

CUG 1996 Spring

 Proceedings

297

A First Look at T3E UNICOS/mk Performance

John Melom

, Cray Research, Inc.

ABSTRACT:

Performance characteristics of UNICOS/mk running on T3E’s will be presented.
Performance data related to single and multi PE applications will be shown along with charac-
teristics of scalability related to I/O, file systems, and PEs.

Introduction

UNICOS/mk and the Cray T3E provide significant new
opportunities for parallelism. This paper will look at ways in
which UNICOS/mk system architecture takes advantage of the
parallelism available in the T3E. The focus will be on the disk
I/O path, since that is a critical factor in operating system perfor-
mance.

UNICOS/mk Disk I/O Request Path

Figure 1 shows the UNICOS/mk disk I/O request path. In the
figure, boxes represent individual processing elements (PEs) in
a T3E.

Figure 1:

UNICOS/mk Disk I/O Request Path

The top row of boxes represents PEs running user applica-
tions (App). This can either be a single multi-PE application, or
multiple smaller applications. When a user issues a disk I/O

App

PM

 FS FS

App

PM

App

PM

App

PM

App

PM

DS DS

PS PS

Buffer
Cache

Buffer
Cache

system call such as read() or write(), the UNICOS/mk process
manager (PM) interprets the system call and decides what needs
to be done with the system call.

The middle row of boxes in figure 1 represents PEs running
the UNICOS/mk file server (FS). The FS consists of the
UNICOS/mk code that manages file systems. Thus, the file
system buffer cache resides on the FS PE and is managed by the
FS. The FS processes file related system calls such as open(),
close(), read(), write(), lseek(), and others. When the PM
receives one of these system calls, it will forward the request to
the FS. This is indicated in figure 1 by the arrows connecting
the application PEs to the FS PE on the left. Note that in figure
1, two FS PEs are pictured. The capability to have more than
one FS PE per system will not be available in the first release of
UNICOS/mk, but is planned for a subsequent release. In the
first release of UNICOS/mk, all file systems will be managed by
a single FS in one PE.

If, in the case of a read() or write() system call, the FS can
satisfy the request from the buffer cache, the data will be copied
from the buffer cache to memory in the user application’s PE.
Otherwise, the FS will need to obtain the requested data from
disk. The FS will forward an appropriate request to the disk
server (DS) to obtain the data.This is shown in figure 1 by the
arrows connecting the FS PE to the DS/PS PEs.

The bottom row of boxes in figure 1 represents PEs running
the UNICOS/mk disk server (DS) and packet server (PS). The
DS manages disks, while the PS is the physical network
manager (GigaRing). Note that there can be multiple DS/PS
PEs. The DS will make a request to the PS which will make a
data transfer request to the disk. The hardware allows direct
memory access (DMA). This means the data transfer path will
be direct from the disk (or disk channel) to the destination PE.
Data transfer will often have a more direct path than the I/O
request path. If the I/O request is a buffered I/O request, the data
will be read into or written from the FS buffer cache. If the I/O
request is a raw I/O request, the data will be read from or written
directly to the application PE to or from disk.

This disk I/O path exhibits parallelism at all levels. Multiple
application PEs can issue disk I/O requests. A future release ofCopyright © Cray Research Inc. All rights reserved.

298

CUG 1996 Spring

 Proceedings

UNICOS/mk will allow parallelism across file servers. The
DS/PS level allows parallelism across disk sets or at the disk
slice level within a striped set. Users have access to the DS/PS
parallelism through system defined disk striping, or through user
defined striping. User defined striping is available in
UNICOS/mk through the ASSIGN command just as it is avail-
able in UNICOS today.

 The path shown in figure 1 does not provide for parallelism
at the file server level within a file system. The optimization
described in the next section addresses this.

UNICOS/mk Disk I/O Request Optimization

The file server assistant(FSA) was introduced to shorten the
disk I/O path, and to remove the necessity of routing all disk I/O
requests within a file system through the FS PE. It must be noted
that the FSA can only be used for certain types of disk I/O
requests. The restrictions will be described later. Figure 2
shows the disk I/O request path for requests that can be
processed by the FSA.

Figure 2:

UNICOS/mk Disk I/O Request Optimization

A comparison of figure 1 and figure 2 shows two significant
differences. First, the application PEs all have an FSA in addi-
tion to a PM. Second, the arrows showing the request flow
bypass the FS PE and go directly to the DS/PS PEs.

