
 

276

 

CUG 1996 Spring 

 

 Proceedings

 

Measuring Performance Degradation by CPU

 

Nicholas P. Cardo

 

, Sterling Software, Inc., Numerical Aerody-
namic Simulation Facility, NASA Ames Research Center, M/S
258-6, Moffett Field, CA 94035-1000 USA

 

ABSTRACT: 

 

Many conditions exist in a systems configuration that can affect overall system
performance. This paper discusses an analysis performed where test programs were run on indi-
vidual processors of a multiprocessor system. The test programs covered 3 areas: memory
access, system calls, and disk I/O. Performance timings are tracked for each run across each
individual CPU. Attempts to correlate anomalies to the system’s configuration will be made.

 

With the high costs associated with supercomputing and the
ever increasing need to consolidate and reduce costs, it is very
important to squeeze the most computing cycles out of
purchased systems. 

 

1 Introduction

 

Balancing system resources to achieve maximum utilization
is a difficult task which infringes on all the system’s compo-
nents. An example of this would be the batch scheduler. An
inefficient scheduler could fully utilize the processors without
effectively utilizing memory. However, understanding the
impact of the system’s configuration on running processes can
provide important insight into an unbalanced system. If the
system is balanced properly, process timings would be nearly
identical regardless of CPU, filesystem, or size.

 

2 Performance Test Approach

 

The general approach is to run programs designed to stress
the access to resources. Measurements would be taken to track
user, system, and elapsed timings for each program. In order to
identify if any effects observed were due to normal system
usage, testing was performed under two conditions: normal
production and a dedicated system. Each test program was
locked to each processor using 

 

/etc/cpus

 

. Timings were
recorded and plotted to identify any anomalous results.

 

3 Performance Tests

 

Three programs were developed to stress memory access, sys-
tem calls, file I/O, and pure computational capacity.

 

3.1 Memory

 

The memory test is designed to consume all available
memory and perform operations on each word of memory allo-

cated. The systems configuration has 1024mw of memory, of
which 1000mw is usable. The test program allocated a 970mw
three dimensional array and performed movement of data
between elements of neighboring dimensions. Because of the
size of this test program, it could only be run on a dedicated
system. The objective of this test is to identify if any processor
incurs additional overhead when accessing memory.

 

3.2 I/O and System Calls

 

An inefficient program would be one that performs large
amounts of poorly structured I/O operations or executes large
quantities of system calls. This test is designed to be a program
with large system overhead by issuing large quantities of I/O,
one word in size. Additionally, the program issued eight million
system calls. The system calls selected were ones that returned
information from the kernel without performing any type of file
I/O. The objective of this test is to identify if any processor
requires more system time to complete the tasks.

 

3.3 Computations

 

In order to achieve maximum performance of a processor,
codes need to do little to no I/O and be capable of producing
large vector lengths. A test program was developed that
performed no file I/O and produced a moderately large vector
length. This objective of this test is to identify if a purely
computational program is charged any system overhead on each
processor.

 

4 Test Results

 

Each test was performed three times on each processor. The
elapsed, user, and system times for each run were retained and
used for analysis. The charts displayed for each test show their
results.



 

CUG 1996 Spring 

 

 Proceedings

 

277

 

4.1 Memory

 

Since this test required all available memory, the results were
obtained on a dedicated system with no corresponding run from
normal production.

When testing began, the results initially showed no change in
timings between processors. Chart 1 represents a typical run of
this test. However, when the length of time for the test was
increased, an increase in system time was observed on proces-
sors 0 and 15. Chart 2 shows an expanded view of the system
time changes on all CPUs. The change becomes more
pronounced in longer running tests. Testing showed a 3.5%
increase in system time on CPU’s 0 and 15. An average increase
of 3% was observed on both processors when the testing was run
for longer time intervals.

 

4.2 I/O and System Calls

 

Initial testing showed a slight increase in system time of
approximate 2% on CPU 0. To isolate this further, the I/O was
removed from the test. The increase in time was reproducible at
an increase of 3% to 3.2%. This increase remained regardless of
the length of time for the test. Chart 3 shows representative data
for runs during production. The spike in elapsed time for proces-
sors 5 and 6 shows contention for the processor. This shows that
although the turnaround time for the program on processors 5

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

S
ec

on
ds

Processor

Elapsed
User

System

Chart 1.

2.54

2.55

2.56

2.57

2.58

2.59

2.6

2.61

2.62

2.63

2.64

0 2 4 6 8 10 12 14

S
ec

on
ds

ProcessorChart 2.

 

and 6 was longer, the performance of the program did not
change. The user and system times for the program remained as
expected.

However, the increase in system time was not observed
during dedicated testing. Chart 4 shows results gathered from
some dedicated system processing. No anomalous results were
encountered.

