

CUG 1996 Spring

 Proceedings

269

Near-Dedicated Scheduling

Chris Brady

, CRI, Boulder, Colorado, USA,

Mary Ann Ciuffini

,
NCAR, Boulder, Colorado, USA,

Bryan Hardy

, CRI, Boulder,
Colorado, USA

ABSTRACT:

With the advent of high-performance workstations, supercomputers are moving
from general-purpose scientific computing to handling “Grand Challenge” problems too large
for workstations. At NCAR, a mechanism has been developed to provide “Near-Dedicated
Scheduling” for expeditious execution of these Grand Challenge problems under UNICOS. This
paper presents the problems, issues, and solutions encountered in implementing an integrated
near-dedicated scheduler, including: CPU scheduling, memory preemption and SDS preemp-
tion. Performance comparisons of near-dedicated vs. dedicated execution in controlled and
production environments are also discussed.

1 Introduction

Scientists computing at the National Center for Atmospheric
Research (NCAR) on a saturated CRAY Y-MP 8/64 were
getting poor turnaround for their efficient multitasked climate
models. NCAR's Scientific Computing Division (SCD)
management and technical staff decided that the best way to
improve turnaround for these jobs was to offer dedicated
computing time slots on the Y-MP 8/64. Thus, the “Dedicated
Queue” was created.

From 01:00 to 06:00, if there was at least two hours worth of
dedicated work, all Network Queuing System (NQS) batch
queues would be stopped and all running jobs would be check-
pointed to allow dedicated batch jobs to execute one at a time.
Prior to the dedicated start time, the datasets that were to be used
by the dedicated jobs were moved from the file server to a direc-
tory on the Y-MP 8/64 that was protected from file purging.
Each dedicated job had to be multitasked well enough to sustain
88% CPU utilization during its two-hour execution window.

This scheme had several limitations. The major concern was
that valuable CPU cycles were being wasted. Even the most
efficient dedicated jobs could not use all of the available CPU
time, and some of the jobs could not sustain the 88% CPU utili-
zation required for execution in the dedicated queue. In addi-
tion, CPU time was wasted during job transitions. The
checkpoint and release of normal batch jobs at the beginning
and end of the dedicated time slot was expensive and time
consuming. Checkpointing these jobs could take up to an hour.
Jobs that could not be checkpointed had to be killed, resulting in

lost work. The protected directory in which dedicated jobs
staged their large datasets prior to run time caused chronic
file-system space shortages. As other Cray resources became
available at NCAR, users requested that the dedicated time
periods be expanded. Due to limitations inherent in the dedi-
cated queue, rather than expanding its window, SCD technical
staff and Cray Research, Inc. (CRI) analysts opted to develop a
more flexible and efficient near-dedicated (ND) scheme to
replace the dedicated queue.

2 Near-Dedicated Scheduling Design

Recognizing that a “start over from scratch” design was the
most appropriate way to proceed, a list of features and function-
ality to strive for in this new implementation was assembled:

• High system utilization -- The primary motivation in pursu-
ing this project was to reclaim unused CPU resources that
are normally wasted during dedicated processing. Providing
a mechanism for other processes to utilize these idle
resources, to “fill in the cracks” without adversely affecting
the ND job is imperative to attaining this goal.

• Integrated scheduling -- Three distinct system resources will
require scheduling in an integrated, preemptive manner:
CPU, memory, and Secondary Data Segment (SDS) space.

• No user level changes -- Other than specifying a different
queue to which to submit their job, users should not have to
make any code changes or job deck changes in order to run
using ND.

• Guaranteed job completion -- A specific time window will
exist in which near-dedicated runs are allowed. Because jobsCopyright © Cray Research Inc. All rights reserved.

270

CUG 1996 Spring

 Proceedings

will not be checkpointed for recovery during the next win-
dow, a user's job must not be initiated unless there will be
sufficient time for it to complete.

• Flexibility -- Operators must be able to adjust the start-time
and/or end-time of the ND window to accommodate system
maintenance and other scheduled events that might conflict
with ND. Some interaction with individual running jobs may
also be appropriate.

