

CUG 1996 Spring

 Proceedings

331

HPF_CRAFT Language

Tom MacDonald

 and

Andrew Meltzer

, Cray Research, Inc,
655-F Lone Oak Drive, Eagan, Minnesota 55121

ABSTRACT:

HPF_CRAFT is an implicit multi-threaded parallel model that simplifies data
distribution and work distribution. This paper describes the HPF_CRAFT language and its rela-
tionship to both CRAFT and HPF.

1 Introduction

This document is an overview of a language called
HPF_CRAFT that is a merging of CRI’s CRAFT language and
HPF. HPF_CRAFT is being developed in partnership with The
Portland Group, Inc. (PGI). The language is fundamentally
CRAFT, but implemented within the superstructure of PGI’s
implementation of HPF, and influenced by the CRAFT-90 spec-
ification presented at the Denver CUG in 1995.

CRAFT features and a multi-threaded execution model allow
the user to take advantage of the flexibility of an SPMD
programming model and the low-level process control available
with CRAFT. The HPF syntax allows the user to more easily
port codes and provides a more well known user interface to
reduce the amount of learning necessary to use the language.

To facilitate ease of understanding, use, and interoperability
with HPF, as well as to attempt to conform to a more standard
syntax, HPF syntax is used wherever possible. CRAFT syntax
is used for features that are extensions to the basic overlapping
functionality of HPF and CRAFT.

The underlying model of HPF_CRAFT is multi-threaded.
This model is the foremost reason that the language is CRAFT.
The execution performance of HPF_CRAFT is as good and
possibly better than CRAFT. HPF_CRAFT will work seam-
lessly with SHMEM, Message Passing, and any other model
that is inter-operable with CRAFT.

1.1 Goals of HPF_CRAFT

In defining the HPF_CRAFT language we have followed
these guidelines, in order of importance:

1. The language must offer as good or better performance than
the equivalent CRAFT.

2. Where it does not conflict with the above, the language
should be as compatible as possible with HPF to provide a fa-
miliar and non-proprietary solution.

3. The language should be intercallable with Fortran 90, HPF,
C++, and C.

4. The language provides the same execution model as the mes-
sage passing and SHMEM libraries.

5. The language and implementation must be stable and reli-
able.

1.2 HPF, Kernel HPF, and HPF_CRAFT

HPF2 is the current High Performance Fortran Forum
process, due to be complete during the summer of 1996. This
process will develop a document describing the next HPF spec-
ification, HPF 2.0, along with one or more subsets and exten-
sions (e.g., extrinsic environments). The HPF 1.1 document is
currently available and the language is complete. HPF 2.0 and
any subsets are in the process of creation and are still in flux.
Kernel HPF has been proposed by CRI and is one subset being
considered. It is a performance oriented subset of HPF 2.0.
Kernel HPF bears a strong resemblance to CRAFT-90 except
that it is largely a single-threaded language.

HPF_LOCAL is an extrinsic environment defined by the
HPF committee to describe a portable SPMD programming
language that is callable from HPF and understands HPF data
layout information (but cannot itself reference data that is not
local to a processor.) There is a well defined interface between
HPF_LOCAL routines and HPF routines.

HPF_CRAFT is syntactically a near perfect superset of
Kernel HPF, except that it employs a multi-threaded model. It is
built upon the machine model of HPF_LOCAL, and uses that
same well-defined interface.

2 Performance

The multi-threaded semantics supported by HPF_CRAFT
allow greater programming flexibility along with performance
as good or better than CRAFT. In almost all cases,
HPF_CRAFT constructs (directives and intrinsics) can be
replaced by equivalent CRAFT constructs.Copyright © Cray Research Inc. All rights reserved.

332

CUG 1996 Spring

 Proceedings

Areas of HPF that introduce unpredictable performance
profiles have been removed from Kernel HPF and are not
included in HPF_CRAFT (with the exception that array extents
can have a non-power-of-two size). Consequently, there is no
technical reason that the performance of HPF_CRAFT cannot be
equivalent to the performance of CRAFT.

