HPF_CRAFT Language

Tom MacDonaldand Andrew Meltzer Cray Research, Inc,
655-F Lone Oak Drive, Eagan, Minnesota 55121

ABSTRACT: HPF_CRAFT is an implicit multi-threaded parallel model that simplifies data
distribution and work distribution. This paper describes the HPF_CRAFT language and its rela-
tionship to both CRAFT and HPF.

1 Introduction 3. The language should be intercallable with Fortran 90, HPF,

. ] ) C++, and C.
This document is an overview of a language called

HPF_CRAFT that is a merging of CRI's CRAFT language and4- The Iangu_age provides the same execution model as the mes-
HPF. HPF_CRAFT is being developed in partnership with The ~Sage passing and SHMEM libraries.

Portland Group, Inc. (PGI). The language is fundamentallys The language and implementation must be stable and reli-
CRAFT, but implemented within the superstructure of PGlI's  gpje,

implementation of HPF, and influenced by the CRAFT-90 spec-

ification presented at the Denver CUG in 1995. 1.2 HPF, Kernel HPF, and HPF_CRAFT

CRAFT features and a multi-threaded execution model allow HPF2 is the current High Performance Fortran Forum
the user to take advantage of the flexibility of an SPMD process, due to be complete during the summer of 1996. This
programming model and the low-level process control availablgrocess will develop a document describing the next HPF spec-
with CRAFT. The HPF syntax allows the user to more easilyification, HPF 2.0, along with one or more subsets and exten-
port codes and provides a more well known user interface t@ions (e.g., extrinsic environments). The HPF 1.1 document is
reduce the amount of learning necessary to use the language.currently available and the language is complete. HPF 2.0 and

To facilitate ease of understanding, use, and interoperabilit@ny subsets are in the process of creation and are still in flux.
with HPF, as well as to attempt to conform to a more standard<ernel HPF has been proposed by CRI and is one subset being
syntax, HPF syntax is used wherever possible. CRAFT syntagonsidered. It is a performance oriented subset of HPF 2.0.
is used for features that are extensions to the basic overlappir§ernel HPF bears a strong resemblance to CRAFT-90 except
functionality of HPF and CRAFT. that it is largely a single-threaded language.

The underlying model of HPF_CRAFT is multi-threaded. @ HPF_LOCAL is an extrinsic environment defined by the
This model is the foremost reason that the language is CRAFTHPF committee to describe a portable SPMD programming
The execution performance of HPF_CRAFT is as good andanguage that is callable from HPF and understands HPF data
possibly better than CRAFT. HPF_CRAFT will work seam- layout information (but cannot itself reference data that is not
lessly with SHMEM, Message Passing, and any other modelocal to a processor.) There is a well defined interface between
that is inter-operable with CRAFT. HPF_LOCAL routines and HPF routines.

HPF_CRAFT is syntactically a near perfect superset of
11 Goél,s of HPF_CRAFT Kernel HPF, except that it employs a multi-threaded model. It is
In defining the HPF_CRAFT language we have followed p iy ynon the machine model of HPF_LOCAL, and uses that
these guidelines, in order of importance: same well-defined interface.
1. The language must offer as good or better performance than
the equivalent CRAFT. 2 Performance

2. Where it does not _conflict with the _above, the Iar_lguage The multi-threaded semantics supported by HPF_CRAFT
should be as compatible as possible with HPF to provide a fag|low greater programming flexibility along with performance

miliar and non-proprietary solution. as good or better than CRAFT. In almost all cases,
HPF_CRAFT constructs (directives and intrinsics) can be
Copyright © Cray Research Inc. All rights reserved. replaced by equivalent CRAFT constructs.

CUG 1996 SpringProceedings 331



Areas of HPF that introduce unpredictable performances A ‘*’is allowed in either thalign-specor thealignee.
profiles have been removed from Kernel HPF and are not For example the following is correct code:
included in HPF_CRAFT (with the exception that array extents
can have a non-power-of-two size). Consequently, there is no IHPF$ ALIGN A(1,J) WITH B(l,J)
technical reason that the performance of HPF_CRAFT cannotbe Byt the following is not:
equivalent to the performance of CRAFT.
IHPF$ ALIGN A(l,J) WITH B(I1+1,J)
The above rules allow for replication or collapse of dimen-
gions but restrict arbitrary alignments.

