

172

CUG 1996 Spring

 Proceedings

TPview: An On-line Visualization Tool and Its Application
to CFD on the Cray T3D

Steve Williams

, Service Informatique Central, Ecole Polytech-
nique Fédérale de Lausanne, Switzerland,

David Cobut

and

Mark L. Sawley

, Institut de Machines Hydrauliques et de Méca-
nique des Fluides, Ecole Polytechnique Fédérale de Lausanne,
Switzerland

ABSTRACT:

An on-line visualization tool has been developed to overcome the problem of
storing the large amount of data generated by numerical simulations on a high-performance
parallel computer system. Data distributed across multiple processors are sent via UNIX
sockets to a remote graphics workstation for post-processing during the computation cycle. The
tool employs the inter-process communication library for processing the data by the Tecplot
visualization software. Examples of the use of this tool for Computational Fluid Dynamics simu-
lations on the Cray T3D will be presented and various issues associated with its performance
addressed.

Introduction

In the domain of high-performance computing of scientific
simulations, productivity can be greatly increased through the
use of easy-to-use visualization tools. The researcher may be
overwhelmed with the quantity of data produced, and has little
desire to manipulate files of various formats or to learn to use a
variety of tools. In fields such as Computational Fluid
Dynamics (CFD), access to graphic representations of results is
imperative in order to verify the correctness of solutions, to gain
physical insight into the computed flows, and as a means to
present this information to other people.

The process of visualization can be divided into five discrete
phases:

1. Computation

2. Data Selection or Filtering

3. Data Transfer (if necessary)

4. Rendering

5. Display

Different visualization approaches can be categorized
according to how each of the above phases is accomplished. In
particular, for a heterogeneous computer network such as
considered in the present study, it is important to distinguish on
which platform each phase is to be performed.

For lack of a more convenient method, users often resort to a

batch visualization

 approach. This consists of saving datasets at
various times during the simulation. After the simulation has
completed, the files are manipulated into an appropriate format,
and the datasets entered one at a time into a visualization
package, usually on a graphics workstation. This approach has
a number of drawbacks, associated with the time needed to
manipulate the data into the appropriate format, and the amount
of disk space required to save all the intermediate steps. In addi-
tion, if the results of the simulation that requires many minutes
or hours are incorrect at the beginning, batch visualization does
not provide a detection means that allows termination of the
execution to avoid wasting computational resources. Finally,
the analysis of CFD simulations often requires an animation of
the computed flow and not simply static images.

This paper describes the development of a tool, TPview, to
allow

on-line visualization

 (or run-time visualization) for which
the computation and visualization are performed concurrently.
In our case, data computed on the Cray T3D is rendered on a
remote graphics workstation (Silicon Graphics Indigo2). The
goals were to build a versatile tool that would:

• have as little impact as possible on the original simulation,
that is, the execution time overhead due to the visualization
be minimal,

CUG 1996 Spring

 Proceedings

173

• require the user to make as few changes as possible to the
simulation code,

• be composed of as many “off-the-shelf” components as pos-
sible,

• enable the user to influence interactively the behaviour of the
simulation.

TPview Selection Considerations

Computation and Data Selection

The computation phase is to be done by the user's code on the
Cray T3D. Since the data to be visualized is usually distributed
amongst the processors, the data selection phase can also be
accomplished in parallel with a low overhead.

Particularly with large datasets, often only a subset of the data
from the simulation is to be viewed. A versatile method of indi-
cating the minimal amount of data to send is therefore required.
This is achieved using a concept borrowed from PORTAL, a
tool developed at the Argonne National Laboratory [1]. The user
selects the data to send with a call to a library routine in which
he specifies the size, type and location of the data. This has the
advantage of being rather versatile, and allows the calls to be
added or removed from the code without any modification to the
rest of the program.

Data Transfer

Since the data selection and rendering phases are performed
on different computer systems, a data transfer phase must be
undertaken. Transfer of data from the T3D to the visualization
computer system on the local network is undertaken using UNIX
sockets [2]. This method was chosen over message passing (see
e.g. [3]) for the following reasons:

• sockets can be manipulated without any explicit use of the
front-end machine of the T3D (i.e. Y-MP) – the system calls
are still handled by the Y-MP, but in a completely transparent
manner,

• the message passing library needs to be installed on each
machine that communicates with others – sockets are a part
of standard UNIX, and are therefore available on all UNIX
machines,

• message passing uses sockets as its underlying transfer
mechanism, so the direct use of sockets should avoid the
extra overhead required for buffers and daemons.