• No staging of files required -- Users should not need staging.
The previous implementation required that users stage their
files by running separate jobs to move all needed files to
local disk prior to the dedicated period. This was quite awk-
ward at both the user and administrative levels, and often led
to poor disk utilization.

• Performance criterion -- The same site policies should be
retained that require users to demonstrate, through

ja

 output,
a specified level of performance/parallelism in order to be
eligible for ND processing.

• Throughput -- The same amount of work should be able to
be accomplished during an equivalent time window as was
possible using the previous dedicated implementation.

From these criteria, the design for ND was developed and
resulted in a set of: NQS and kernel mods, C programs, shell
scripts, and cron jobs. Working together, these provide the best
of both worlds -- pseudo dedicated processing is easily available
to users, while otherwise unused system resources are transpar-
ently reclaimed for other jobs. ND does not incur the expensive
and time-consuming startup and shutdown costs inherent with
dedicated computing. Consequently, no minimum amount of
ND work is required as a prerequisite to activate an ND window.
Since normal jobs can use the CPUs and memory while an ND
job waits to acquire datasets from the file server, prior acquisi-
tion of data files is not necessary. Thus, a protected directory is
no longer needed. This solves the chronic file-system space
problems. Without the need for staging of datasets, ND
processing can be started at any time and executed for any length
of time.

The following sections will describe many of the components
and tools that comprise ND; some of the problems encountered
with their solutions; and finally, results from both the testing
phase, and after nine months of daily production.

3 Implementation and Pitfalls

The implementation of ND consisted of two separate tasks:
creating an integrated priority scheduler, and developing
programs and scripts for the operation and monitoring of ND.

3.1 Integrated Priority Scheduling

UNIX, and consequently UNICOS, have limited mechanisms
for scheduling processes based on fixed priorities. Nice values
are used to reduce the priority of processes, but have limited
effect. UNICOS “real-time” scheduling does provide fixed
priorities, but because of its absolute nature, it has a number of

pitfalls and negative side effects that make it inappropriate for
anything but specialized, well-controlled applications. In addi-
tion, neither nice nor real-time are able to schedule or preempt
the use of SDS. For ND, an integrated scheduler capable of
scheduling all system resources (including: CPUs, memory and
SDS) was needed. Priorities needed to be adjustable with a much
wider range than is currently available by using nice values, but
not the absolute behavior of real time.

3.1.1 Establishing Fixed Priorities

To assign fixed priorities to processes, advantage was taken
of the existing fair-share scheduler mechanisms in UNICOS.
The fair-share scheduler in UNICOS uses kernel lnode struc-
tures to establish process priorities. The priority of each process
is established by the lnode that the process is associated with.
The association of processes to lnodes is, by default, according
to user ID (UID). This scheme provides a flexible method for
assigning priorities to processes. However, the priorities in
fair-share are not fixed and therefore, not very predictable. A
simplification of fair-share priority calculation is:

pri = (shares / decayed_usage) / runnable_processes

To provide fixed priorities, a small change was added to the
kernel that adds a new fair-share flag (FIXEDPRI) that can be set
via the

shradmin

 command. When this flag is set the priority
calculation essentially becomes:

pri = shares

This provides a fixed priority value that can be easily adjusted
and displayed using standard fair-share tools.

Next, these fixed priorities needed to be assigned to various
processes. For this implementation of ND, there are three classi-
fications of processes: 1) interactive, 2) normal batch, and 3)
near dedicated. To set priorities for each of these process classes,
the share structure in Figure 1 was created. This was done by
adding “shareholder” entries in the User Data Base (UDB). The
PRI_INTR lnode sets the priority for all interactive processes,
the PRI_BATCH lnode establishes the priority for all “normal”
batch jobs, and the PRI_ND lnode is used to give only the ND
jobs high priority. Associating each class of processes to one of
these three lnodes creates a fixed priority for each process class.
To associate the interactive processes with the PRI_INTR lnode,
a standard but little known fair-share flag (DEFERTORESGRP)
was employed. For batch jobs, a mod was made to NQS that,
based on the name of the queue, associates the job with either the
PRI_BATCH or PRI_ND lnode as follows:

if (queue_name == near_dedicated_ queue)

lnode = PRI_ND

else

lnode = PRI_BATCH

CUG 1996 Spring

 Proceedings

271

With fair-share, system processes are automatically associ-
ated with the root lnode, giving these processes the highest
priority.