The disk I/O request path again starts with the user applica-
tion making a read() or write() system call. The system call is
interpreted by the PM. If the request cannot be processed by the
FSA, the PM forwards the request to the FS and the path is the
same as that described in figure 1. If the disk I/O request can be
processed by the FSA, the PM passes the request to the FSA.
The FSA does the processing that would otherwise be performed
by the FS. The FSA then passes the request to the DS/PS, which

FSFS

DS DS

PS PS

Buffer
Cache

Buffer
Cache

App

PM

FSA

App

PM

FSA

App

PM

FSA

App

PM

FSA

App

PM

FSA

will manage the disk I/O request as before. As in the FS I/O
path, the DMA data transfer will cause data to be read from or
written to the disk directly to or from the application PE’s
memory.

The FSA cannot be used for buffered I/Os. This makes sense
since the FSA I/O path bypasses the FS PE, which contains the
buffer cache. The FSA can only be used for raw I/Os. These
I/Os must be well-formed. The FSA can process read(), write(),
reada(), writea(), listio(), and lseek() requests. These are the
highest volume disk I/O requests. As a consequence, parallelism
and a shorter path can provide the greatest benefit in terms of
overall system throughput. Requests such as open() and close()
must be processed by the FS. The file from which I/O is
requested must be opened with the O_RAW,
O_WELLFORMED, and O_PARALLEL flags specified. FSA
usage will also be supported in the Cray libraries in
UNICOS/mk.

If an FSA request attempts to extend a file (write() past
current end of file), that request is passed to the FS. This detour
makes the I/O path for that request longer than the straight FS
path. Thus, there is a performance cost for FSA file extension
requests. For this reason, an application that does frequent file
extensions will probably get the best performance without using
the FSA path (O_PARALLEL is not specified when the file is
opened). If the ultimate file size is known, the file can be preal-
located, so the file extensions will not occur. In this case, the
FSA path will likely provide the best performance.

The FSA disk I/O path provides for parallelism at all levels.
It applies to those cases where a high disk I/O request rate is
most necessary. In addition, the restrictions and user interface
are similar to those required by UNICOS today, so it is our belief
that the FSA will provide convenient access to highly parallel
I/O on the T3E.

Preliminary UNICOS/mk Performance Results

We will consider some preliminary UNICOS/mk perfor-
mance results in this section. Before attempting to apply these
results to any production environment, it is important to keep the
following points in mind:

• The tests were run on a T3D running UNICOS/mk. There
are no plans to release UNICOS/mk to run on a T3D, so no
T3D specific performance optimizations were done in UNI-
COS/mk. The T3D system was used for internal develop-
ment purposes while T3E systems were not readily available.
One would expect UNICOS/mk running on a T3E with T3E
specific optimizations to perform better than the results we
will show here.

• The version of UNICOS/mk run on the test system was com-
piled with symbols and debug on. This is not the compila-
tion optimization level at which UNICOS/mk will be
released. One would expect a version of UNICOS/mk com-
piled for production to perform better than this system.

CUG 1996 Spring

 Proceedings

299

The test system configuration was limited, so we will not be
able to present results for all the interesting cases. We will
present results for single stream buffered I/O, multiple stream
buffered I/O, and single stream raw I/O. Single stream tests
mean that a single application PE is initiating requests. Multiple
stream tests mean that multiple application PEs are concurrently
issuing requests.

Single Stream Buffered I/O

Figure 3 shows both the I/O request rate and data transfer
throughput rate for single stream buffered I/O. The test did 100
synchronous sequential buffered I/O read requests.

Values on the x axis show the number of kilobytes per request
for each execution of the test. The left hand y axis provides the
scale for the I/O request rate in terms of I/Os per second. The
dashed line in the graph shows the measured I/O request rates.
The right hand axis provides the scale for the data transfer
throughput rate in terms of megabytes per second. The solid line
in the graph shows the measured data throughput rate.

Figure 3:

Single Stream Buffered I/O

Because this test is single stream, the data presented in figure
3 does not represent system capacity limits, but rather shows the
effects of request latencies.

As you view the chart from left to right, you see the I/O
request rate gradually dropping and the data throughput rate
increasing. Initially, this single stream test I/O rate is limited by
the sum of the CPU processing times in the application PE and
the FS PE. As the request size is increased, the data copy time
becomes more of a factor. This causes the request rate to slowly
decline. Because more data is transferred per request, we see the
data transfer throughput rate increase.