 

4.3 Computations

 

By isolating the test program to only code which utilizes user
time, the results clearly show an increase in system time on
CPUs 0 and 15. Chart 5 shows the results from testing in normal
production. The large elapsed time noticed on some processors
is a result of processor contention.

Chart 6 represents only the system time and shows the
increase in system time for CPUs 0 and 15. Also evident was that
the system time on CPUs 1 through 7 was higher than the results
on CPUs 8 through 14. Repeated tests consistently showed an
increase in system time of as much as 700% with a mean of
276% over CPUs 8 through 14. 

Although not as large, an increase in system time was
observed on CPUs 0 and 15 when the test was run on a dedicated
system. Chart 7 shows a typical pattern.

0

50

100

150

200

250

0 2 4 6 8 10 12 14

S
ec

on
ds

Processor

Elapsed
User

System

Chart 3.

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14

S
ec

on
ds

Processor

Elapsed
User

System

Chart 4.



 

278

 

CUG 1996 Spring 

 

 Proceedings

 

A plot of the system time observed during a short time run on
a dedicated system is shown in Chart 8. This pattern of CPUs 0
and 15 having higher system time was observed irregardless of
the length of time the test was run.

 

5 Analysis and Correlation

 

The data showed a pattern of higher system time on CPUs 0
and 15. This pattern can be demonstrated on a fully loaded
production system or on a dedicated system for running the test
codes. This pattern seemed to exist only when the code running
required very little system time.

Since I/O had been eliminated from testing, this left two
possibilities: other programs and the kernel. To test for impact
from other processes, the test programs were run on a dedicated
system. The pattern was reproducible, therefore eliminating
other processes leaving only the kernel.

This leaves two areas to investigate for the cause of this
higher system time. The first area is the kernel itself while the
second is hardware.

The tests were performed on a CRAY C90 16/1024. There are
4 vhisp channels connect via processors 0, 1, 2, and 3. The
system’s hisp channels connected via processors 8 - 15. The
system heavily uses ldcache which can be associated with some

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12 14

S
ec

on
ds

Processor

Elapsed
User

System

Chart 5.

0

5

10

15

20

25

0 2 4 6 8 10 12 14

S
ec

on
ds

ProcessorChart 6.

 

elevations in system time on processors 0 - 3. However,
processor 15 contains a hisp to an IOC and to main memory.
Higher system times on processor 15 can be attributed to
memory contention or I/O transactions. One possible memory
operation that could affect results is memory compaction.
However, it would be expected that elapsed time would increase
as well.

Processor 0 consistently showed higher system time, some of
which is associated with ldcache. When no processors are in the
kernel, a usrpci (programmable clock interrupt) will interrupt

processor 0. Since this occurs every 1/60

 

th

 

 of a second, a large
amount of overhead will be accrued on processor 0.

When a program that spends most of its time in the kernel is
running, the increase in system time is minimal and not worth
noting. One possible explanation for this is that since the
processor is already in the kernel, the 

 

usrpci

 

 does not need to
interrupt processor 0. The end result is that all processors
perform equally.

The testing also shows that individual processes are being
charged additional time for work they are not requesting when
the program is attached to processor 0. The implication of this is
that the kernel has no way to account for or properly charge for
work it performs on behalf of itself. 

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14

S
ec

on
ds

Processor

Elapsed
User

System

Chart 7.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12 14

S
ec

on
ds

ProcessorChart 8.



 

CUG 1996 Spring 

 

 Proceedings

 

279

 

Ideally, each processor should show exactly the same
timings. In most cases, processors 1 through 14 provide similar
timings. When differences did occur, they were typically found
to be on processors 1 through 3 which can be attributed to
ldcache activity. 

 

6 Summary

 

The information discussed here presents an approach to eval-
uate the equality of processors as applied to individual
processes. The test cases were developed to search out strange
behaviors of the individual processors.

Two pieces of information can be concluded from the testing
performed. The first is that the kernel inappropriately charges
time to processes for work that it initiates. The kernel should be

capable of accounting for itself properly by charging this time to
possibly the 

 

sched

 

 process and not user processes. Addition-
ally, this behavior applies to process initiated kernel activity. If
a process is connected to a processor that is in the kernel, it can
be charged for all the kernel activity outstanding when the
processor enters the kernel.

The second item is that processor 0 was found to be called
upon more often to do work. Interrupts for processor 0 should be
capable of being distributed amongst the remaining processors.

United States sites are welcome to visit the Numerical Aero-
dynamic Simulation (NAS) Facility on the World Wide Web at

 

http://www.nas.nasa.gov

 

. The author can be reached at

 

cardo@nas.nasa.gov

 

 for additional information.