Using sockets for data transfer between the T3D and a remote
workstation over Ethernet, transfer rates have been measured (4
Mbits per second) that are approximately half of the maximum
available bandwidth. Further discussion on communication
issues involved with the TPview tool can be found in [4].

In our local T3D configuration, it is currently not possible to
open more than 16 output sockets at one time. This means that at
most 16 (and often fewer) processors can transfer data to the
remote workstation per iteration. This problem has been over-
come by re-grouping the entire dataset onto a subset of proces-
sors, which is then involved in the data transfer. This idea can in

fact be exploited by having those processors that have less calcu-
lation to perform open the sockets and communicate with the
remote machine. The user has control over how many sockets
are opened by setting the value of the TP_SEND_PES environ-
ment variable.

Rendering

It may appear appropriate to perform the rendering phase on
the T3D (see e.g. [5]). However, no parallel renderers are
currently available that provide the versatility that is required for
our applications. A second problem with this approach is that
performing a rendering phase could greatly increase the total
execution time of the simulation. This is not desirable when
sharing the computing resource amongst many users. Visualiza-
tion of data from only a subset of the processors in our partition
may lead to a further problem of load balancing. Dedicating a
subset of the allocated processors to rendering may be consid-
ered, however this would have a considerable impact on the
writing of the code, contrary to one of the above-mentioned
design goals.

If the rendering is to performed on another machine, the
choice exists between the front-end of the T3D (Y-MP) or a
graphics workstation connected to the network. For the present
work, the second of these choices has been selected for a number
of reasons:

• there are more visualization packages available on worksta-
tions, and thus a higher probability that a suitable one
already exists,

• at our site, the Y-MP is heavily loaded, whereas essentially
dedicated workstations are available,

• if the rendering was done on the Y-MP, the image would still
have to be transferred elsewhere for displaying

• compatibility of IEEE floating-point formats on the T3D and
workstations (the Y-MP uses Cray floating-point format),

• the successor to the T3D system does not require a front-end,

• as a design feature, this tool should be made available on as
large a number of different machines as possible,

• graphics workstations are quite common at sites that have
parallel machines, and it should be possible to take advan-
tage of their hardware that often has rendering power equiva-
lent to many general purpose processors such as on the T3D.

When searching for a suitable rendering tool, an obvious
candidate was the commercial visualization package Tecplot [6].
This package has been chosen by the Fluid Mechanics Labora-
tory at the EPFL as its standard visualization tool, since it is
capable of generating the types of plots needed with a conve-
nient input format, and because it is available on virtually all
common single-processor machines. Tecplot can use datasets
comprised of multiple zones, corresponding directly to data
distributions employed on a parallel system, each processor
containing a “block” or multiple blocks of the global dataset.

A non-negligible advantage of Tecplot for the rendering
phase lies in the fact that the immediate target user-community

174

CUG 1996 Spring

 Proceedings

for TPview is already familiar with Tecplot. Our experience has
also demonstrated that Tecplot has a higher throughput than
commonly employed Modular Visualization Environments
(MVE), such as AVS or Explorer [7]. Tecplot is delivered with
an Inter-Process Communication (IPC) library that allows a
user-written program to employ Tecplot as a slave, by sending it
commands and by passing data generated at run-time.

Display

Ideally the simulation results should be displayed either on a
framebuffer connected to the T3D, or on an X-Windows display.
The use of a framebuffer provides potentially higher visualiza-
tion throughput. However, while a framebuffer would generally
be located at a distance from the user's office, the X-Windows
display can be placed on the user's desk. In addition, a frame-
buffer may not be available on the parallel system. (Indeed, the
T3D system at the EPFL employed for the present study does not
have an attached framebuffer.) For these reasons, and also since
a goal of the project was to produce a tool that is accessible to as
many users as possible, the display phase is handled using
X-Windows.

TPview Description

A schematic diagram of the layout of the TPview tool is
presented in Fig. 1. As introduced above, three different
computer systems are employed: a high-performance parallel
system (Cray T3D), a graphics workstation for rendering and an
X-Windows display.

Before describing the operation of the system, some termi-
nology needs to be defined. By

parameter

, we mean any variable
in the user's code that is modifiable through the user interface. A

display value

 is a variable, either common to all processors (in

which case it is called a

global

 value), or whose value can be
different on different processors (a

local

 value), that is updated
on the screen at each send iteration.