2.1 General Execution Model

In HPF_CRAFT all PEs begin executing in parallel, with data
defaulting to a replicated distribution (each PE gets a copy of th
data storage unless specified otherwise by the user), as 1.3 TheTEMPLATEDirective
currently the case in CRAFT. Consequently I/O works identi- Templates cannot be made semantically equivalent to the
cally to CRAFT I/O and the SHMEM libraries and messageCRAFT GEOMETRMirective. TheGEOMETR\lirective is

passing libraries are as easily integrated as with CRAFT. more like a macro which expands the memory layout part of the
In short, the execution model is that of CRAFT. directive definition than it is like theEEMPLATHEirective. The
TEMPLATHirective requires the declaration of extents, and the
3 Language Features elements of an array to be aligned to the template elements.

In this section the features of HPF_CRAFT are described, The TEMPLATEdirective in HPF_CRAFT s identical to

Features are distinguished as to whether they are derived froﬁ}emel HPF.

CRAFT or HPF. 3.1.4 TheGEOMETRirective

The GEOMETRMWirective is retained in the model, though a
The HPF_CRAFT directives are chosen to have HPF Syma%ivenGE_OMETR_\ﬂirective could be replaced in HPF_CRAFT

. . . . ... Dy (possibly multiple) templates. A geometry need only be the

whenever possible. In a few instances additional functionality IS me rank as the arrays which are mapped onto it

added beyond the defined functionality in CRAFT-90 to make '

HPF_CRAFT more similar to Kernel HPF in appearance and3.1.5 ThePROCESSORSirective

usage. This added functionality is only there when no perfor- The PROCESSORSirective’s closest analog in CRAFT is

mance impact occurs if the feature is not used, and no surprisése weights in the original implementation of CRAFT. The

occur when it is. Th8HAREDIirective was abandoned in favor PROCESSORGirective in HPF 2.0 is a restricted form of the

of the HPF-style data mapping syntax. general directive allowed in HPF 1.1. The following restrictions

3.1.1 The DISTRIBUTE Directive apply:

The distribution formats available in HPF 2.0 are identical to® € Product of the extents must exactly match the number of
those available in CRAFT with the exception that Kernel HPF ~ Processors, or the processor arrangement must be scalar, and
has aCYCLIC distribution (BLOCK(1) directive in CRAFT  * if an ONTCclause is not specified, a default arrangement is
parlance). This distribution is added to HPF_CRAFT. provided which is identical for all distributees that have iden-

Degenerate can be specified in HPF_CRAFT, but instead of tical shapes and identical explicit mappings.

a'’, the *’ that HPF uses in_ its distribution directive to specify 3 1 g Cray Pointers
an on-processor dimension is used.

3.1 Data Alignment and Distribution Directives

The CRI Fortran compiler, CF90, includes Cray pointers;

The available distribution formats in HPF_CRAFT are: these are treated just as Cray pointers are treated in CRAFT and
e BLOCK with the CRAFT syntax and semantics. Pointees can be distrib-
.«  CYCLIC uted but a pointer to a mapped (distributed) object must point to

the whole object.
* * (degenerate)

CHARACTERarrays and variables cannot be explicitly 3.1.7 Private Objects

mapped in HPF_CRAFT. As in CRAFT, private data objects are the default. Objects
- may also be declared explicitly to be private by using the
3.1.2 TheALIGN Directive PE_PRIVATE directive of CRAFT. The behavior of private

The ALIGN directive is syntactically and semantically iden- opjects is identical to the behavior in CRAFT.
tical to the HPF 2.0 align directive. The following are rules

placed on thé\LIGN directive in HPF_CRAFT 3.1.8 Data Distribution Feature Comparison
i i - ) The CRAFTSHAREDIirective is replaced in HPF_CRAFT
* Alignments may not contain offsets or strides. by the DISTRIBUTE directive. Shared objects (now called
* Thealign-subscript-usen the HPF 1.1 syntax rules should explicity mapped objects) retain the same meaning in
be replaced witlalign-dummy. HPF_CRAFT as they have in CRAFT.
» Dimensions may not be permuted. The HPFPROCESSORdrective has been added.

