

CUG 1996 Spring

 Proceedings

253

UNICOS under UNICOS: A Valuable Maintenance Tool !?

Mathilde Romberg

, Zentralinstitut fuer Angewandte Mathematik
(ZAM), Forschungszentrum, Juelich GmbH (KFA), Juelich,
Germany

ABSTRACT:

KFA used UNICOS under UNICOS to upgrade to UNICOS 9.0. Most tests were
conducted successfully in the guest system which reduced dedicated system time significantly.
The first part of this paper covers KFA's very positive experience with UNICOS under UNICOS
and gives hints and tips for system administration. A second part addresses general mainte-
nance strategies for UNICOS on PVP and for UNICOS/mk on MPP systems.

Introduction
To perform software maintenance on Cray systems it was
common to reserve several hours of dedicated machine time
each month or even each week. This time is required to en-
sure that the new (update) versions of software work properly.
There was –and for some systems still is– no other technique
to accomplish software maintenance. KFA normally used two
to three hours per week to analyze software problems and test
UNICOS update versions and twice that time while preparing
a new UNICOS major release for production. In addition
hardware maintenance required about two hours per week on
average.
A strategy like this is very expensive since production has to
be stopped even though the tests need only a fraction of a
single CPU. The systems are getting bigger and bigger and as
a result the problem of wasting money, i.e. expensive system
time, becomes more serious. In addition, tracing (serious)
problems can take very long because system administrators
often have to wait one week or even longer for the next sche-
duled system time to install and check trace codes or updates.
With ’UNICOS under UNICOS’ (UuU) there exists a tech-
nique now to test software products and xes in parallel to
production on some Cray systems. This is a feature known
from other operating systems in the past like IBM’s VM,
which supported virtual machines and allowed to test different
operating systems (VM, MVS, VSE) in parallel. This guest
support for IBM operating systems was extended for better
performance through microcode assist and eventually moved
into hardware with IBM’s PR/SM feature of ES/9000 models
to allow multiple production systems to share one machine in
a exible way with near-native performance.

KFA rst installed ’UNICOS under UNICOS’ to prepare the
upgrade to UNICOS 9.0 in summer 1995. The next section
describes the feature and our experiences with this feature.

UNICOS under UNICOS
UNICOS under UNICOS implements the capability to run

a UNICOS guest operating system under a native UNICOS
system. The guest system is independent from the host except
for I/O which is handled by the host IOS.

1 Requirements

The UuU feature is developed for Cray systems with a non-
VME-based I/O subsystem, that means it can be used on
machines which support IOS Model C, D or E, but not on
CRAY EL or current J90 systems. It was introduced with
UNICOS 7.0.7 and UNICOS 8.0.3. To run UuU the following
resources are required: Disk space for separate root, usr, src,
tmp and swap le systems, an additional network interface (or
a NSC N130 adapter which can be shared), and at least 8 MW
of main memory dedicated to the guest. The amount of main
memory increases with the total memory size of the system,
i.e. on a 256 MW machine the guest should be con gured
with 16 MW since the kernel is normally built for the large
(host) machine. The guest system is not capable to work with
USCP and the shared le system (SFS).

UNICOS offers the guest command to control the guest sy-
stem from the host: It is used to start-up and shutdown the
guest and display information about it.

2 Con guration in General

After having done all necessary preparations1 (i.e. additional
le systems established on the host) one has to enable UuU in
the host’s installator and to specify the size of the guest’s main
memory, its CPU share, and the users that are allowed to start-
up a guest system together with their guest environment. The
guest start-up is thereby not tied to the root userid. For each
of the speci ed users the host con gurator creates a directory
/usr/guest/<userid> which contains the guest system start-up
le (guest.rc) for this user, the parameter le (param), the
kernel (unicos), the crash and kcompress command, as well
as the path of the dump directory. The start-up le has to