As a first step, the user describes the user interface through
calls to the TPV library. This includes details on items such as:
the set of parameters available for modification during the visu-
alization by means of sliders, and the set of display values. Data
selection is then undertaken, again using a series of calls to the
TPV library.

The visualization process starts by one processor of the T3D
sending a request to the TPview daemon on the remote worksta-
tion, which uses the arguments of this request to start the TPview
module. This program then starts, initializes a shared memory
segment between Tecplot and itself using the IPC library, and
starts the user interface module. It then initializes a socket from
itself to a T3D processor, and waits for socket connections to
arrive from the various sending processors. At this stage, data
output sockets to TPview are initialized. All initialization done
at this step, including the manipulation of sockets, is transparent
to the user.

At each send iteration, the T3D application makes a library
call to send a new data subset via the sockets to TPview, which
then writes the data into the shared memory segment and updates
any parameters or display values. It then instructs Tecplot to
render the newly received data. At any time during processing,
the user can interact via the user interface module to send any
user input to TPview, which will then forward it to the T3D
using its output socket. All output from the user interface
module and from Tecplot can be displayed on any X-Windows
display by setting the appropriate value for the

DISPLAY

 envi-
ronment variable.

The TPV library also has the following features:

Figure 1:

 Schematic diagram of TPview.

CUG 1996 Spring

 Proceedings

175

• in a case where only the data from certain processors are of
interest, the user can work with a subset of the entire dataset;
this could leave some processors free to do other work,

• 8-byte entities from the T3D are converted into 4-byte enti-
ties before sending to the remote machine, since worksta-
tions normally work with 32-bit IEEE data – this also
decreases the transmission time,

• an option exists to suppress any user interface, in which case
the workstation is treated as a slave, and no synchronization
between it and the T3D is necessary,

• callable from C and Fortran code.

To illustrate the use of TPview, a code segment containing
calls to the TPV library is shown in Fig. 2. In this example, each
processor has a subset (corresponding to a zone or block) of a
distributed array containing a multi-component physical vari-
able. The data is stored in a local array called

viz_vector

containing five two-dimensional variables, each of size

xdim

 by

ydim

.
During the visualization loop, one T3D processor needs to

communicate with the workstation in order to receive feedback
from the user. This processor will then broadcast this informa-
tion to all processors in the group. This processor is called the

master

 processor. The call to

TPMaster

 determines which of the
processors will be the master. For load balancing reasons, it
should normally be the processor that has the least computa-
tional work to perform. If the user omits the call to TPMaster, a
master is automatically selected. The argument given can either
be a PVM task id, or (in the case of the T3D) a processor
number.

The call to

TPParameter

 fully describes the manner in
which the user may interact with the chosen variable. In this
case, a slider is created with values ranging from 1.0 to 20.0
(with 1 decimal place), which will automatically control the
value of the variable

cfl

. The title of the slider will be set to the
string "CFL".

 INCLUDE 'tpview.inc'
 REAL viz_vector(5,xdim,ydim)

 CALL TPMaster(pvm_tid(1))
 CALL TPParameter(200,10,1,cfl,"CFL")
 CALL TPDisplayValue(2,TP_LOCAL,TP_RMS,
 & resid,"Residual")
 CALL TPDisplayValue(2,TP_GLOBAL,TP_AS_IS,
 & csq,"C squared")
 CALL TPZone(blk_no, TP_REAL,xdim,ydim,1,
 & TP_FIRST_DIM,5,3,viz_vector)
 CALL TPSetSendInterval(15)
 CALL TPControl(TP_ON)
 CALL TPStart(TP_ACTIVE,"~user/tpv/TPCON-
FIG")
 DO n_iter=1,n_iter_max
 CALL computation(update viz_vector)
 CALL TPSendData(n_iter,result)
 IF (result.NE.1) CALL TPEnd()
 IF (n_iter.EQ.1) THEN

 CALL TPSendCommand(WRITEBITDUMP,
 & "~user/cascade.rm")
 ELSE
 CALL TPSendCommand(APPENDBITDUMP,0)
 END IF
 ENDDO
 CALL TPEnd()

Figure 2: Code segment using the TPV library.