Figure 1. Share Structure for ND

3.1.2 CPU Scheduling

Scheduling CPU resources based on these newly established
priorities did not require any changes, since the fair-share mech-
anisms had been altered to create the priorities. The fair-share
mechanisms provided the kind of CPU scheduling behavior that
was desired: a wide range of priorities without the absolute
behavior of real-time. By using a standard fair-share scheduling
flag (NOSCHED), CPU scheduling by priority can be easily
enabled or disabled at any time.

3.1.3 Memory Scheduling

Scheduling memory based on fixed priorities proved to be
challenging. The UNICOS memory scheduler is quite robust and
does a fairly good job of maximizing system throughput.
However, there was little support for prioritizing processes, and
there are a number of situations where scheduling priorities were
being ignored. To implement memory scheduling by priority,
there were four problems that had to be solved: 1) coordination
of swap and fair-share priorities, 2) hard sleep processes, 3)
locked I/O, and 4) swap thrashing

3.1.3.1 Swap and Fair-Share Priorities

The first task was to change the memory scheduler (sched) to
use fair-share priorities in the calculation of swap priorities. This
was done by reusing the

nschedv

 pfactor_in and pfactor_out (-p
and -P) parameters that are currently not useful and not recom-
mended for use. The calculation of swap priorities is rather
complex and can include many factors. Thus, the discussion here
will be restricted to how the portion of the swap priorities
controlled by the pfactor parameters are computed. To compute
the portion of swap priority controlled by the pfactors, the share
priority is normalized and then multiplied by the corresponding
pfactor as follows:

in-memory processes:

pri_in = (share_pri / max_share_pri) * pfactor_in

swapped processes:

pri_out = (min_share_pri / share_pri) * pfactor_out

With this change, swap priorities can be controlled by
fair-share priorities via the

nschedv

 pfactors.

ROOT

PRI_INTR PRI_NDPRI_BATCH

3.1.3.2 Hard Sleep Processes

A serious flaw in sched is termed as the “hard sleep problem.”
In sched, there are two categories of sleeping processes -- soft
sleep and hard sleep. The idea is that soft sleep processes are
waiting for an event that is predicted to complete soon, whereas
a hard sleeper is expected to sleep for a much longer period of
time. In the interest of keeping runnable processes in memory, if
sched needs to free up memory, it will unconditionally swap out
a hard sleeper regardless of its swap priority. In most cases, this
works well. However, there are situations where very large
processes will briefly become hard sleepers and end up swap-
ping in and out continuously. It should also be apparent that this
scheme greatly interferes with scheduling based on fixed priori-
ties. The problem was not that hard sleepers are treated differ-
ently, but that there was no way to control how they are handled.

To solve this problem, a second value to the

nschedv

tfactor_in (-T) parameter was added that provides control over
how hard sleepers are handled. The first value is the time factor
for runnable and soft sleep processes, and the second new value
is used for hard sleepers. When a process becomes a hard
sleeper, the in-core priority is decreased by the new parameter
(tfactor_in_hs) value multiplied by the time in seconds that the
process has been asleep as follows:

pri_in = old_pri_in - (tfactor_in_hs * sleep_time

)

When the process wakes up, the priority calculation returns to
normal and the hard sleep interval will have no effect on priority.
This scheme allows the amount of time that a process can hard
sleep before being swapped to be controlled, and most impor-
tantly this time is relative to the original swap priority.

