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ABSTRACT: 

 

The Message Passing Interface (MPI) provides an alternative to multitasking for
parallel processing.  This paper discusses some of the pros and cons of using MPI from a user’s
perspective and a system’s perspective. Sample programs are shown to demonstrate the
strengths and weaknesses of MPI.

 

Price performance is an important aspect of any computa-
tional facility. Harnessing the power of all of the systems
provides an effective way of providing cost effective
computing. The purchasing of larger expensive supercomputers
is not necessarily the right approach. Large scale supercom-
puters are a very expensive component of a computer facility.
However, an alternate approach is to purchase smaller high
performance computers and distribute the problem across
multiple systems. This provides the potential for high perfor-
mance at an attractive price.

All discussions contained in this paper are based on an alpha
version of Message Passing Interface (MPI) from Cray
Research Inc. on a C90 system.

 

1 What is MPI?

 

Parallel computing is complicated by nature. By distributing
the problem across multiple systems, the combined computing
power of all the systems can be applied to the problem.
However, individual systems lack the capabilities to synchro-
nize applications and share data between systems. MPI was
developed to address this problem area of parallel computing.

MPI provides a portable parallel programming environment.
It is intended to provide an interface that is capable of working
on machines with different operating systems and architectures. 

Cluster computing takes groups of smaller machines for use
in distributed parallel computing. The combined computing
power of each system in the cluster contributes to the overall
performance of applications. Portability plays an important part
when working with a cluster of heterogenous systems. The
potential is there for each node in a cluster to be of a different
architecture. Although portability plays a less important roll on
a homogenous cluster, it is still an important aspect of parallel
computing. Applications need to be able to scale to fully utilize

the processing power available. Part of this scalability is being
able to move an application to different platforms. Without a
portable interface, this would not be possible.

 

2 MPI Components

 

MPI is a complete package which is incorporated into the
software development process. An environment variable

 

MPIR_HOME

 

 is used to identify the location where MPI is
installed. This will allow for customized installations of MPI by
installing it in site desired locations. In order to use MPI, the

 

MPIR_HOME

 

 environment variable must be set to the root direc-
tory of MPI.

 

2.1 MPI Directory Tree

 

MPIR_HOME

 

 actually is the root directory for the MPI instal-
lation which contains header files, libraries, machine identifica-
tion file and the 

 

mpirun

 

 script. Figure 3 shows the

 

MPIR_HOME

 

 directory tree.

The files for using MPI are located as follows:

 

$(MPIR_HOME)/include/*.h
$(MPIR_HOME)/lib/CRAY/ch_p4/libmpi.a
$(MPIR_HOME)/util/mpirun
$(MPIR_HOME)/util/machines/machines.CRAY

CRAY

 

 refers to the architecture and the file 

 

machines.
CRAY

 

 contains the default information necessary to initiate MPI

MPIR_HOME

include

lib CRAY ch_p4

util machines
Figure 3.
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processes. 

 

ch_p4

 

 refers to the specify machine type of the

 

CRAY

 

 architecture. Since MPI is portable, being able to differen-
tiate between machines and architectures is crucial.

 

2.2 Header Files

 

A series of header files for MPI function prototypes and
option definitions are provided. These header files are:

 

binding.h mpi++P.h mpi_errno.h 
mpir.h sbcnst.h dmpi.h 
mpi.h mpif.h mpisys.h 
dmpiatom.h mpi_ad.h mp i imp l .h
mpiuser.h mpi++.h mpi_bc.h 
mpiprof.h patchlevel.h

 

2.3 Libraries

 

The MPI functions are contained in the 

 

libmpi.a

 

 library.
All function prototypes and defined function options are
contained in the MPI header files. It is important to include the
following library when compiling applications:

 

$(MPIR_HOME)/lib/libmpi.a

 

2.4 mpirun

 

MPI applications are initiated by the 

 

mpirun

 

 script.
Command line arguments define the parallel parameters for the
job such as the number processes to create.

Since MPI is portable, the 

 

mpirun

 

 script provides the ability
to specify machine type and architecture. This allows applica-
tions to be distributed in a hetergenous computing environment
yet still use a common message passing interface. Although
defaults are obtained from a configuration file, the command
line options allow the defaults to be overriden to maximize the
flexibility to fully utilize available resources.