2.1 General Execution Model

In HPF_CRAFT all PEs begin executing in parallel, with data
defaulting to a replicated distribution (each PE gets a copy of the
data storage unless specified otherwise by the user), as is
currently the case in CRAFT. Consequently I/O works identi-
cally to CRAFT I/O and the SHMEM libraries and message
passing libraries are as easily integrated as with CRAFT.

In short, the execution model is that of CRAFT.

3 Language Features

In this section the features of HPF_CRAFT are described.
Features are distinguished as to whether they are derived from
CRAFT or HPF.

3.1 Data Alignment and Distribution Directives

The HPF_CRAFT directives are chosen to have HPF syntax
whenever possible. In a few instances additional functionality is
added beyond the defined functionality in CRAFT-90 to make
HPF_CRAFT more similar to Kernel HPF in appearance and
usage. This added functionality is only there when no perfor-
mance impact occurs if the feature is not used, and no surprises
occur when it is. The

SHARED

 directive was abandoned in favor
of the HPF-style data mapping syntax.

3.1.1 The DISTRIBUTE Directive

The distribution formats available in HPF 2.0 are identical to
those available in CRAFT with the exception that Kernel HPF
has a

CYCLIC

 distribution (

:BLOCK(1)

 directive in CRAFT
parlance). This distribution is added to HPF_CRAFT.

Degenerate can be specified in HPF_CRAFT, but instead of
a ‘

:

’, the ‘

*

’ that HPF uses in its distribution directive to specify
an on-processor dimension is used.

The available distribution formats in HPF_CRAFT are:

•

BLOCK

•

CYCLIC

•

*

 (degenerate)

CHARACTER

 arrays and variables cannot be explicitly
mapped in HPF_CRAFT.

3.1.2 The

ALIGN

 Directive

The

ALIGN

 directive is syntactically and semantically iden-
tical to the HPF 2.0 align directive. The following are rules
placed on the

ALIGN

 directive in HPF_CRAFT

• Alignments may not contain offsets or strides.

• The

align-subscript-use

 in the HPF 1.1 syntax rules should
be replaced with

align-dummy.

• Dimensions may not be permuted.

• A ‘

*

’ is allowed in either the

align-spec

or the

alignee.

For example the following is correct code:

!HPF$ ALIGN A(I,J) WITH B(I,J)

But the following is not:

!HPF$ ALIGN A(I,J) WITH B(I+1,J)

The above rules allow for replication or collapse of dimen-
sions but restrict arbitrary alignments.

3.1.3 The

TEMPLATE

Directive

Templates cannot be made semantically equivalent to the
CRAFT

GEOMETRY

 directive. The

GEOMETRY

 directive is
more like a macro which expands the memory layout part of the
directive definition than it is like the

TEMPLATE

 directive. The

TEMPLATE

 directive requires the declaration of extents, and the
elements of an array to be aligned to the template elements.

The

TEMPLATE

 directive in HPF_CRAFT is identical to
Kernel HPF.

3.1.4 The

GEOMETRY

 Directive

The

GEOMETRY

 directive is retained in the model, though a
given

GEOMETRY

 directive could be replaced in HPF_CRAFT
by (possibly multiple) templates. A geometry need only be the
same rank as the arrays which are mapped onto it.

3.1.5 The

PROCESSORS

 Directive

The

PROCESSORS

 directive’s closest analog in CRAFT is
the weights in the original implementation of CRAFT. The

PROCESSORS

 directive in HPF 2.0 is a restricted form of the
general directive allowed in HPF 1.1. The following restrictions
apply:

• the product of the extents must exactly match the number of
processors, or the processor arrangement must be scalar, and

• if an

ONTO

 clause is not specified, a default arrangement is
provided which is identical for all distributees that have iden-
tical shapes and identical explicit mappings.

3.1.6 Cray Pointers

The CRI Fortran compiler, CF90, includes Cray pointers;
these are treated just as Cray pointers are treated in CRAFT and
with the CRAFT syntax and semantics. Pointees can be distrib-
uted but a pointer to a mapped (distributed) object must point to
the whole object.