1 “UNICOS under UNICOS Administrator’s Guide”, Cray Research, Inc.
SG-2156

254

CUG 1996 Spring

 Proceedings

be customized to one’s needs. It contains speci cations of
memory size, network node name and the paths where param,
unicos, crash, etc. are located. This allows to put these les
into any directory (i.e. a well de ned place for all privileged
users) and not necessarily into /usr/guest/<userid>.
The parameter le should be a copy of the host’s param le
but without memory and CPUS speci cation. And in case
the host uses a part of the main memory for ldcache the
LDCHCORE speci cation for the guest has to be set explicitly
to 0. These preparations are all done in the host system under
which the guest will be run.
Figure 1 shows an example of the ’Guest Defaults’ page
of the con gurator. To enable the guest feature one guest
system must be allowed. The panel suggests that a host can
run multiple guests but up to now only one is supported.
The ’maximum TTY connections’ speci es the number of
console lines dedicated to the guest (i.e. zip connections on
a Model E IOS). As ’CPU allocation scheme’ MEMORY or
DEFAULT can be chosen. The option DEFAULT allows to
specify percentages of the CPU for host and guest while
MEMORY de nes a xed percentage of the CPU for the guest
equal to the ratio of guest to host memory.

Guest Defaults

Miscellaneous Options

Maximum number of guest systems allowed.
A value of zero (0) will DISABLE all

S-> guest(8) command functions. 1

NOTE: To disable the guest feature at system boot time,
set GUESTMAX to zero (0) in the UNICOS Kernel
Configuration.

Enable GUEST/HOST kernel tracing? NO
Halt HOST when guest panics? NO
Maximum TTY connections per guest 2
Create user directories below /usr/guest? YES
Remove non-valid directories in /usr/guest? NO

Memory Size Options

Minimum HOST memory in megawords 400
Minimum GUEST memory in megawords 32
Maximum GUEST memory in megawords 32

CPU Percentage Options

CPU allocation scheme MEMORY
Minimum HOST CPU percentage
Maximum GUEST CPU percentage

Minimum number of CPUs to remain in the host 0

Reset global guest defaults...

Figure 1 Guest Defaults page of host con gurator

The following steps need to be done in the le systems of
the guest: The con guration datasets like fstab, daemons,
rcoptions, gated.conf, etc. and the local start-up scripts rc.pre,
rc.mid, and rc.pst, netstart.pst, etc. have to be adapted. Most
of these datasets can be kept in two versions, a host and a

guest version marked by the suf x .host respectively .guest.
They are linked to the of cial name (the le name without
suf x) at start-up depending on the system (host or guest)
started. This process is controlled by /etc/brc.guest. Messages
at host and guest start-up show this action (see gure 2). To

.

.
Checking /dev/dsk/root before running /etc/brc.guest.
/root: file system opened
.
.
/root: ***** FILE SYSTEM WAS MODIFIED *****

Executing /etc/brc.guest.
Linking Guest configuration files for HOST system startup:

No filenames exist in /etc/config/guest_config

gencat: Starting pass 1
.
.

Figure 2 Messages at host system start-up

enable the system to exploit this feature the names of the
versioned con guration datasets have to be speci ed in the
/etc/con g/guest_con g le. The advantage is that the same
root le system can be used to start the native system as well
as the guest (i.e. the “old” guest can become the new host
during a system upgrade).

The guest system appears to be a separate machine with
its own network addresses and le systems, even from the
host system’s point of view. It is impossible for the host to
access a guest le system directly, for instance by mounting
or dumping it, while the guest is running. This will result
in warning messages on the console and the access will be
denied (see gure 3). The same is true for the guest, therefore
if le systems have to be accessed by both systems in parallel,
NFS has to be used. All the resources (memory and CPU)

11:07:10 uts/c1/os/guest.c-02: WARNING ovl: guest \
configuration overlap

Open request from zam013
Conflicting resource belongs to m94guest
Device type: Disk

subtype DA302 (19)
cluster 0
iop 1
channel 034
unit 3
starting block 1051344

Figure 3 CRAY console warning message “con icting resources”

de ned for the guest system are used by the host while the
guest is not running. At guest start-up the de ned memory is
dedicated to the guest, the host cannot use it until the guest is
properly shutdown. While the guest system is running it gets
the CPU cycles needed up to the de ned limit. All unused
cycles can be used by the host.

CUG 1996 Spring

 Proceedings

255

3 Tested Con guration at KFA
KFA used the following con guration during the UNICOS
9.0 test on a CRAY M94/4512:
The host operating system level was 8.0.4 while the guest was
at 9.0.1. The guest was given 32 MW of main memory. The
le systems groot, gusr, gsrc, gtmp, and gswap occupied ab-

out 10 GBytes of disk space. All other le systems, especially
those containing user data and local software, were NFS mo-
unted from the host. An existing Ethernet backup connection
was dedicated to the guest. As the CPU allocation scheme
we initially used MEMORY but switched to DEFAULT later.
DEFAULT is more exible since it allows to specify mini-
mum host and maximum guest CPU percentages. Changes to
this can be done while the host is active; neither a host nor
a guest reboot is required.

