

338

CUG 1996 Spring

 Proceedings

Cray Message Passing Toolkit

Heidi Poxon

, Cray Research, Inc., Eagan, Minnesota, USA

ABSTRACT:

The Cray Message Passing Toolkit consolidates Cray Research, Inc. (CRI)
support for message-passing and data-passing into a single software package. The new toolkit
provides optimized implementations of PVM, MPI, and SHmem data passing software for Cray
parallel vector (PVP) machines, increasing performance and portability across Cray PVP and
MPP systems. This paper provides a status of the toolkit, and offers performance results for its
components.

1 Introduction

The Cray Message Passing Toolkit (MPT), introduced in
1Q96, consolidates support for both message passing and data
passing programming models into a single software package.
The intent of this new separately licensed software package is to
provide highly optimized, consistent message passing and data
passing programming models across CRI systems within a
single package. The Message Passing Toolkit consists of the
following components:

• Parallel Virtual Machine (PVM)

• Message Passing Interface (MPI)

• Logically shared, distributed memory (SHMEM) data pass-
ing capability

2 MPT release schedule for 1996

Three releases of MPT are currently planned for 1996. MPT
1.0 was released in February. The first release of MPT includes
optimizations that target fast intra-node and inter-node commu-
nication (where a node is defined to be a single CRI system) on
CRI’s parallel vector (PVP) machines. This initial release
includes features such as the first release of MPI for Cray PVP
systems, a shared memory version of PVM, internal optimiza-
tions to PVM to improve communication across sockets, and
support of a subset of the SHMEM routines originally devel-
oped for the Cray T3D machine.

MPT release 1.1, with planned availability in 2Q96, will
contain a shared memory version of MPI providing high-speed
intra-node communications between processors on Cray PVP
systems similar to that of the shared memory version of PVM
available in MPT 1.0. MPT 1.1 will also contain homogeneous
PVM support for the T3E (stand-alone mode only.)

MPT release 1.2, with planned availability in 3Q96, will
contain homogeneous MPI support for the T3E, as well as heter-
ogeneous support for PVM on the T3E (includes PVM daemon
support on T3E.)

3 Features included in MPT 1.0 release

CRI’s continuing support for the message passing style of
programming is shown with the release of a message passing
toolkit that provides implementations of both de-facto stan-
dards: PVM and MPI. Software included in the first release of
MPT was designed to be used with the Cray Programming Envi-
ronment, release 2.0. MPT also makes use of the Modules soft-
ware package, providing easier access to the software. The
following subsections describe enhancements to the individual
components of the package.

3.1 PVM enhancements

The version of PVM released with MPT replaces Cray
Network PVM-3. This new version of PVM is based on the
public domain version of PVM, version 3.3.7, released jointly
by developers at Oak Ridge National Laboratory (ORNL),
Emory University and the University of Tennessee. MPT 1.0
PVM contains the following architecture-specific enhance-
ments that target Cray PVP systems.

3.1.1 Communication optimizations

By default, communication in MPT PVM between processes
on the same machine is based on data transfers using UNIX
domain sockets, and on TCP sockets between processes across
different machines. The change to use UNIX domain sockets
instead of TCP sockets (as used until recently in Cray Network
PVM-3) within a machine helps to reduce communication over-
head. Communication overhead is still significant however.
Because of this, in addition to the default communication mech-
anism, the MPT implementation of PVM uses memory loads
and stores as an alternate mechanism for communicationCopyright © Cray Research Inc. All rights reserved.

CUG 1996 Spring

 Proceedings

339

between processes on the same machine. Using memory for
communication is faster than sockets because it doesn’t involve
the operating system, and is achieved with the use of CRI’s
macrotasking software. Macrotasking was chosen to imitate a
shared memory system because current CRI systems do not
support globally accessible memory segments, or System V

TM

shared memory.
If a program runs across multiple machines, the default

communication mechanism can be used, or if the machines have
HIPPI connections, communication can be based on HIPPI to
reduce communication overhead. A program uses the HIPPI
device by specifying it in the PVM host file.