3.1.7 Private Objects

As in CRAFT, private data objects are the default. Objects
may also be declared explicitly to be private by using the

PE_PRIVATE

 directive of CRAFT. The behavior of private
objects is identical to the behavior in CRAFT.

3.1.8 Data Distribution Feature Comparison

The CRAFT

SHARED

 directive is replaced in HPF_CRAFT
by the

DISTRIBUTE

 directive. Shared objects (now called

explicitly mapped

 objects) retain the same meaning in
HPF_CRAFT as they have in CRAFT.

The HPF

PROCESSORS

 directive has been added.

CUG 1996 Spring

 Proceedings

333

The HPF

TEMPLATE

 directive has been added.

The HPF

ALIGN

 directive has been added.

The CRAFT

GEOMETRY

 directive is retained.

The CRAFT

PE_PRIVATE

 directive is retained.

CRAFT data distribution being private by default is retained.

CRAFT Cray pointers may point to distributed (

explicitly
mapped

) objects.

3.2 Subprogram Interfaces

Although CRAFT permitted the remapping of arguments
across subroutine boundaries, CRAFT-90 did not. Kernel HPF
requires interface blocks when arguments are re-mapped across
subroutine boundaries. HPF_CRAFT requires interface blocks
wherever Kernel HPF requires them. This eases a restriction
added to the CRAFT-90 specification, provides greater
programming flexibility, but is designed to ensure that in all
cases the caller is able to do the remapping (thus eliminating
unwanted runtime checks). It also increases the compatibility
between HPF and HPF_CRAFT without compromising the
performance of the model.

An explicit interface is required in the following cases:

• The dummy argument has the

INHERIT

 attribute.

• The mapping of a dummy argument is not the same as the
mapping of the corresponding actual argument, and at least
one of the following two conditions is true:

1. the dummy argument is explicitly mapped, or

2. the actual argument is an explicitly mapped whole
array or a section of an explicitly mapped array.

3.2.1 Shared-to-Private Coercion

Shared-to-private coercion in HPF_CRAFT is implemented
as in CRAFT, with the same restrictions and rules. This is an
extension in HPF_CRAFT.

In addition to CRAFT style shared-to-private coercion, data
may be coerced to local using the

HPF_LOCAL

 extrinsic inter-
face, in which case all data is considered private to the PE onto
which it was distributed in the called routine, and the routine acts
as an individual node program on each PE. This interface
requires that the caller see an explicit interface with the

HPF_LOCAL

 extrinsic name in it.

3.2.2 The

INHERIT

 Directive

The

INHERIT

 directive is not considered to be a high-perfor-
mance feature, but its impact can be isolated to the places where
it is used. The

INHERIT

 directive can be instrumental when
coding library and general purpose routines.

The

INHERIT

 directive is essentially identical to the

UNKNOWN_SHARED

 directive of CRAFT. This directive was
excluded from the CRAFT-90 specification because library
developers found that it did not provide high enough perfor-
mance. In HPF it is useful in interface blocks, because it allows
users to have a single interface for many distributions. Within
the subroutine the mappings of the arrays can be tested and sepa-

rate routines can be called for each mapping. In CRAFT explicit
interfaces are not required, so this problem does not arise.

This feature does not impact the performance of codes that do
not use it because an explicit interface is required when a dummy
argument has the

INHERIT

 attribute.

3.2.3 Subroutine Interface Comparison

Remapping across subprogram interfaces has been re-intro-
duced. It is available in the original implementation of CRAFT,
but was removed from the CRAFT-90 specification. In
HPF_CRAFT it is available but it is also guaranteed that the
caller may re-map data.

The

INHERIT

 directive was added to HPF_CRAFT.

Shared-to-private coercion is not available in HPF.