3.1.3.3 Locked I/O

Another problem with scheduling of memory by priority is
locked I/O. Processes doing locked I/O are not considered for
swap out regardless of their priority. In most cases, sched can
catch these processes later when they are not doing locked I/O
and swap them out. However, on occasion there are processes
that constantly do locked I/O, making it impossible for them to
be preempted from memory. To address this problem, a change
was made to sched so that processes doing locked I/O are always
considered for swap out. If, after a process has been selected for
swap out, sched finds that it can not swap the process due to
locked I/O, it marks the process for swap out by setting a new
process flag LCKSWP. With this flag set, the process is put to
sleep if it attempts to issue additional I/Os. When the
outstanding I/Os complete, the process can then be swapped.
Sched was also modified to swap processes marked for swap out
(via the LCKSWP flag) that no longer have outstanding locked
I/O before all other processes. This provided predictable, reli-
able preemption of processes doing locked I/O.

3.1.3.4 Swap Thrashing

Once the above problems were resolved, an additional
phenomenon was observed that the authors call “swap
thrashing.” This problem was often seen when a number of

272

CUG 1996 Spring

 Proceedings

processes needed to be swapped out to make room for a large
ND process. For example, given the situation where there are ten
processes that need to be swapped, suppose the first nine are
swapped without any difficulty. However; if for any reason the
tenth process can not be immediately swapped out, then sched
gives up on swapping in the large ND process. Sched then looks
for other processes that it can swap in, and in most cases. swaps
in the nine processes that it had just swapped out. At this point,
the whole process starts over again and continues until all ten
processes can be immediately swapped out. This severe
swap-out thrashing can go on indefinitely. By using the

nschedv

cpu_factor and max_outage parameters, sched can be set up to
only consider for swap in the process with the highest priority.
This eliminates the thrashing problem, but creates some rather
severe utilization and response problems. A compromise was
employed that made sched more persistent about bringing in the
highest-priority process, but would eventually allow it to give
up. A counter was added to sched that is incremented each time
a process is either swapped out or marked for swap out. Each
pass through the scheduler causes the count to be decremented,
and sched is only allowed to give up when the count goes to zero.
In this way, the amount of persistence is proportional to the
amount of work incurred in trying to bring in a particular
process.

3.1.4 SDS Scheduling

UNICOS uses the Unified Resource Manager (URM) to
manage the use of SDS, but lacks the ability to schedule SDS
based on priority. Since SDS allocations are generally small in
number and mostly static, a simple approach was taken for
scheduling SDS. A daemon was created that monitors SDS
usage. This daemon watches for processes that are waiting on an
SDS allocation request. If a process waiting for SDS is found,
the priority of the waiting process is compared with the priority
of each of the processes with SDS allocations. If there is enough
SDS in use by lower-priority processes to satisfy the new
request, the lower-priority processes are suspended. The
suspend algorithms were designed to suspend the smallest
possible number of processes to accommodate the new request.
Suspending processes causes their SDS allocations to be
released after being written to the swap device, allowing the new
request to be satisfied. Once the new request has been satisfied,
the suspended processes are resumed. Since these processes
need an SDS allocation, they will simply sleep until the SDS is
released. The kernel SDS packing code is relied upon to manage
fragmentation of SDS space.

3.2 Operational Overview

Two independent mechanisms control scheduling during the
ND period. The first is a cron job initiated at regular intervals to
reorder the ND input queues such that jobs run in an order deter-
mined by site policy. This cron job runs both outside the ND
time-window so that users may see the current queue order, and
inside the time window so that the queue order will reflect jobs
submitted after ND starts.

Figure 2. Near-Dedicated Flow

The second control mechanism is the main event loop
process. This is started from a manual or cron-initiated script to
begin the ND time window. It sets priorities and limits such that
the ND control processes will not themselves be restricted by an
ND job, and performs other initialization activities. When the
event loop is started, it will run for the entire duration of the ND
period. The first major activity is to scan the input queues
sequentially for the first job that is estimated to complete prior
to the end of the ND period. (Because of the “guaranteed
completion” criteria, it is undesirable to schedule a job that
would not complete before the end of the ND window.) This
wall-clock estimate is based on the user’s requested CPU time
and calculated using the formula:

est_time = (requested_time * 2) /

number_of_cpus_on_system

This estimate is generous to allow for tape mounts, I/O wait
time, and other valid activities that might cause the job to accrue
wall-clock time but not user CPU time.

