

186

CUG 1996 Spring

 Proceedings

CRI Distributed File Systems Update
NFS, NFS V3, DCE/DFS and SFS

Brian Gaffey

, Cray Research, Inc., 655-F Lone Oak Drive,
Eagan, Minnesota 55121

ABSTRACT:

This paper provides an update on CRI’s distributed file system products. The
paper covers the current features, planned features and future plans for all of CRI’s distributed
file systems. It covers our UNICOS products and plans as well as our plans for UNICOS/mK

Additionall, each of CRI’s product offerings is compared and contrasted. The paper covers how
each of the product offerings brings an unique advantage to customer problems. Topics covered
include transparent access, performance, reliability, scaling, security, data integrity and stan-
dards.

1 Introduction

 This paper compares the different distributed file system
technologies offered by CRI. An overview of the technologies
is presented by first showing how each contributed to CRI’s
SuperCluster product. The CRI distributed computing frame-
work is presented in order to contrast how the products are
implemented. UNICOS and UNICOS/mK requirements are
also covered. Finally, each of the products is compared in terms
of general requirements. The general requirements we’ve used
are:

• transparent access

• performance

• reliability

• scaling

• ease of administration

• data integrity

• security

• standards

The products being compared are the following:

• Network File System (NFS): This widely used mechanism
for sharing data between nodes provides an open solution.

• OSF Distributed File System (DFS): This emerging stan-
dard for sharing data between nodes provides an open solu-
tion that offers increased performance, transparency and
security over NFS. DFS is based on the OSF Distributed
Computing Environment (DCE).

• Shared File System (SFS): This high performance,
HIPPI-based common file system is shared among CRI
UNICOS systems only. HIPPI Network Disk Arrays are
used as the storage media. SFS offers resiliency - if one sys-
tem fails, the other systems can still access the data - and the
highest level of performance for suitable applications.

2 Distributed Computing Framework

NFS, NFS V3, DFS and SFS all co-exist within the distrib-
uted computing framework. A system can have all or a subset of
them executing at the same time. However, there are differ-
ences in their implementations and features.

NFS and NFS V3 share the same RPC mechanism. Both can
run over the ONC RPC or they can be enhanced to support a
Kerberos version 4 style of security called auth_kerb when
ONC+ is installed. ONC+ also supports NIS+.

DFS uses a completely different RPC mechanism from NFS.
DFS’s RPC is fully integrated with the DCE security service
which is based on Kerberos V5. The DFS RPC mechanism also
runs over UDP/IP but it has been enhanced to include retrans-

NFS V3 NFS DFS

SUN RPC DCE RPC

TCP/UDP

Cray File
System (NC1)

LDD/SDD/MDD

SFS

Copyright © Cray Research Inc. All rights reserved.

CUG 1996 Spring

 Proceedings

187

mission and flow control. In other words, it behaves like a
connection oriented transport layer which allows for greater
performance over WANs.

SFS is not a networking protocol. It does not run over a RPC
of any kind. SFS communicates with its peers via a shared media
- usually a disk. Its mechanism for communication are the
systems disk drivers.

3 NFS and NFS Version 3

NFS is the most widely used network-based filesystem.Open
Network Computing (ONC) is a suite of products from SunSoft.
This suite contains NFS, NIS and other distributed applications.
ONC+ is an enhanced version of ONC. It contains: NIS+, NFS
version 3 (V3), AUTH_KERB RPC authentication and a new
mount protocol.

NFS V3 is available in UNICOS 9.0. It contains support for
64 bit file descriptors, larger packets, new access permission
mapping and reduced network packets. Our experiments have
shown NFS V3 reduces the amount of CPU time spent in the
server.

4 SFS

UNICOS SFS allows the UNICOS native file system (the
NC1 filesystem) to be shared among multiple UNICOS systems.
All of the features present in the NC1 filesystem (such as device
striping, mirrored file systems, asynchronous I/O, etc.) are
supported through SFS. Under optimal conditions, and for suit-
able applications, SFS can deliver near NC1 performance levels
(95%). It therefore potentially offers the highest level of
data-access performance.

SFS requires media that can be shared by each UNICOS
system and an arbitration device that controls access (via sema-
phores) to the media from the individual nodes. Today, SFS
supports HIPPI-based Network Disk arrays (CRI ND40 devices)
as the shared media and uses a arbitration device built into the
ND40 controller. All participating UNICOS systems and the
network disk array are connected on a switched HIPPI network.

5 DCE/DFS

DFS is a part of the Distributed Computing Environment.
CRI’s latest release is the 1.0.3 version of DFS. That release
supports a number of performance enhancements to the base
DFS and an integrated login feature for UNICOS. DFS 1.1
which will release later this year, will provide support for hier-
archical cells, delegation, multi-level security (MLS) and
Kerberos Version 5 interoperability.