3.3

PURE

 Functions and Subroutines

Pure functions and subroutines are not in CRAFT but are
included in HPF_CRAFT for HPF compatibility reasons, and
because they are sometimes needed when using the

FORALL

statement. These functions are not currently necessary to enable
any behavior in HPF_CRAFT alone, but this feature may be
useful if an HPF programmer desires to call an HPF_CRAFT
subroutine.

3.4 Loops and Array Operations
In CRAFT there are two methods of specifying implicit work

sharing: using array syntax and using the DOSHARED directive.
In HPF there are also two ways to specify implicit work sharing:
array syntax and the INDEPENDENT directive. The keyword
DOSHARED has been replaced with the HPF INDEPENDENT
syntax. Array syntax has not changed.

While the meaning of INDEPENDENT can easily be trans-
formed to match that of DOSHARED, the syntax changes are not
quite so simple. Two different forms of the INDEPENDENT
directive are specified. The first is similar to the use of INDE-
PENDENT in HPF. The second is more syntactically similar to
the CRAFT style used in the DOSHARED directive.

3.4.1 INDEPENDENT without the ON Clause
In HPF_CRAFT the meaning of the INDEPENDENT direc-

tive for a DO loop is functionally equivalent to what the meaning
of DOSHARED would be without the ON clause. It asserts that
there are no loop carried dependencies. The compiler is forced to
pick a processor on which to execute each iteration. If there are
distributed arrays within the loop, one of these can be chosen. If
not, any distribution may be chosen. INDEPENDENT directives
on loops that are tightly nested are merged and executed as if
they were single DOSHARED directives. Inner INDEPENDENT
loops that are not tightly nested are ignored.

3.4.2 INDEPENDENT with the ON Clause
In CRAFT the DOSHARED directive is applied to the first of

a group of tightly nested loops and may apply to more than one
of them. This more easily facilitates the use of the ON clause. The
HPF INDEPENDENT directive applies only to a single loop nest.
HPF_CRAFT allows either syntax for compatibility.

334 CUG 1996 Spring Proceedings

The INDEPENDENT directive is extended so that multiple
loop nests can be named using a syntax very similar to the syntax
of CRAFT, only the keyword INDEPENDENT replaces the
keyword DOSHARED.

The syntax and semantics of INDEPENDENT with the ON
clause are different from its syntax and semantics without the ON
clause. With the ON clause the directive states that there are no
cross-processor dependencies, but there may be dependencies
between iterations on a processor. It also indicates which loop
iterations it refers to. With the ON clause, INDEPENDENT has
exactly the same semantics as the CRAFT DOSHARED directive.
Syntactically the keyword DOSHARED can be replaced by the
keyword INDEPENDENT. For example, where in CRAFT the
directive might have been:

!DIR$ DOSHARED (I,J) ON A(J,I)

In HPF_CRAFT it is:

!HPF$ INDEPENDENT (I,J) ON A(J,I)

If the ON clause is used, INDEPENDENT must be used in this
form.

The INDEPENDENT directive may optionally not include the
ON clause at all. If programmers want to take advantage of the
functionality of the ON clause in the INDEPENDENT directive,
they can simply use the INDEPENDENT directive in the same
way they previously used the DOSHARED directive..

3.4.3 The NEW Clause
An HPF independent loop optionally may have a NEW clause.

The NEW clause is not required by CRAFT because in CRAFT
data defaults to private and values may differ from processor to
processor.

In CRAFT, however, private data has slightly differing
semantics from the NEW clause. Iterations of a DOSHARED loop
have a defined ordering for each PE so a private data item can be
used beyond a single iteration of the loop. The values of data
items named in a NEW clause may not be used beyond a single
iteration. The NEW clause asserts that the INDEPENDENT direc-
tive is valid if new objects are created for the variables named in
the clause for each iteration of the loop.

The NEW clause requires the compiler to generate a tempo-
rary, which must be used in place of the user variable. This is
also the behavior in HPF_CRAFT as well. It is retained for
compatibility reasons. The variables named in a NEW clause
apply only to the immediately subsequent loop nest.

3.4.4 Array Syntax
Array syntax is treated the same in CRAFT as it is in HPF so

no changes are required for HPF_CRAFT.