 

2.5 Special Files

 

An MPI application can be customized to run a specific
number of processes on specific hosts. The process group file
contains hostnames, process counts and location of the execut-
able. A copy of the executable must exist on each host. A sample
process group file would be:

 

host1 2 /home/user/prog1
host2 6 /home/user/prog1

 

This identifies that the MPI application is to utilize two
systems with a total of 8 processes along with what the execut-
able is and its location.

It is not a requirement that the executable reside in the same
directory path on both systems. The following examples demon-
strate this:

 

host1 2 /home/user/prog1
host2 6 /u/user/prog1

 

3 Using MPI

 

Parallelizing a code with MPI can be a time consuming and
complicated task. MPI consists of a set of functions which are
inserted into an application to control interprocess communica-
tions and degrees of parallelness.

 

3.1 Constructing Programs

 

MPI is not capable of determining how to parallelize an appli-
cation or constructing the appropriate calls to insert into an
application. This is left as an exercise to the user.

A typical Fortran MPI application will begin with a sequence
of calls similar to the following.

 

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)
call MPI_COMM_SIZE(MPI_COMM_WORLD,numprocs,ierr)

 

These three calls will perform MPI execution initialization,
process ranking, and establish the size of the process group. The

 

MPI_COMM_RANK()

 

 call will establish the process with the
highest rank, the root process.

When the computation is finished, the MPI application needs
to be terminated. This is accomplished with the following code
segment:

 

call MPI_FINALIZE(ierr)
stop
end

 

Communication between processes is accomplished through
a series of send and receive operations. The process of rank, the
root process, can broadcast a message to all other processes with
the 

 

MPI_BCAST()

 

 call. A sample call to broadcast the variable

 

a

 

 to all other processes would be:

 

call MPI_BCAST(a, cols, MPI_DOUBLE_PRECISION, 
master,MPI_COMM_WORLD, ierr)

 

The application can also send information from any process
to all other processes. For example, to send 

 

a

 

 to other processes,
the call might look like:

 

call MPI_SEND(a, 1, MPI_DOUBLE_PRECISION, master,
anstype,MPI_COMM_WORLD, ierr)

 

A process can receive messages as well. For example, to
receive a message into 

 

buffer

 

, the call might look like:

 

call MPI_RECV(buffer, cols, MPI_DOUBLE_PRECISION,
master,MPI_ANY_TAG, MPI_COMM_WORLD, status, ierr)

 

These calls show a simplistic view of MPI communication.
There are over 100 different MPI calls for accomplishing all
kinds of interprocess communication and synchronization.

 

3.2 Starting Programs

 

MPI job initiation is accomplished with the 

 

mpirun

 

 shell
script. Command line arguements are processed to customize the
running of the MPI application. For example, suppose the
program 

 

mpit

 

 is to run with 4 processes on the invoking
system. This is accomplished with:

 

% mpirun -np 4 mpit

 

Four process chains are created as a result of this. The first
process chain is derived from the process shell that invoked

 

mpirun

 

. Figure 1 shows the process tree hierarchy from the
process invoking 

 

mpirun

 

. Take note of the two 

 

mpit

 

procesess related as parent and child. The parent 

 

mpit

 

 process
will create the multiple process streams to be used for computa-
tion. The child 

 

mpit

 

 process will actually be part of the compu-
tational algorithm.
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As a result of the 3 

 

remsh

 

 processes, three additional process
chains are formed. Figure 2 shows the process tree associated
with each of these 3 process trees. The three 

 

mpit

 

 processes

attached to the bottom of these process trees are used for
performing the computation.

The first instance of the application must run on the system
that 

 

mpirun

 

 was invoked on. However, all other processes can
run on alternate systems. The control of where these processes
run can be accomplished in the process group file specified by
the 

 

-p4pg

 

 option of the 

 

mpirun

 

 command. This is where the
power of distributed processing with MPI comes from. Suppose
there were 5 CRAY J932 systems, all capable of performing
computations. This allows for 160 processors to be applied to the
application, without any code changes. The process group file,
named 

 

pgfile

 

 in this example, for running the 

 

mpit

 

 applica-
tion would look like:

 

J1 32 /home/user/mpit
J2 32 /home/user/mpit
J3 32 /home/user/mpit
J4 32 /home/user/mpit
J5 32 /home/user/mpit

 

The new invocation of 

 

mpirun

 

 would be:

 

mpirun -p4pg pgfile -np 160 mpit

 

This provides the computational capacity of 160 Y-MP
processors to work on a single application.