A display value is defined with the next call to

TPDisplay-
Value

. In this case, a local variable

resid

 is contained on each
processor. This value is to be displayed with the title "Residual",
with at each send iteration the root mean square calculated and
displayed to two decimal places. A second display value is
defined by the code segment in Fig. 2 for the global variable

csq

.
The next call to

TPZone

 involves the data selection phase.
The arguments are defined as follows: the zone or block number;
the data type to be sent (i.e. real, integer, etc.); the X, Y and Z
dimensions of the source array; a flag to indicate the dimension
in which the variables can be found in the source array; the size
of the first dimension of the source array; the number of vari-
ables to send from the source array (in this case, variables 1, 2
and 3 are sent, corresponding to the pressure and the X and Y
components of the velocity vector); and finally a pointer to the
source array. Multiple zones may be defined per processor, and
each processor may have a different number of zones.

The

TPSetSendInterval

 routine call sets the frequency at
which datasets are actually sent to the workstation. Usually the
time necessary to calculate one iteration is much smaller than the
time needed for Tecplot to render one image. If the send interval
is set too small, the simulation will wait until the rendering is
completed before sending a new dataset. Thus it is the user's
responsibility to estimate an appropriate refresh rate. The send
interval is by default always available as a parameter. The
default send interval is 1, however its value can also be set via a
TPParameter call.

The call to

TPControl

 determines whether any special user
interface is created; by default it is on. In this mode, communi-
cations between the workstation and the T3D are synchronized.
If the user chooses to have no control, no communication
between the master and TPview is necessary, so the simulation
data is sent whenever it is ready without having to wait for the
previous dataset to be processed. If, however, the user sends a
new dataset before TPview is ready to receive, the Y-MP
front-end will buffer the data until its buffers are full. When this
happens, if a new dataset is sent, the T3D process will have to
wait until buffer space has been freed on the Y-MP. This
phenomenon is termed

saturation

.
At this point, the system can be started with the

TPStart

 call.
The TPview module is created, which in turn starts Tecplot and
the user interface module. The data collected in the previous
TPV library calls are then transmitted to the workstation, and the
socket connections are made. At this stage there can be a delay

176

CUG 1996 Spring

 Proceedings

of a few seconds during which the simulation waits for a
message from the TPview module, confirming that it has
finished its initialization. TPStart has two arguments: the
processor state, and the path of a configuration file.

The configuration file contains the name of the machine on
which to start TPview and the path of a configuration file on the
remote workstation, which TPview needs to configure itself.

The possible states of a T3D processor are represented in Fig.
3. A processor can either be ACTIVE or NOT_ACTIVE. If it is
NOT_ACTIVE, it will not be involved further in the visualiza-
tion process. The set of ACTIVE processors can further be
divided into two groups: SENDERs and DISTRIBUTORs. A
DISTRIBUTOR will have local data but no socket connection.
A SENDER is a processor that will send its local data (if any)
plus (optionally) any data received from a DISTRIBUTOR
through its socket to the workstation. For each send iteration,
data is re-grouped onto the set of SENDERs before being sent on
to TPview. Note here that it is not required for a SENDER to
have any of its own data to send, and that the master processor
can be a member of any one of the sets.

Figure 3. Processor states defined for the TPV library.

If the user does not explicitly define the set of SENDERs and
DISTRIBUTORs, it will automatically be done for him. This is
undertaken by choosing TP_SEND_PES (an environment vari-
able) SENDERs from the set of ACTIVE processors. Currently,
the selection criterion is the processors that have the largest
amount of local data. The data on the non-sending processors are
then distributed to the SENDERs so that each SENDER has
approximately the same amount of data to transmit to the work-
station.

Following this initialization stage, the program now runs as
usual, updating the contents of

viz_vector

. When it is
required that data be sent, a call to

TPSendData

 is made, with
an argument specifying the corresponding iteration number. It is
at this point that the dataset is re-grouped on the sending proces-
sors, sent on the sockets, and also when any parameters or
control from the user interface are updated. TPSendData is in
fact implemented as two distinct steps – one for data output and

socket connections to graphics workstation

NOT_ACTIVE

ACTIVE

SENDERs

DISTRIBUTORs

one for data input. These steps can be called individually if, for
example, the user wants to update the parameters more
frequently than he wants to send data.

TPSendData returns a value which informs the simulation
whether TPview has exited. This would be the case if the user
selects Quit through the user interface, or some unexpected error
occurs. At this point, any calls to the TPV library (other than
TPEnd – see below) are ignored. Thus, the simulation continues
in its normal mode, without visualization.