Unicos/mk Synchronous Single Stream Read Buffered I/O Rates (100 Requests)

I/O / Sec MB / Sec

Kilobytes per I/O Request

0 20 40 60 80 100

I/
O

s
 p

e
r

S
e

c
o

n
d

0

100

200

300

400

500

M
e

g
a

b
y
te

s
 p

e
r

S
e

c
o

n
d

0

2

4

6

8

10

12

14

Between 30 and 40 kilobytes per request, we see the data
transfer throughput rate level off and then dramatically drop off.
This is because at these request sizes, 100 requests exceed the
size of the buffer cache. Hence, we see the effect of more and
more requests having to be satisfied from disk rather than from
the buffer cache. After 40 kilobytes per request, the test is domi-
nated by disk I/O, so the request rates level off and the data
transfer throughput rates rise as the request size is increased. At
high enough transfer sizes, the data transfer throughput rate
reaches the disk data transfer limit.

Multiple Stream Buffered I/O

Figure 4 shows the data transfer throughput rate for multiple
stream buffered I/O. This test did 5000 synchronous read()
requests and 5000 synchronous write() requests interspersed
with lseek() requests which caused all requests to do I/O to the
same address. This test design avoids buffer cache overflow to
allow measurement of pure buffer cache I/O limits. The I/O
requests were 16 kilobytes in all cases.

The x axis shows the number of concurrent streams running
for a particular test. The y axis shows the measured I/O request
rate in terms of I/Os per second.

Figure 4:

Multiple Stream Buffered I/O Rate Limits

The measured I/O request rate for one stream is approxi-
mately 425 requests per second, which matches closely with the
I/O request rate seen in figure 3 for 16 kilobyte requests. The I/O
request rate peaks at slightly over 800 requests per second at five
concurrent streams. At this point, the FS PE CPU is 100%
utilized. It is important to note, these results were obtained from
a T3D running unoptimized UNICOS/mk.

Buffered I/O Rates (16k transfer size)

PE’s Doing I/O

1 2 3 4 5 6 7 8

I/
O

’s
 p

e
r

S
e

c
o

n
d

0

100

200

300

400

500

600

700

800

900

300

CUG 1996 Spring

 Proceedings

Single Stream Raw I/O

Figure 5 shows both the I/O request rate and data transfer
throughput rate for single stream synchronous raw I/O read
requests from a DD60. The test system had the FS, DS, and PS
all located on the same PE. This test used the FSA path.
However, because the test has a single I/O stream, and because
the FS, DS, and PS are located on a single PE, the results would
not be significantly different if the standard FS I/O path were
used.

Values on the x axis show the number of kilobytes per request
for each execution of the test. The left hand y axis provides the

Unicos/mk Synchronous Raw Single Stream Read from DD60

I/O / Sec MB / Sec

Kilobytes per Request

0 50 100 150 200 250 300 350 400

I/
O

s
 p

e
r

S
e

c
o

n
d

0

50

100

150

200

250

300

350

M
e

g
a

b
y
te

s
 p

e
r

S
e

c
o

n
d

0
2
4
6
8
10
12
14
16
18
20

Figure 5: Raw I/O Single Stream Throughput

scale for the I/O request rate in terms of I/Os per second. The
dashed line in the graph shows the measured I/O request rates.
The right hand axis provides the scale for the data transfer
throughput rate in terms of megabytes per second. The solid line
in the graph shows the measured data throughput rate.

For small request sizes, the test is limited by the sum of the
CPU times of the application PE, the FS/DS/PS PE, and the disk
latency and data transfer time. Since this involves more servers
than the buffered I/O path plus a disk, it is understandable that
the measured raw I/O request rate is less than the measured buff-
ered I/O request rate. It is important to note, this test does not
measure the I/O request rate maximum, since it is single stream,
not multiple stream. As the data transfer size is increased, the
request time is increasingly dominated by disk data transfer
time, until the disk throughput limit of 20 megabytes per second
is reached. The decreasing I/O request rate is a natural conse-
quence of the data transfer throughput limit. Since there is a
fixed data throughput limit, and we are transferring more data
per request, the I/O request rate declines.

Summary

In this paper we have shown how the design of UNICOS/mk
takes advantage of the parallelism available in the Cray T3E.
We have presented results that show even an unoptimized
UNICOS/mk running on a T3D can provide high data
throughput. During the course of our discussion, we pointed out
that users can take advantage of the optimized UNICOS/mk I/O
paths through interfaces similar to those they are already using
in UNICOS.

Credits

Thanks to Bob Albers and Dave Henseler for providing the
data used in this paper.