The primary mechanism that DFS uses to obtain high perfor-
mance is caching. DFS uses local disk based caching. When
chunks of files are read from the server over the network, they
are stored in files on the local system. Subsequent accesses to
that data use the local cache rather than pulling it over from the
server again. DFS’s disk based caching approach provides
performance that is comparable to local file system perfor-
mance, which is much faster than actually transferring the data

over the network from the server system each time a file is
accessed.

Read access to the DFS cache comes in two flavors,

hot
cache

, which refers to the situation where data is already present
on the client and

cold cache

 where it must be fetched from the
server.

DFS is divided into a client and server. The client is
commonly referred to as the Cache Manager (CM). A DFS
machine can act as either a client or a server or both. As well as
having the DFS kernel extensions, a DFS machine must run
DCE core services (as described above). Along with the cache,
one of the primary advantages to DFS is the global namespace.
In other network file systems, the path to access a file on one
machine may be different than the path on a different machine.
This can make it difficult for applications to locate files. In DFS
however, the path to a given file is the same for

all

 DFS clients.

6 SFS with DFS

We’ve combined DFS and SFS to provide a smooth perfor-
mance profile for cluster users. A smooth performance profile
includes good performance over shared media regardless of the
blocksize. The goal is to combine DFS’s performance for small
blocks and SFS’s performance for large blocks. Another advan-
tage of this approach is that DFS provides an “open systems”
access for non-CRI platforms.

SFS also facilitates the construction of fault-tolerant cluster
data configurations. A ‘heartbeat’ mechanism held in the sema-
phores allows healthy cluster nodes to detect outages of other
cluster nodes. Recovery can then be automatically initiated so as
to allow uninterrupted data access by the remaining cluster
nodes

7 SuperCluster

At the center of the cluster concept is the ability to control and
balance the execution of all types of work (batch, interactive,
and parallel) within the cluster. We have chosen CRI’s Network
Queuing Environment (NQE) to perform this function. NQE
runs on all CRI systems and on most popular UNIX workstation
systems and servers.

Given that work may execute in any part of the cluster, a key
requirement is high performance, transparent access to data from
any node. NFS, NFS V3, DFS and SFS all play a part in
meeting this requirement.

8 Requirements

Since CRI supports NFS, NFS V3, DFS and SFS we are often
asked which is the best. There is no easy answer to that question.
Each of the products has strengths and weaknesses. The
following list is an attempt to compare the products given a high
level set of requirements.

Transparent access

 is the capability to access data that is
not local to your system via names that appear to be local files.
This is the minimum requirement needed for a product to be
considered a distributed file system. All of CRI’s file systems

188

CUG 1996 Spring

 Proceedings

satisfy this requirement. However, DFS makes use of a
non-standard name format “/:/”. This can be hidden with links.

Performance

 is the ability to provide data to a consumer or
to move data from the producer. The goal of any distributed file
system is to provide performance equal to the local file system.
This category is one of the most difficult to quantify since the
number of options is so large. For example, NFS and NFS V3
provide performance that is adequate for LANs. However, their
performance in WANs and SANs is usually not very good. Their
performance in WAN/SAN environments can be made slightly
better by using TCP instead of UDP. By using TCP, the worst
case scenarios are improved not the overall performance.

DFS can achieve performance equal to the local file system
via use of its caching techniques. When an application using
DFS is accessing data in the DFS clients cache then the cache
is called hot. The trick is to keep the cache full of data for
consumers and to let producers of data continue while the dirty
data is flushed to the server. CRI has spent a lot of energy
improving DFS’s performance and we think it is the fastest in the
industry.

SFS can achieve performance equal to the local file system.
This is especially true for well formed IOs, locked accesses and
read-only file systems. In the latter two cases, SFS bypasses its
locks on disk and uses the local file system directly. Well formed
IOs are IO which are larger than 500K bytes and on sector
boundaries. SFS also does well for applications which don’t
perform many meta-data operations (e.g. create files, change
directory structures, etc.). However, SFS performs very poorly
in all other cases. For the right type of application SFS is a good
performer but it is not a general purpose solution.

Reliability

 consists of architectural extensions or assump-
tions built into the products to enhance availability.

NFS and NFS V3 are based around the concept of a stateless
server. This has been very successful in helping NFS deploy-
ment. Partly, for this reason and to keep the product very simple,

Local Disks

NFS/DFS

SPARC-Based SuperServer
CRS CS6400

FDDI

ATM

Ethernet

HIPPI

Vector SMP
Supercomputer

CRAY C90

Departmental
Vector SMP Supercomputers

CRAY J90

SFS

NQE/NQX

DFS

PVM

NFS

Heterogeneous
Workstation

Servers

Vector SMP
Supercomputer

CRAY T90

Massively Parallel
Supercomputer

CRAY T3E

NQS, FTA, NLB, NQC

HIPPI Switch

no additional features have been added for availability. So, if a
NFS server fails then the files associated with that server become
unavailable.