At any time after initialization, the user may send commands
directly to Tecplot via a call to

TPSendCommand

. The code
segment in Fig. 2 requests that a bitdump of the Tecplot window
be created for the first iteration, and that bitdumps created for
subsequent iterations be appended to it. This is often used when
running a long simulation to produce a movie of the results. The
list of possible commands is contained in Chapter 27 of [6].

When TPview is no longer required, each active processor
calls

TPEnd

, which performs some cleaning and closes the
socket connections. At this point, the simulation exits normally,
and the user is left with a usual session of Tecplot with the last
received dataset displayed.

To illustrate the type of graphical interface the user would
observe, the code segment in Fig. 2 has been implemented into
a parallel multi-block solver [8] to compute the incompressible
flow through a turbine cascade. For this example, 16 ACTIVE
processors were employed with 8 SENDERs. A pressure
contour plot with superimposed flow streamlines for a
two-dimensional slice through an inter-blade channel is
rendered for each send iteration, according to a user-defined
style file. (The style file can be changed during the course of the
simulation by sending a READSTYLESHEET command with
the TPSendCommand call.)

For the present example, the computational mesh does not
change during the simulation. To avoid unnecessary data
transfer, the mesh coordinates are therefore stored in a file on the
workstation that is read during initialization. Little effort would
be required to handle adaptive mesh applications if this is
desired.

In addition to the standard window, a separate window is
observed on the left hand side of Fig. 4, containing a menu of
commands, a set of display values and a set of parameters. Each
parameter is controlled by a sliding scale. The user is free to
modify the corresponding variable on the T3D, and if the T3D
program changes the value of that variable, the scale value will
also change. The iteration number of the currently displayed
image is shown as the first entry of the display values.

Each user-defined display value has a title field, a value field,
a method menu and a plot menu. The value is calculated
according to the current method selected, and depending on
whether the corresponding variable is local or global. The rms
value of the local variable labelled “Residual” and the value of
the global variable “C squared” are displayed in Fig. 4. The plot
menu allows the user to follow the variation of these values
during the simulation by invoking separate plot windows.

CUG 1996 Spring

 Proceedings

177

Currently, a global value can be plotted versus the iteration
number, while a local value can be plotted versus the iteration
number, or the values for each zone can be plotted versus the
zone number.

The menu of commands consists of buttons with the
following functionalities:

• Detach/Attach: by pressing this button, a signal is sent to the
T3D to tell it to stop sending any data except the iteration
number. When

Detach

 is pressed, the button changes to

Attach

, which, if pressed, will instruct the simulation to
recommence sending data.

• Step: pause at the current image (this also pauses the simula-
tion on the T3D) when pressed for the first time. For each
subsequent press the next iteration dataset will be sent and
rendered.

• Pause/Continue:

Pause

 is the equivalent to the first

Step

press. After pressing

Step

 or

Pause

, this button becomes

Continue

. Pressing

Continue

 returns the simulation to nor-
mal processing mode (i.e. send data without waiting for a
message from TPview).

• Quit: close all connections with the T3D, release control of,
and exit TPview. After pressing

Quit

, the simulation contin-
ues execution but will no longer send information to TPview.
Tecplot remains open, so the user can manipulate the data
from the last image rendered.

Performance Issues

As described above, TPview appears to fulfil the function-
ality design goals set out at the beginning of the project. The

influence the visualization has on the execution time of the simu-
lation has also been investigated.

In the case of TPview, the bottleneck of the system is gener-
ally the time needed for Tecplot to render an image. The user
therefore has to make an estimation of how long Tecplot needs
to produce an image, and the time needed for an iteration of the
simulation on the T3D. An appropriate send frequency can then
be chosen so that the time needed for the simulation to calculate
the corresponding number of iterations is at least as long as the
time required by Tecplot. If this is not the case, the execution
time of the simulation will increase significantly.

Studies conducted to date have indicated that for operation
when saturation does not occur, the overhead due to visualiza-
tion is minimal. However, saturation – due to e.g. an excessive
time for rendering a complex image – can result in a significant
overhead (up to 30% has been measured). When dealing with
large datasets, the visualization overhead can become very large
even without saturation, thus the interest in sending only a subset
of the dataset.

Calls to the TPV library may also require tuning to take into
account:

• whether the simulation can be balanced so that processors
with a greater computational work can employ other proces-
sors to send their data (this is done by designating certain
processors as SENDERs or DISTRIBUTORs explicitly),

• whether by increasing the number of sending processors
(TP_SEND_PES), the overhead is decreased (for a discus-
sion on this topic, see [4]),

• whether there is a certain buffer size above which send per-
formance decreases.