332 CUG 1996 SpringProceedings



The HPFTEMPLATHlirective has been added. rate routines can be called for each mapping. In CRAFT explicit
The HPFALIGN directive has been added. interfaces are not required, so this problem does not arise.
The CRAFTGEOMETRUirective is retained. This feature does not impact the performance of codes that do

not use it because an explicit interface is required when a dummy
The CRAFTPE_PRIVATE directive is retained. argument has théN\HERIT attribute.

CRAFT data distribution being private by default is retained. 3.2.3 Subroutine Interface Comparison

CRAFT Cray pointers may point to distributeéxglicitly Remapping across subprogram interfaces has been re-intro-
mappedl objects. duced. It is available in the original implementation of CRAFT,
3.2 Subprogram Interfaces but was removed from the CRAFT-90 specification. In

Although CRAFT permitted the remapping of argumentsHPF—CRAFT it is available but it is also guaranteed that the

across subroutine boundaries, CRAFT-90 did not. Kernel legaller may re-map data.

requires interface blocks when arguments are re-mapped acro§§€INHERIT directive was added to HPF_CRAFT.

subroutine boundaries. HPF_CRAFT requires interface blockShared-to-private coercion is not available in HPF.

wherever Kernel HPF requires them. This eases a restriction ) ]

added to the CRAFT-90 specification, provides greater3-3 PUREFunctions and Subroutines _

programming flexibility, but is designed to ensure that in all  Pure functions and subroutines are not in CRAFT but are
cases the caller is able to do the remapping (thus eliminatinffcluded in HPF_CRAFT for HPF compatibility reasons, and
unwanted runtime checks). It also increases the Compatibilitsgrecause they are sometimes needed when usingQRALL
between HPF and HPF_CRAFT without compromising theStatement. These functions are not currently necessary to enable

performance of the model. any behavior in HPF_CRAFT alone, but this feature may be
An explicit interface is required in the following cases: USEM Itf an HPF programmer desires to call an HPF_CRAFT
subroutine.

¢ The dummy argument has tiHERIT attribute.

* The mapping of a dummy argument is not the same as tha-4 Loops and Array Operations e
mapping of the corresponding actual argument, and at least In CRAFT there are two methods of specifying implicit work

one of the following two conditions is true: sharing: using array syntax and using @ SHAREMDirective.
, . In HPF there are also two ways to specify implicit work sharing:
1. the dummy argument is explicitly mapped, or array syntax and thtNDEPENDENTdirective. The keyword
2. the actual argument is an explicitly mapped whole DOSHAREMDas been replaced with the HINNDEPENDENT
array or a section of an explicitly mapped array. syntax. Array syntax has not changed.

While the meaning ofNDEPENDENTcan easily be trans-

2.1 Sh -to-Pri i
3 Sharse di:)e_d rESat:\::?)t:rc(::igsricr:ogPF CRAET is implemente dformed to match that @OSHAREDhe syntax changes are not
P — P quite so simple. Two different forms of thRDEPENDENT

as in CRAFT, with the same restrictions and rules. This is an,. . . T
extension in HPF_CRAFT. directive are specified. The first is similar to the us&N&E-

" . . PENDENTN HPF. The second is more syntactically similar to
In addition to CRAFT style shared-to-private coercion, dat y y

may be coerced to local using tHeF _LOCALextrinsic inter- “the CRAFT style used in tHROSHARERDirective.