4 Experiences
First of all we expected negative side effects for the host
when running a guest (like crashes of the host as a result of
problems in the guest) — but up to now there were none. The
guest system crashed several times for different reasons but in
no case the host was affected. Host and guest are completely
isolated from each other.
The guest, of course, needs resources from the host, this can

%usr %sys %wsem #locks %idle %wio %guest
12:15:01 94 6 0 63 0 0 0
12:35:00 94 6 0 55 0 0 0
12:55:01 92 7 1 222 0 0 0
13:15:00 87 13 3 676 0 0 1
13:35:00 91 9 1 325 0 0 0
13:55:00 94 5 0 179 0 0 1
14:15:01 93 6 1 239 0 0 1
14:35:00 93 6 1 216 0 0 0
14:55:00 89 9 1 246 0 0 2

Figure 4 Host’s sar values, when the
guest is running with low activity

%usr %sys %wsem #locks %idle %wio %guest
14:00:02 84 10 2 730 0 0 7
14:15:01 83 10 1 394 0 0 6
14:35:01 84 12 1 434 0 0 4
14:55:01 81 12 1 384 0 0 7
15:15:02 82 11 2 531 0 0 7
15:35:00 85 11 1 467 3 0 1
15:55:00 89 11 1 423 0 0 1
16:00:01 89 11 1 383 0 0 0

Figure 5 Host’s sar values, when the guest is running with
CPU allocation scheme MEMORY and is highly active

be seen in the host’s sar which shows increased system time,

%wsem, and #locks while the guest is busy (see gures 4–7).
sar also shows the part of the CPU time the guest consumes:
With the allocation scheme MEMORY the guest gets about 7%
of the system at most (see gure 5) which corresponds to the
ratio of guest to host memory (32:480). With the allocation
scheme DEFAULT it almost gets the de ned share (see gures
6 and 7). In both cases the minimum share for the host has
been set to 100 – max. guest (70% resp. 85%).
The host is affected at system shutdown: If the guest is
running, /etc/shutdown in the host system sends a message
to the system console saying the guest is running and waits
for a reply whether to proceed or not. This is very disrupting
in case of automatic operation (i.e. an automatic shutdown
initiated by the OWS after detecting serious problems on the
host) which we use intensively2.
As we do not use tapes with the guest system, the backup of
its le systems must be done in the host which requires the
guest to be not running. Therefore a shutdown of the guest
is needed to dump its le systems.

%usr %sys %wsem #locks %idle %wio %guest
15:00:03 57 18 4 1095 0 0 25
15:15:01 68 12 2 495 0 0 20
15:35:00 64 12 2 486 0 0 24
15:55:00 59 17 3 874 0 0 24
16:15:02 59 23 7 1585 0 0 18
16:35:01 62 20 5 1249 0 0 18
16:55:00 67 13 3 645 0 0 21
17:00:01 60 16 3 783 0 0 24

Figure 6 Host’s sar values, when the guest is
running with CPU allocation scheme DEFAULT

(max. guest percentage 30%) and is highly active

%usr %sys %wsem #locks %idle %wio %guest
10:00:00 81 8 2 676 0 0 11
10:15:01 85 5 1 274 0 0 10
10:35:00 80 11 2 859 0 0 10
10:55:00 80 8 1 482 0 0 12
11:15:00 77 11 2 769 0 0 12
11:35:00 77 12 2 770 0 0 11
11:55:00 75 14 2 945 0 0 11
12:00:01 80 9 1 613 0 0 11

Figure 7 Host’s sar values, when the guest is
running with CPU allocation scheme DEFAULT

(max. guest percentage 15%) and is highly active

During the UNICOS 9.0 test we did not check the functions of
the tape- and the data migration daemon within the guest but

2 “Automatic Supervision of CRAY UNICOS Systems” by N.Attig,
V.Sander, L.Wollschlager and R.Krotz in Proceedings of the CRAY User
Group Meeting (Spring), March 1991, London, pp.279–284.