S t a r t

Start Watchdog
Process

Start Job

Set Params

Eligible Job Found?

Scan Input Queue
for First Eligible Job

End of ND Period? End

Reset Params

Wait for Watchdog

Sleep

CUG 1996 Spring

 Proceedings

273

Prior to initiating the job, preemptive scheduling is turned on.
(This is not kept enabled during the ND window unless there is
an active job, because the goal is to mirror normal operations as
closely as possible during these periods.) This involves invoking

shradmin

 and

nschedv

 to enable preemptive CPU and memory
scheduling, respectively, and initiating the SDS daemon. The
ND control process then schedules the job and goes to sleep. A
watchdog process is spawned when the job initiates. The esti-
mated completion time calculated earlier is used by the
watchdog process to kill the ND job if it does not complete
within this estimate.

Upon completion of the job (whether it ended normally,
aborted, or was killed by watchdog due to time limits), the
watchdog process ends, awaking the ND control process.
Preemptive scheduling parameters are reset to normal values, a
check is made to see if the ND time-window has ended, and the
process repeats. Note that it is sufficient to check for the end of
the ND period only between jobs. Because of the time estimate
used before scheduling jobs and the presence of a watchdog
process to make sure they don't exceed this, there is no need to
check the end time while a job is running.

This completion estimate did raise a concern with several
users. Due to the generosity in its computation, towards the end

of the ND time window it became increasingly hard to find jobs
that would fit. Also, some users would rather have their job
partially run in the current ND window rather than be delayed
until the next window when it could run to completion. For this
reason, an NQS attribute, ND_TMC, was added to ND which
specifies the user wants to “Take my chances.” If this attribute is
present, and the job is next in line for scheduling, ND will
schedule the job even if its time estimate is too long. The
watchdog process will ensure that the job gets killed prior to the
end of the time window.

3.2.1 Reporting

A report mechanism was developed to allow easy tracking of
ND utilization, overall ND efficiency, and individual job effi-
ciency (see Figure 3).

3.2.2 Monitoring

A single graphical interface was designed to consolidate
operator monitoring and control of ND (see Figure 4). It includes
the ability to manually start or stop ND if needed, to monitor the
current job including its efficiency, to manually kill the job if it’s
running poorly, and to extend the time window of a job if appro-
priate.

===
Near Dedicated Performance Report Mon Feb 19 23:00:35 1996
===

Job Summary:
 User Start Wall Setup Eff Sbrk Swap SwpTm MxMem MxSDS ExSt
 -------- ----- ------- ----- ---- ---- ---- ----- ----- ----- ----
 sbert 23:00 2:12:42 6:52 89.9 0 1 29 27.3 210.0
 sbert 01:13 2:14:50 7:20 88.8 0 3 65 27.3 210.0
 sbert 03:28 2:16:31 12:06 91.2 0 1 18 27.3 210.0

 Average 2:14:41 8:46 90.0 0 1 37 27.3 210.0

System Utilization:
 User 96
 System 4
 Idle 1

 System Usage Job Profile

 Time Usr Sys Idl Mflp User Eff Mem SDS Sbrk Swaps
 ----- --- --- --- ---- -------- ---- ----- ------ ---- -----
 23:05 92 4 4 702 sbert -1.0 0.4 0 0 0
 23:10 83 5 12 755 sbert 53.6 27.3 430080 0 1
 23:15 96 4 0 1257 sbert 89.9 27.3 430080 0 1
 23:20 96 4 0 1249 sbert 89.9 27.3 430080 0 1
 23:25 97 3 0 1070 sbert 89.7 27.3 430080 0 1
 23:30 96 4 0 1266 sbert 91.1 27.3 430080 0 1
 23:35 97 3 0 1257 sbert 91.0 27.3 430080 0 1
 23:40 96 4 0 1222 sbert 88.3 27.3 430080 0 1
 23:45 96 4 0 1255 sbert 89.7 27.3 430080 0 1