face, in which case all data is considered private to the PE ont®.4.1 INDEPENDEN Tvithout theONClause

which it was distributed in the called routine, and the routine acts In HPF_CRAFT the meaning of tHHDEPENDENTdirec-

as an individual node program on each PE. This interfaceive for aDOloop is functionally equivalent to what the meaning

requires that the caller see an explicit interface with theof DOSHARE®vould be without theONclause. It asserts that

HPF_LOCALextrinsic name in it. there are no loop carried dependencies. The compiler is forced to

322 TheNHERIT Directive p?ck.a processor on Which to execute each iteration. If there are

R . . distributed arrays within the loop, one of these can be chosen. If

TheINHERIT d|r§ct!ve IS not consujered to be a high-perfor- not, any distribution may be choséNDEPENDENTirectives

mance feature, but its impact can be isolated to the places wh

€6 loops that are tightly nested are merged and executed as if
it Is usgd. ThdNHERIT directive can pe instrumental when they were singl®OSHARERlirectives. InnetNDEPENDENT
coding library and general purpose routines.

C ) ) i , loops that are not tightly nested are ignored.

The INHERIT directive is essentially identical to the
UNKNOWN_SHARHEDective of CRAFT. This directive was 3.4.2 INDEPENDENTwith theONClause
excluded from the CRAFT-90 specification because library In CRAFT theDOSHAREMirective is applied to the first of
developers found that it did not provide high enough perfor-a group of tightly nested loops and may apply to more than one
mance. In HPF it is useful in interface blocks, because it allow®f them. This more easily facilitates the use of@iNelause. The
users to have a single interface for many distributions. WithirHPFINDEPENDENTirective applies only to a single loop nest.
the subroutine the mappings of the arrays can be tested and sept2F_CRAFT allows either syntax for compatibility.

CUG 1996 SpringProceedings 333



The INDEPENDENTdirective is extended so that multiple There are no changes or incompatibilities with either CRAFT
loop nests can be named using a syntax very similar to the syntax Kernel HPF.
of CRAFT, only the keywordNDEPENDENTreplaces the FORALL INDEPENDENTIs analyzed syntactically as a
keywordDOSHARED FORALL buttreated as dNDEPENDENToop. These seman-

The syntax and semantics WDEPENDENTwith the ON tics are consistent with HPF.
clause are different from its syntax and semantics witho@Mhe . .
clause. With th®©Nclause the directive states that there are no3'4'6 Work Sharing Comparison

: The NEWtlause is added to HPF_CRAFT for compatibility

cross-processor dependencies, but there may be depgndenc\l/\(/al% Kernel HPF. It adds no new semantics or functionality to
between iterations on a processor. It also indicates which loo

BPF_CRAFT
iterations it refers to. With th@Nclause INDEPENDENThas = i .
exactly the same semantics as the CRRIOISHAREDirective. DdOS.tHhAREE.'?h re?[{icgﬂ \lN'tHNDEPENDENTand may be
Syntactically the keywordOSHARERan be replaced by the USed with or withou clause.

keywordINDEPENDENT. For example, where in CRAFT the The INDEPENDENTdirective may refer to more than one
directive might have beeﬁ' ' (tightly nested) loop nest at a time and may be combined with the

ONclause.

IDIR$ DOSHARED (1,J) ON A(J,I) When used with th®Nclause, théNDEPENDENTirective
L has the same meaning as Bf@SHAREDirective.

In HPF_CRAFT itis: The semantics of parallel loop execution follow those of

IHPF$ INDEPENDENT (1,J) ON A(J,1) CRAFT.
If the ONclause is usediNDEPENDENTnust be used in this 3.5 Intrinsic and Library Procedures
form. The HPF library is supplied for HPF_CRAFT. In addition the

TheINDEPENDENTirective may optionally not include the CRAFT library routines are also provided.
ONcI_ause_ at all. If programmers want to take advqntage of th%'6 Storage and Sequence Association
functionality of theONclause in théNDEPENDENTirective,
they can simply use thé\DEPENDENTdirective in the same
way they previously used tiBEOSHAREBDIirective..