 

3.3 Observations

 

Figure 1 shows that processes are started via 

 

remsh

 

. For
every process stream requested via the 

 

-np

 

, number of proces-
sors, option for 

 

mpirun

 

, a 

 

remsh

 

 process is created on initi-
ating host. A 

 

rshd

 

 process then forks a shell process to fork the
executable. If 160 processes were requested, 159 

 

remsh

 

process would be forked. From a system administration perspec-

csh

mpit

remshremsh remsh mpit

Figure 1.

rshd

csh

mpit

rshd

csh

mpit

rshd

csh

mpit

Figure 2.

mpit mpit mpit

 

tive, many 

 

remsh

 

 processes can be expected to be seen on the
initiating host if MPI were heavily used.

The number of processes running the application is double
the number of processes requested. However, only the number
requested actually perform computational work and accumulate
cpu time. Figures 1 and 2 show the relationship of all the copies
of the executable.

 

3.4 Creating Batch Jobs

 

Running an MPI application from a batch job requires no
additional customization. For example, suppose the mpit appli-
cation required 100mw and 4 hours of cpu time. The batch job
might look like:

 

#QSUB -lT 14400
#QSUB -lM 100mw

mpirun -np 4 mpit

 

The only difference between an MPI versus a non-MPI batch
job would be the use of 

 

mpirun

 

 to start the MPI application.

 

4 Problems Encountered

 

If the rank process abnormally terminated, the remaining
process streams would continue to run. The only way to recover
from this problem is to track down and kill all processes on each
system. 

Since each process stream is created through 

 

remsh

 

, each
stream is itself a session. Therefore any session limits are not
inclusive of all the processes performing the work. The end
result is that a 4 hour job can actually get 4 hours on each process
stream. The total delivered cpu time will then be the product of
4 hours times the number of processes requested with mpirun .
Furthermore, when the MPI application is run under NQS, the
NQS queue limits are not inherited but rather limits from the
udb . Software Problem Report (SPR) 98158 was opened to
address this problem and as a result a fix was developed so that
fork /exec  are used on the local system rather than remsh .
While this addresses the problem on the local system, it does not
seem to address processes on remote systems.

5 Summary

Cost effective high performance computing is essential to any
computer facility. Advancements in distributed computing are
making it possible to apply more processing power to an appli-
cation without the costs of purchasing larger and faster computer
systems. By harnessing the computational power of multiple
smaller systems, high performance computing can be accom-
plished with a significant cost reduction.

The Message Passing Interface is playing a key role in the
development of distributed parallel application development.
The problems of internode communications and synchronization
are being solved with packages such as MPI. The portability of
MPI makes it possible for the formation of a heterogeneous
cluster of compute servers.

Cray Research is evolving MPI into the Message Passing
Toolkit (MPT). This will address the needs for parallel software
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development with the optimizations necessary to take advantage
of multiprocessor parallel vector processor systems.

The compute environment of the future will most likely be a
collection of systems of various architectures. This collection of
systems may include a high performance vector system, moder-
ately/massively parallel system, low end pre/post processing
systems, and a cluster of medium ranged systems. Making these
systems work together to solve tomorrow’s problems is a key
challenge. Packages such as MPI could provide the beginnings
of realizing this future compute facility capable of delivering
cost effective high performance computing.

The Numerical Aerodynamic Simulation Facility (NAS) at
NASA Ames Research Center is active in pursuing the futures
of parallel computing. United States sites are welcome to visit
NAS on the World Wide Web at

 http://www.nas.nasa.gov . 
The parallel efforts at NAS can be found at
http://

lovelace.nas.nasa.gov/Parallel/home.html.

The author can be reached at cardo@nas.nasa.gov .
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