona an .L. Sawiegrallel multi-ploci
we need to have the functionality and ease of use of Tecplot computation of incompressible flows for industrial applicatjdPsoceed-
the parallel computer system. ings of Parallel CFD '95 (Pasadena, June 1995).

This study was undertaken within the framework of the Cray
Research — EPFL Parallel Application Technology Program, and
u\ivas performed using the T3D system at the EPFL.
" Information on this project can be obtained at the URL:
http://imhefwww.epfl.ch/Imf/software/tpview.html

178 CUG 1996 SpringProceedings