The storage and sequence association rules are identical to
those in CRAFT and Kernel HPF; there is no sequence or storage
association for data that is not private. Private data retains the
3.4.3 TheNEWClause sequence and storage rules of standard Fortran.

An HPF independent loop optionally may hawE\tlause. 37  parallel Execution
The NEWclause is not required by CRAFT because in CRAFT  pue to the differences in models (multi-threaded  vs.

data defaults to private and values may differ from processor t@ingle-threaded) this is the area of greatest change with respect

processor. to Kernel HPF. The model used is that of CRAFT. This model
In CRAFT, however, private data has slightly differing fits easily on top of the HPF_LOCAL extrinsic environment

semantics from thelEWlause. Iterations of BOSHAREOP  (which is a defined portion of HPF). The HPF_LOCAL environ-

have a defined ordering for each PE so a private data item can Bgent has a well-defined interface with HPF that will be used for

used beyond a single iteration of the loop. The values of datghe HPE CRAFT extrinsic environment.

items named in &IEW€lause may not be used beyond a single  |n essence, HPF_CRAFT is CRAFT extensions embedded

iteration. TheNEWtlause asserts that ttMDEPENDENTirec-  ithin the HPE LOCAL extrinsic.

tive is valid if new objects are created for the variables named in B

the clause for each iteration of the loop. 3.7.1 Parallelism Inquiry Intrinsics _ _
The NEWtlause requires the compiler to generate a tempo- These dlrectlves_are provided with their CRAFT semantics.

rary, which must be used in place of the user variable. This i €Y are an extension to HPF. Tihe DOSHAREDs changed

also the behavior in HPF_CRAFT as well. It is retained for!© IN_INDEPENDENT The supported parallelism inquiry

compatibility reasons. The variables named iNBEWclause  INtrinsics are:

apply only to the immediately subsequent loop nest. * IN_PARALLEL
3.4.4 Array Syntax * IN_INDEPENDENT
Array syntax is treated the same in CRAFT as itis in HPF s®.7.2 STOPandABORT
no changes are required for HPF_CRAFT. The STOPandABORTstatements behave just as they do in
CRAFT.

3.4.5 TheFORALLStatement and Construct

TheFORALLstatement and tHe€ORALLconstruct are part of 3.7.3 Sequential Regions
HPF_CRAFTFORALLIs not a part of the original implementa- In HPF_CRAFT theMASTER END MASTER construct
tion of CRAFT but was planned for CRAFT-90. It is also part of remains, retaining the syntax and semantics that it has in
Kernel HPF. CRAFT, theCOPYclause is also retained unchanged.

334 CUG 1996 SpringProceedings



3.7.4 Task Identity

N$PES is augmented with the equivalent HPF intrinsic
NUMBER_OF_PROCESSORS{ihe MY_PE() intrinsic is
augmented with the equivalent HPF naviié PROCESSOR()
Both versions are available because of the ubiquity of their us
and the convenience of the CRAFT names.

3.7.5 Deprecated/Altered CRAFT Features for Parallel Exe-
cution

e There are no changes from the CRAFT syntax or seman-
tics.

« NUMBER_OF_PROCESSOREMY_PROCESSOR()
have been added with the same meaning®®ESand
MY_PE() respectively for compatibility with HPF.

3.7.6 Parallel Execution Comparison

The execution model is the CRAFT multi-threaded model.

The IN_INDEPENDENT intrinsic replaces the CRAFT
IN_ DOSHAREDIntrinsic, and the CRAFTIN_PARALLEL
intrinsic is retained.

The CRAFTNS$PES andMY_PE() are retained, and the
HPF equivalents are added.

The CRAFTMASTER andEND MASTER(directives with
the COPYclause is retained.

TheSTOP statement andBORTunction have the CRAFT
semantics.

3.8 Synchronization

In CRAFT there are a number of synchronization primitives
and directives. There are none available native in HPF. Th
entire set of CRAFT primitives is included. Shared data coher
ence points are identical to those of CRAFT.