DCE and DFS are also client/server based. DFS is designed
to be very stateful. A DFS server maintains the state of all active
clients. When a server starts it goes thru a period called token
state recovery. During this period all clients are contacted and
asked to tell the server their state. To improve availability, CRI
has implemented DFS server failover. When a failure occurs a
command is executed which causes the CDS and FLDB data-
bases to switch access to the new server. The new server has
access to the same files as the original server thru the use of SFS
or DFS replication in the future.

SFS, as stated earlier, is not a networking product. It is not
client/server software. In a SFS environment, all participating
machines are peers. Therefore, no single SFS node is a point of
failure. If one SFS node fails the others can continue without
intervention.

Scaling

 is the ability to have a large number of clients per
server and a large number of servers per enterprise. NFS due to
its simple design puts a lot of burden on servers. The number of
clients per server is therefore limited. DFS supports a much
higher ratio of clients to servers. DFS uses caching to decrease
the load on the server and replication to improve scaling. SFS,
since it is not a networking product, is designed for a small
number (currently 64) of nodes.

Ease of administration

 is usually expressed as the number of
systems an administrator can manage and the amount of training
the administrator requires. In this category, NFS is the simplest
to learn. NFS tends to be “client-centric” in that configuration
changes often require administrative work on the client systems.
DFS is more complex than NFS. For DFS an administrator needs
to understand the concepts behind DCE and DFS. Specifically,
the use of DCE’s directory service (CDS), security service and
DFS style naming. The learning curve is high but once mastered,
most administrative tasks can be done using the databases. And
DFS clients do not require updating. SFS is relatively simple but
it does require an understanding of file systems and network disk
arrays.

Data integrity

 is a measure of how well the file system
protects user data. NFS’s Lockmanager provides advisory
locking. Using the Lockmanager, applications can protect access
to shared data. DFS uses a technology called token management.
With token management, all client accesses to data are protected
with the tokens. Token management is transparent to the user
application. SFS uses a concept similar to tokens called sema-
phores. Semaphores are an on-disk shared lock which SFS
manages transparently for users.

Security

 refers to the level of authentication and authoriza-
tion performed by the file system or on the file system’s behalf.
NFS enforces a UNIX style or level of security. This is built
around user ids (uids) and group ids (gids). CRI has extended
this to include NFS ID-Mapping. This imposes an additional test

CUG 1996 Spring

 Proceedings

189

on NFS access. ONC+ includes support for auth_kerb RPCs.
This incorporates support for Kerberos version 4.

DFS provides integrated security via the DCE security
service. DCE’s Security services is built into DFS. The DCE
security service is based on Kerberos version 5. Both NFS and
DFS enforce CRI access control lists if they exist on a file. Addi-
tionally, NFS was part of the B1 evaluated system for
multi-level security. DCE will support MLS in the 1.1 release.

Access to SFS file systems is identical to access to a local file
system. SFS has not been tested in a MLS environment.

Standards

 are industry agreements. NFS is a defacto stan-
dard for distributed file access. DFS is part of OSF’s Distributed
Computing Environment which is an emerging standard. SFS is
CRI proprietary.

9 UNICOS requirements

UNICOS requires that the file systems support be integrated
with other parts of the system. Specifically, the CRI extensions
to UNIX. NQE is the extension to UNIX that allows batch work.
NFS, DFS and SFS have all been integrated with NQS. NQS can
read and write to any of the file systems. Also, there are addi-
tional features for later releases of NQE that apply to cluster
security. Please see the paper on DCE and UNICOS Security in
these proceedings.

Quotas are used in UNICOS to control shared access to
limited resources such disk. NFS and DFS enforce UNICOS
quotas but can not display them to non-CRI systems. DFS does
not support LFS style quotas. SFS does not support quotas of any
kind.

Checkpoint and restart of jobs with active file system activity
is supported in UNICOS 9.0 for all file systems.

10 Gigaring

Gigaring support is transparent to file systems. No additional
changes are required to file system code. However, Gigaring
affords us the chance to optimize our products. We will examine
support for fiber channel connected disks as a shared media. We
hope this will improve the latency of SFS IOs and allow for
better performing small block IO.

We will also experiment with NFS and DFS access to shared
media between systems. This architecture may allow for true
third party transfers.

11 UNICOS/mK Requirements

UNICOS/mK requires the file system components to be serv-
erized or split from the rest of the operating system. In this
architecture, all of the file system components reside in the
Object Manager. Given a MPP architecture this may result in a
bottleneck since we do not have multi-threading. To address
scaling of IO we used multiple PEs of a MPP instead of multiple
CPUs of an SMP.

The File System assistant provides most of the file system
processing (after open) on the user’s PE. DISTIO allows a single
PE to request IO on behalf of other PEs. Remote mount allows
file systems to be split at their mount point over multiple PEs.
NFS and DFS will use remote mount to provide a dedicated PE
for processing.

12 Summary

 CRI supports the major distributed file systems available in
the industry. We also provide support for a proprietary high
performance shared file system. Each of the file systems has
advantages and disadvantages. Taken as a whole they provide a
well balanced set of alternatives for data access.