3.4.5 The FORALL Statement and Construct
The FORALL statement and the FORALL construct are part of

HPF_CRAFT. FORALL is not a part of the original implementa-
tion of CRAFT but was planned for CRAFT-90. It is also part of
Kernel HPF.

There are no changes or incompatibilities with either CRAFT
or Kernel HPF.

FORALL INDEPENDENT is analyzed syntactically as a
FORALL, but treated as an INDEPENDENT loop. These seman-
tics are consistent with HPF.

3.4.6 Work Sharing Comparison
The NEW clause is added to HPF_CRAFT for compatibility

with Kernel HPF. It adds no new semantics or functionality to
HPF_CRAFT.

DOSHARED is replaced with INDEPENDENT and may be
used with or without the ON clause.

The INDEPENDENT directive may refer to more than one
(tightly nested) loop nest at a time and may be combined with the
ON clause.

When used with the ON clause, the INDEPENDENT directive
has the same meaning as the DOSHARED directive.

The semantics of parallel loop execution follow those of
CRAFT.

3.5 Intrinsic and Library Procedures
The HPF library is supplied for HPF_CRAFT. In addition the

CRAFT library routines are also provided.

3.6 Storage and Sequence Association
The storage and sequence association rules are identical to

those in CRAFT and Kernel HPF; there is no sequence or storage
association for data that is not private. Private data retains the
sequence and storage rules of standard Fortran.

3.7 Parallel Execution
Due to the differences in models (multi-threaded vs.

single-threaded) this is the area of greatest change with respect
to Kernel HPF. The model used is that of CRAFT. This model
fits easily on top of the HPF_LOCAL extrinsic environment
(which is a defined portion of HPF). The HPF_LOCAL environ-
ment has a well-defined interface with HPF that will be used for
the HPF_CRAFT extrinsic environment.

In essence, HPF_CRAFT is CRAFT extensions embedded
within the HPF_LOCAL extrinsic.

3.7.1 Parallelism Inquiry Intrinsics
These directives are provided with their CRAFT semantics.

They are an extension to HPF. The IN_DOSHARED is changed
to IN_INDEPENDENT. The supported parallelism inquiry
intrinsics are:

• IN_PARALLEL

• IN_INDEPENDENT

3.7.2 STOP and ABORT
The STOP and ABORT statements behave just as they do in

CRAFT.

3.7.3 Sequential Regions
In HPF_CRAFT the MASTER/ END MASTER construct

remains, retaining the syntax and semantics that it has in
CRAFT, the COPY clause is also retained unchanged.

CUG 1996 Spring Proceedings 335

3.7.4 Task Identity
N$PES is augmented with the equivalent HPF intrinsic

NUMBER_OF_PROCESSORS(). The MY_PE() intrinsic is
augmented with the equivalent HPF name MY_PROCESSOR().
Both versions are available because of the ubiquity of their use
and the convenience of the CRAFT names.

3.7.5 Deprecated/Altered CRAFT Features for Parallel Exe-
cution

• There are no changes from the CRAFT syntax or seman-
tics.

• NUMBER_OF_PROCESSORS and MY_PROCESSOR()
have been added with the same meaning as N$PES and
MY_PE() respectively for compatibility with HPF.

3.7.6 Parallel Execution Comparison
The execution model is the CRAFT multi-threaded model.
The IN_INDEPENDENT intrinsic replaces the CRAFT

IN_DOSHARED intrinsic, and the CRAFT IN_PARALLEL
intrinsic is retained.

The CRAFT N$PES and MY_PE() are retained, and the
HPF equivalents are added.

The CRAFT MASTER and END MASTER directives with
the COPY clause is retained.

The STOP statement and ABORT function have the CRAFT
semantics.

3.8 Synchronization
In CRAFT there are a number of synchronization primitives

and directives. There are none available native in HPF. The
entire set of CRAFT primitives is included. Shared data coher-
ence points are identical to those of CRAFT.