3.8.1 Program Barrier Directives
Explicit barriers are not necessary in the single-threaded HP

*  WAIT_BARRIER()

* TEST_BARRIER()
BARRIER()

@ SET_LOCK()

* CLEAR_LOCK()

 TEST_LOCK()

* CRITICAL/END CRITICAL

 SET_EVENT()

« CLEAR_EVENT()
WAIT_EVENT()

« TEST_EVENT()

3.9 Input and Output

All I/O in HPF_CRAFT will retain its CRAFT syntax and
semantics. Private 1/O retains its CRAFT syntax and semantics.

3.10 ThePE_RESIDENTDirective

PE_RESIDENT s retained with its CRAFT semantics. If
used, any loop which contains it and also usesNBEPEN-
DENT directive is required to have th®N clause. A
PE_RESIDENTarray may not be used in array syntax opera-
tions.

All restrictions on dummy arguments for CRAFT-90 also
apply to HPF_CRAFT programs.

3.11 Intrinsics
All intrinsics available in CRAFT are available in

?—IPF_CRAFT. The intrinsics available in both CRAFT and HPF

are renamed to match the HPF naming conventions.

3.11.1 Data Mapping functions
= The data mapping functions are retained in HPF_CRAFT
with their current meaning. The functions are:

model, and barrier removal only occurs when automatically
detectable. In CRAFT, barriers serve many useful purposes arfd
may be removed by the user. The CRAFT barrier syntax and
semantics are retained. These directives are:

+ HPF$ BARRIER
* IHPF$ NO BARRIER

3.8.2 TheREDUCBDirective

HIIDX
LOWIDX
BLKCT
PES
HOME

The REDUCHIirective is new in Kernel HPF. THREDUCE
directive is identical to CRAFT'&ATOMICUPDATEdirective.

3.11.2 Parallel Prefix and Parallel Scan Functions
CRAFT contains a set of parallel prefix and parallel scan
functions:

In Kernel HPF th&REDUCHlirective may only apply to intrinsic

types and intrinsic operators. This behavior is adopted by PREMAX
HPF_CRAFT. e PREMIN
3.8.3 Synchronization Primitives * PREPROD
CRAFT defines a large set of synchronization primitivese PRESUM
unavailable in HPF. All of these primitives are available in SCANMAX
HPF_CRAFT. They have the same syntax and semantics as
currently implemented for CRAFT-90. *  SCANMIN
These include: ¢ SCANPROD
« SET_BARRIER() « SCANSUM

CUG 1996 SpringProceedings 335



These functions are replaced by the HPF library functions
with the same (or added) functionality. .

4 Other CRAFT Features .

4.1 Memory Allocation Directive

This directive makes the shared memory library codes easier
to use with HPF_CRAFT and is very easy to implement. It is.
basically a way for the programmer to direct the compiler to put

data on the shared heap or the shared stack. It lets users ensure

that data is stored at the same offset on all PEs. The directive 1s

available in HPF_CRAFT. .
+ IHPF$ SYMMETRIC .
5 Extensions y

5.1 HPF_CRAFT Extrinsic

HPF_CRAFT defines a new extrinsic environment called®
HPF_CRAFT. The extrinsic tells the compiler to compile the ¢
subroutine as CRAFT code. The environment uses the standagd
HPFEXTRINSIC syntax .

EXTRINSIC(HPF_CRAFT) .

The HPF_CRAFT environment may also be used indicated
by a compile-time switch.

Appendix A: HPF_CRAFT Features .

This appendix contains a complete list of the directives avail-
able in HPF_CRAFT. *

e DISTRIBUTE with the following data layouts

* BLOCK *
» CYCLIC *
« Degenerate ( *) °
+ ALIGN *
« TEMPLATE *
+ PROCESSORS *
« PE_PRIVATE °
» INDEPENDENWith the following extensions °
+ ON g
« NEW g
+ FORALL y
» IN_INDEPENDENT .
* IN_PARALLEL
+ MASTER