3 Tested Configuration at KFA

256

CUG 1996 Spring

 Proceedings

in dedicated time. Every other needed component (TCP/IP,
NQS, NFS, NIS, named, sendmail, ...) was tested in the guest
except for USCP as it is not supported by the guest. We found
some problems within the new operating system version, most
of them corresponding to local con guration and changes in
the system behavior. But we did not nd out a critical bug
which only occurred with production load: After upgrading
the host to UNICOS 9.0 we ran into system hang situations
which could only be “solved” by a system crash (there were
seven unscheduled interrupts due to this). The reason for this
was an inadvertently (under heavy load) zeroed pointer to a
kernel structure.
The users could participate more in testing than during the
preparation phases of former major UNICOS releases. This
time we could offer a separate test system for two weeks and
not only for two or three dedicated maintenance periods of
about four hours. Main users got the permission to log into
the guest system and had the chance to test their production
codes with UNICOS 9.0.
In comparison to the upgrade from UNICOS 7.0 to 8.0 when
we had nine times the dedicated system for about four hours
each we now needed only one dedicated period of four hours.
In addition the guest used 168 CPU hours during the test
phase, which is quite more than 9 4 4 CPU hours used be-
fore. This difference is due to a much larger user participation.
In the past two xed test periods were allowed and this time
the users had access to the test system for a period of two
weeks. Looking back it was not necessary to give such a big
portion (25%) of the system to the guest, 10% would have
brought the same test result.
From a system administrator’s point of view the biggest ad-
vantage during the UNICOS 9.0 test phase was the perma-
nent access to a system running the new release. In case of
problems we could analyze them carefully without wasting
expensive dedicated time and con guration changes could be
made and tested at once. This saved a lot of CPU cycles
which could be used by the applications in the host, we nee-
ded about seven CPU hours instead of 6 4 4.

One of the nicest side effects of UuU is that a dump of the host
system can be taken during production time without crashing
the host using the guest -D command. It allows to dump all
active systems; in case the guest is not up only the host is
dumped. This helped us tracing serious problems in the host.

Requirements for a UNICOS
Test Environment

When Cray systems were number crunching backends used
exclusively in batch mode the hours dedicated to software
maintenance were expensive but did not affect users seriously.
Now that Cray systems have evolved over the last years to
highly visible application servers, le servers, compute partner
in interactive client/server software (UniChem for example),
etc. the impact on the users becomes more critical.

The expectation for the system uptime of application servers
is almost 24 hours a day, seven days a week all year long.
Users often see this availability in other environments so Cray
systems need to keep up.
As a matter of fact, state of the art in software maintenance
has not kept pace. There are still many hours needed to test
new versions or updates. Cray has made a major step in
the right direction with the development of UNICOS under
UNICOS as our experience has shown. It needs additional
resources but it is a robust, exible, and an “exactly-what-is-
needed” tool.

Looking at other systems and their maintenance strategies
there are:
• workstation clusters, which allow tests on dedicated ma-

chines because they are cheap;
• parallel systems, which allow different versions of the

operating system on different nodes;
• IBM’s VM, which is comparable to UuU; and
• IBM’s PR/SM and LPAR for hardware partitioning.

In some countries labor regulations may allow to perform
software maintenance on Sunday night which can minimize
the impact on the users, but most European countries and the
unions forbid such a work schedule.

It is quite acceptable to have different software maintenance
techniques in different environments but what is essential is
that there exists one for every environment from the very
beginning. Especially new software is likely to be less stable
and requires more debugging and maintenance.
Therefore the following is needed:

• For all new PVP systems (i.e. T90, J90 with GigaRing)
and their corresponding releases UNICOS under UNI-
COS must be supported;

• For the MPP system T3E an equivalent function must
exist, e.g. partitioning with different operating system
versions.

With the T90 Cray offers the logical machine feature which
allows to split a hardware system in up to four logical machi-
nes. The feature requires dedicated I/O clusters and dedicated
CPUs per logical machine and the memory can only be spilt
into equal parts. The partitioning and con guration changes
are done at system start-up. It is a very in exible feature and
too expensive for software maintenance.

Conclusion
The UNICOS under UNICOS feature is an excellent solution
for software maintenance. It is a highly needed, state of
the art feature which meets our requirements for high system
availability and low costs – but what is its future?
At this point in time there are no known plans whether UuU or
an equivalent maintenance technique will be supported with
the next generation of I/O subsystems, the GigaRing, for both
PVP and MPP systems. But for software maintenance an
equivalent tool is indispensable!