3.8.1 Program Barrier Directives
Explicit barriers are not necessary in the single-threaded HPF

model, and barrier removal only occurs when automatically
detectable. In CRAFT, barriers serve many useful purposes and
may be removed by the user. The CRAFT barrier syntax and
semantics are retained. These directives are:

• !HPF$ BARRIER

• !HPF$ NO BARRIER

3.8.2 The REDUCE Directive
The REDUCE directive is new in Kernel HPF. The REDUCE

directive is identical to CRAFT’s ATOMIC UPDATE directive.
In Kernel HPF the REDUCE directive may only apply to intrinsic
types and intrinsic operators. This behavior is adopted by
HPF_CRAFT.

3.8.3 Synchronization Primitives
CRAFT defines a large set of synchronization primitives

unavailable in HPF. All of these primitives are available in
HPF_CRAFT. They have the same syntax and semantics as
currently implemented for CRAFT-90.

These include:

• SET_BARRIER()

• WAIT_BARRIER()

• TEST_BARRIER()

• BARRIER()

• SET_LOCK()

• CLEAR_LOCK()

• TEST_LOCK()

• CRITICAL / END CRITICAL

• SET_EVENT()

• CLEAR_EVENT()

• WAIT_EVENT()

• TEST_EVENT()

3.9 Input and Output
All I/O in HPF_CRAFT will retain its CRAFT syntax and

semantics. Private I/O retains its CRAFT syntax and semantics.

3.10 The PE_RESIDENT Directive
PE_RESIDENT is retained with its CRAFT semantics. If

used, any loop which contains it and also uses the INDEPEN-
DENT directive is required to have the ON clause. A
PE_RESIDENT array may not be used in array syntax opera-
tions.

All restrictions on dummy arguments for CRAFT-90 also
apply to HPF_CRAFT programs.

3.11 Intrinsics
All intrinsics available in CRAFT are available in

HPF_CRAFT. The intrinsics available in both CRAFT and HPF
are renamed to match the HPF naming conventions.

3.11.1 Data Mapping functions
The data mapping functions are retained in HPF_CRAFT

with their current meaning. The functions are:

• HIIDX

• LOWIDX

• BLKCT

• PES

• HOME

3.11.2 Parallel Prefix and Parallel Scan Functions
CRAFT contains a set of parallel prefix and parallel scan

functions:

• PREMAX

• PREMIN

• PREPROD

• PRESUM

• SCANMAX

• SCANMIN

• SCANPROD

• SCANSUM

336 CUG 1996 Spring Proceedings

These functions are replaced by the HPF library functions
with the same (or added) functionality.

4 Other CRAFT Features

4.1 Memory Allocation Directive
This directive makes the shared memory library codes easier

to use with HPF_CRAFT and is very easy to implement. It is
basically a way for the programmer to direct the compiler to put
data on the shared heap or the shared stack. It lets users ensure
that data is stored at the same offset on all PEs. The directive is
available in HPF_CRAFT.

• !HPF$ SYMMETRIC

5 Extensions

5.1 HPF_CRAFT Extrinsic
HPF_CRAFT defines a new extrinsic environment called

HPF_CRAFT. The extrinsic tells the compiler to compile the
subroutine as CRAFT code. The environment uses the standard
HPF EXTRINSIC syntax

EXTRINSIC(HPF_CRAFT)

The HPF_CRAFT environment may also be used indicated
by a compile-time switch.

 Appendix A: HPF_CRAFT Features

This appendix contains a complete list of the directives avail-
able in HPF_CRAFT.