Figure 3. Sample ND Report

274

CUG 1996 Spring

 Proceedings

3.3 Testing

The existing dedicated queue had long been in production and
was used by a number of NCAR’s most influential and vocal
users. This made effective testing imperative, as disruptions to
the current production workload could not be tolerated. Effec-
tive testing of ND required a significant amount of dedicated
system time. Fortunately, NCAR owns a small CRAY EL92

Figure 4. ND Monitoring Tool

system that could be used for dedicated testing. This system
proved to be invaluable in accomplishing testing goals without
impacting production work.

Testing centered around two quite different objectives. The
first objective was to verify that the new scheduler changes
would deliver quick, reliable preemption of system resources.
The scheduler was tested by running a mix of background jobs
and then initiating an ND job. The background mix of jobs could
be tuned to provide both typical and worst-case workloads. This
testing uncovered a number of unexpected problems with
memory scheduling, as noted earlier. The second objective was
to test the scripts and programs that manage and monitor the
operation of ND for reliable operation. This was accomplished
by setting up the EL92 for full ND operation and running
multiple sequences of jobs under a variety of circumstances.

4 Results

One of the most important objectives for ND was job turn-
around. Meeting this objective depended on the performance of
the new scheduling mechanisms. Performance in this case is
how quickly and completely the new scheduler is able to
preempt system resources.

The chart in Figure 5 shows the scheduler’s performance. The
measurements in this chart were done by running a sequence of
real and synthetic jobs in the current dedicated queue, then
running the same sequence of jobs using the ND mechanisms

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Startup User System I /O-Wai t Memory-Wait Sds-Wait Run-Wait Wall-Job Wal l -Tota l

S
e
c
o
n
d
s

Dedicated ND

Figure 5. Dedicated vs. Near-Dedicated Execution Times

CUG 1996 Spring

 Proceedings

275

with a mix of typical background jobs. The startup column is the
setup time before the first job is initiated. Since the current work-
load must be checkpointed before staring the first job in the dedi-
cated queue, this time is quite long. Note that the user, system,
and I/O wait times are almost identical with small increases in
memory and SDS wait times. The Run-Wait column is derived
from the difference in the Wall-Job time and the sum of all other
components, and represents the time waiting for CPUs. The
Wall-Total column is the start-to-end time for the entire job mix
and shows that ND was able execute the job mix, in less overall
time than dedicated. In this test case, the average wall time for
each job was only 24 minutes. With longer-running jobs, the
memory and SDS wait times will be less significant, since these
delays only occur once at the start of each job.

The average times for memory and SDS preemption were 22
and 47 seconds, respectively. These were higher than desired,
but still acceptable. Preemption of CPU resources was very
good. The difference in wall time due to CPU scheduling was
only 42 seconds per hour or 1.17%.

High system utilization was also an important objective for
ND. Figure 6 shows a comparison of system utilization for dedi-
cated vs. ND. This comparison is based on a 30 day sample. Idle
time was reduced from 9.65% to 2.38%, a reduction of 7.27%.
The maximum system utilization occurs during ND processing,
since during normal processing, idle time for this system is typi-
cally 3-6%.

5 Conclusions

Although there were a number of difficult problems to
resolve, ND has been very successful. With the exception of a
few startup glitches, the scheduling mechanism has been reli-
able. System utilization during ND processing is typically higher
than during normal processing. ND’s flexibility has allowed
NCAR to expand the hours for ND processing. Many favorable
comments from NCAR management and ND users regarding the
performance and functionality of ND have been received.

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

User System Idle

P
e
r
c
e
n
t

C
P
U

Dedicated ND

Figure 6. System Utilization