Figure 4: TPview user interface

178

CUG 1996 Spring

 Proceedings

When dealing with very large datasets, the time required by
to render the image can become overwhelming, and it may there-
fore be preferable to consider the following options:

• reduce the volume of data to render by only displaying a par-
ticular area of interest, or by sending fewer dataset variables,

• reduce the complexity of the image to be rendered,

• increase the rendering speed by running on a more perfor-
mant computer system,

• perform the rendering on the parallel system (subject to soft-
ware availability),

• perform batch visualization.

Future Improvements

Currently, communication internal to the T3D (i.e. between
processors) is performed using PVM. It is desirable for the TPV
library to be able to use the optimum communication protocol
according to the hardware on which it is running. For this an MPI
version is also envisaged, plus a socket version for communica-
tion within a network of workstations. A previous version of
TPview, using PVM, has been ported to Silicon Graphics and
Hewlett Packard workstations, in addition to the T3D.

Further experimentation with different algorithms for the
choice of the sending and distributing processors may be useful.
The TPV library user should be provided with a choice of
methods in order to minimize the visualization overhead and
thus optimize the overall performance of his simulation code.

The possibilities available in the user interface should be
expanded to allow, for example, a user to manipulate a dataset
(e.g. zoom, rotate) after having paused at a given image.
Currently, once all the zones are defined and initialization has
commenced, it is not possible to define new zones or send other
datasets than that which is already being sent. We would like to
be able to define collections of zones with a given number of
variables, and to change the zones being viewed by the press of
a button.

TPview, in its current form, is not designed to render very
large datasets, or multiple frames per second. Parallel machines
will always be able to produce more data than workstations can
handle. To solve these more visualization intensive problems,
we need to have the functionality and ease of use of Tecplot on
the parallel computer system.

Conclusions

It is considered that the on-line visualization tool, TPview,
that has been developed fulfils the original design goals. It has
minimal impact on the application code, in terms of both code
modification and execution time, while being sufficiently flex-
ible and easy to use. In particular, current users need acquire
only minimal additional expertise to employ TPview.

The concept of distributed visualization described in this
paper could be adapted in a relatively straightforward manner
for other applications for which the datasets are not mesh based.
For example, a molecular dynamics tool could be developed by
replacing Tecplot with a visualization tool that renders mole-
cules.

While TPview is not designed to be the optimal tool for all
visualization needs, experience to date indicates that it should be
very useful for a wide range of scientific visualization. In partic-
ular, it has been found to reduce considerably the inherent diffi-
culty in the analysis of large datasets generated by numerical
simulations on a high-performance parallel computer system.

Acknowledgements

This study was undertaken within the framework of the Cray
Research – EPFL Parallel Application Technology Program, and
was performed using the T3D system at the EPFL.

Information on this project can be obtained at the URL:
http://imhefwww.epfl.ch/lmf/software/tpview.html

References

[1] J.S. Rowlan, B.T. Wightman,

PORTAL: A communication library for
run-time visualization of distributed, asynchronous data

, Proceedings of the
Scalable High-Performance Computing Conference (Knoxville, May 1994),
pp. 350-356.

[2]

SunOS 5.3 Network Interfaces Programmer's Guide

, Chapter 8, Sun Micro-
systems, Inc., November 1993.

[3] R. Haimes,

pV3: A distributed system for large-scale unsteady CFD visual-
ization

, AIAA Paper 94-0321 (Reno, January 1994).
[4] S. Williams, M.L. Sawley, D. Cobut,

On-line visualization for scientific ap-
plications on the T3D

, EPFL Supercomputing Review,

7

, Nov. 1995, pp.
45-50.

[5] C. Kirchhof,

Cray Animation Theater

, Proceedings of the 34th Cray Users
Group (Tours, October 1994), pp. 114-118.

[6]

Tecplot User's Manual, Version 6

, Amtec Engineering, Inc., 1994.
[7]

Modular Visualization Environments: Past, Present and Future

, Computer
Graphics,

29

, No.2, May 1995.
[8] O. Byrde, D. Cobut, J.-D. Reymond and M.L. Sawley,

Parallel multi-block
computation of incompressible flows for industrial applications

, Proceed-
ings of Parallel CFD '95 (Pasadena, June 1995).