• DISTRIBUTE with the following data layouts

• BLOCK

• CYCLIC

• Degenerate (*)

• ALIGN

• TEMPLATE

• PROCESSORS

• PE_PRIVATE

• INDEPENDENT with the following extensions

• ON

• NEW

• FORALL

• IN_INDEPENDENT

• IN_PARALLEL

• MASTER

• END MASTER

• PARALLEL_ONLY

• SERIAL_ONLY

• PARALLEL_AND_SERIAL

• NUMBER_OF_PROCESSORS

• MY_PROCESSOR()

• N$PES

• MY_PE()

• BARRIER

• NO BARRIER

• REDUCE

• INHERIT

• SET_BARRIER()

• WAIT_BARRIER()

• TEST_BARRIER()

• BARRIER()

• SET_LOCK()

• CLEAR_LOCK()

• TEST_LOCK()

• CRITICAL / END CRITICAL

• SET_EVENT()

• CLEAR_EVENT()

• WAIT_EVENT()

• TEST_EVENT()

• PE_RESIDENT

• HIIDX

• LOWIDX

• BLKCT

• PES

• HOME

• HPF_DISTRIBUTION

• PREMAX

• PREMIN

• PREPROD

• PRESUM

• SCANMAX

• SCANMIN

• SCANPROD

• SCANSUM

• SYMMETRIC

• EXTRINSIC(HPF_CRAFT)

 Appendix B: CRAFT-90 Differences

This appendix lists the differences between HPF_CRAFT
and CRAFT-90.

Data Distribution

• The SHARED directive has been replaced in HPF_CRAFT
by the DISTRIBUTE directive. Shared objects (now called
explicitly mapped objects) retain the same meaning in
HPF_CRAFT as they have in CRAFT.

CUG 1996 Spring Proceedings 337

• The CYCLIC distribution has been added.

• The PROCESSORS directive has been added.

• The TEMPLATE directive has been added.

• The ALIGN directive has been added.

• Arrays of derived types may not be distributed.

Subprograms and Subprogram Interfaces

• Remapping across subprogram interfaces has been re-intro-
duced. It is available in the original implementation of
CRAFT, and was removed for CRAFT-90. In this model it
is available but it is guaranteed that the caller may re-map
data.

• PURE subroutines and functions have been added.

• The INHERIT directive has been added.

Work Sharing

• The NEW clause is added for compatibility with Kernel
HPF

• DOSHARED is replaced with INDEPENDENT.

• INDEPENDENT may be used with or without the ON
clause.

Synchronization

• The ATOMIC UPDATE directive has been replaced by
REDUCE.

Libraries and Intrinsics

• The HPF Library is included in the language.

Parallel Execution

• NUMBER_OF_PROCESSORS and MY_PROCESSOR()
have been added with the same meaning as N$PES and
MY_PE() respectively (for compatibility with HPF).

• The EXTRINSIC(HPF_CRAFT) environment has been
added.

 Appendix C: Kernel HPF Differences

This appendix lists the differences between HPF_CRAFT and
Kernel HPF.

Data Distribution

• PE_PRIVATE directive has been added.

• Data distribution default is private.

• Cray pointers may point to distributed objects.

• The GEOMETRY directive has been added.

Subprograms and Subprogram Interfaces

• Shared-to-private coercion has been added.

• PE_RESIDENT directive has been added.

Loops and Array Operations (Work Sharing)

• The INDEPENDENT directive may refer to more than one
(tightly nested) loop nest at a time and may be combined
with the ON clause.

• When used with the ON clause, the INDEPENDENT direc-
tive has the same meaning as the DOSHARED directive.

• The semantics of the parallel execution of the loop follow
those of CRAFT.

Parallel Execution

• The execution model is multi-threaded.

• The IN_INDEPENDENT and IN_PARALLEL intrinsics
are added.

• N$PES and MY_PE() have been added.

• MASTER / END MASTER with the COPY clause is
added.

• STOP and ABORT have CRAFT semantics.

• PARALLEL_ONLY, SERIAL_ONLY, and
PARALLEL_AND_SERIAL directives have been added.

Libraries and Intrinsics

• HIIDX, LOWIDX, BLKCT, PES, HOME intrinsics are
added.

• IN_PARALLEL and IN_INDEPENDENT are added.

Synchronization

• BARRIER / NO BARRIER have been added.

• CRAFT synchronization primitives has been added.

Input and Output

• Altered to CRAFT semantics.

Memory Allocation Directive

• The SYMMETRIC directive has been added.