« END MASTER

N$SPES
MY_PE()
BARRIER
NO BARRIER
REDUCE

INHERIT

SET_BARRIER()
WAIT_BARRIER()
TEST_BARRIER()
BARRIER()
SET_LOCK()
CLEAR_LOCK()
TEST_LOCK()
CRITICAL / END CRITICAL
SET_EVENT()
CLEAR_EVENT()
WAIT_EVENT()
TEST_EVENT()
PE_RESIDENT
HIIDX

LOWIDX

BLKCT

PES

HOME
HPF_DISTRIBUTION
PREMAX

PREMIN

PREPROD
PRESUM
SCANMAX
SCANMIN
SCANPROD
SCANSUM
SYMMETRIC
EXTRINSIC(HPF_CRAFT)

Appendix B: CRAFT-90 Differences

This appendix lists the differences between HPF_CRAFT

and CRAFT-90.
Data Distribution

«  PARALLEL_ONLY

« SERIAL_ONLY

«  PARALLEL_AND_SERIAL

- NUMBER_OF PROCESSORS
- MY_PROCESSOR()

336 CUG 1996 SpringProceedings

The SHAREDIirective has been replaced in HPF_CRAFT
by theDISTRIBUTE directive. Shared objects (now called
explicitly mappeabjects) retain the same meaning in
HPF_CRAFT as they have in CRAFT.



The CYCLIC distribution has been added. .
The PROCESSORGdrective has been added. .
The TEMPLATHirective has been added.

The ALIGN directive has been added.

Arrays of derived types may not be distributed.

Subprograms and Subprogram Interfaces

Cray pointers may point to distributed objects.
The GEOMETRUirective has been added

Subprograms and Subprogram Interfaces

Shared-to-private coercion has been added.
PE_RESIDENTdirective has been added.

Loops and Array Operations (Work Sharing)

Remapping across subprogram interfaces has been re-intro-
duced. It is available in the original implementation of °
CRAFT, and was removed for CRAFT-90. In this model it

is available but it is guaranteed that the caller may re-map

data. .
¢ PUREsubroutines and functions have been added.
¢ TheINHERIT directive has been added. .
Work Sharing
¢ TheNEWtlause is added for compatibility with Kernel

HPF .
¢ DOSHAREID replaced withNDEPENDENT .

Synchronization

INDEPENDENTmMay be used with or without ti@N
clause.

The ATOMICUPDATHlirective has been replaced by
REDUCE.

Libraries and Intrinsics

The HPF Library is included in the language.

Parallel Execution

The INDEPENDENTdirective may refer to more than one
(tightly nested) loop nest at a time and may be combined
with theONclause.

When used with th®Nclause, théeNDEPENDENTirec-
tive has the same meaning asfit@SHARERirective.

The semantics of the parallel execution of the loop follow
those of CRAFT.

Parallel Execution

The execution model is multi-threaded.

TheIN_INDEPENDENTandIN_PARALLEL intrinsics
are added.

N$PESandMY_PE() have been added.

MASTER / END MASTERwith theCOPYclause is
added.

STOPandABORThave CRAFT semantics.

PARALLEL_ONLYSERIAL_ONLY and
PARALLEL_AND_SERIALdirectives have been added.

Libraries and Intrinsics

NUMBER_OF_PROCESSCQ&#8MY_PROCESSOR()
have been added with the same meaning®&ESand
MY _PE() respectively (for compatibility with HPF).

TheEXTRINSIC(HPF_CRAFT) environment has been ¢
added.

Appendix C: Kernel HPF Differences  °*

This appendix lists the differences between HPF_CRAFT and

Kernel HPF.
Data Distribution

PE_PRIVATEdirective has been added.
Data distribution default is private. .

HIIDX, LOWIDX, BLKCT, PES, HOME
added.

IN_PARALLEL andIN_INDEPENDENTare added.

intrinsics are

Synchronization

BARRIER / NO BARRIER have been added.
CRAFT synchronization primitives has been added.

Input and Output

Altered to CRAFT semantics.

Memory Allocation Directive

The SYMMETRIQirective has been added.

CUG 1996 SpringProceedings 337