3.1.2 Shared memory PVM

The shared memory version of PVM uses CRI’s macro-
tasking software to allow communication via memory on PVP
systems. The goal is to preserve the original PVM message
passing environment, where all data is private to each PVM task,
as much as possible while providing aggressive performance
improvements, greatly increasing communication bandwidth
and reducing latency. Two modes of execution are provided with
shared memory PVM. The mode that offers the best perfor-
mance is the stand-alone mode that requires no PVM daemon.
This mode of execution is similar to that of PVM for the Cray
T3D. The second mode of execution allows PVM tasks that are
spawned to be run in a multitasking environment. This mode of
execution is useful for PVM applications where the spawned
tasks do a lot of communication amongst themselves because
this communication can now be done using memory loads and
stores. Communication to the parent task or to the daemon
however is still done using sockets.

Running in a multitasking environment can change the
behavior of a message passing program because the program is
now running within a single user address space. For example, all
members of the multitasking group can access global or static
data (in other words global or static data becomes shared
between the PVM tasks.) In a message passing environment
however, all data is private to each PVM task. To preserve this
message passing environment, special support has been added to
MPT and the Programming Environment for both Fortran and C
programs so that expected behavior is preserved, and so that
source code changes to programs running in a multitasking envi-
ronment are minimized. This special support includes new

f90
-ataskcommon

 and

cc -htaskprivate

 compiler
command line options to convert all global or static data
normally shared between tasks in a multitasking environment, to
data that is private to each PVM task. It also includes a fully
reentrant libc, and support via the assign command to make
Fortran I/O unit numbers private to each task.

With automated help from CRI software, the bulk of the
changes needed to use the shared memory version of PVM
comprise of converting the program from multiple executables
to a single SPMD-like executable, and removing calls that inter-
face to the PVM daemon, such as

pvm_spawn()

 function
calls.

In addition to the increased bandwidth and reduced latency
achieved by running a program with the shared memory version
of PVM, a benefit of this new mode for PVPs, is the increase in
portability across Cray PVP and MPP systems. With shared
memory PVM, it is possible to run programs currently written
for the T3D on PVP systems with only minor source code
changes. This can be useful for debugging or preparation work
as programs can be run on either platform, allowing developers
to work with a single version of the source.

3.1.3 Miscellaneous internal optimizations

System calls are the largest source of communication over-
head in PVM. To address this overhead, several internal optimi-
zations have been added to PVM that result in increased
bandwidth and reduced latency for programs using standard
PVM (as opposed to shared memory PVM) either within a
machine or across multiple hosts in a virtual machine. These
optimizations include a reduction in the number of system calls
associated with the

pvm_send()

 and

pvm_recv()

 func-
tions, an optimization to reuse memory where possible to reduce
the number of memory management calls, and the inlining of
some commonly called internal PVM functions to reduce func-
tion call overhead.

In addition to system calls which contribute to PVM over-
head, the size of data transfers across the network also impacts
performance. Because of this, a new

PvmWinShift
pvm_setopt()

 option has been added so that users have more
flexibility in determining the size of send and receive buffers in
TCP. Using both the

PvmFragSize

 and

PvmWinShift

options can increase the amount of data transmitted in TCP,
resulting in a reduction in the number of system calls in PVM,
and therefore lower communication overhead.

3.1.4 NQE load balancing support

Another optimization that has been added to the MPT PVM
software to improve communication across multiple machines,
is the integration of Network Queuing Environment (NQE) load
balancing support for

pvm_spawn()

 calls. If NQE is enabled
on a system, the load balancing server rates the hosts specified
in the PVM host file. PVM tasks are placed on the various
machines based on these host ratings. Characteristics of a
machine that influence its ratings include processor speed,
current load on the system, number of CPUs, etc.

3.2 MPI

CRI introduces support for MPI, a standard specification for
message passing libraries, on its PVP systems in the first release
of the Message Passing Toolkit. CRI’s implementation of MPI
for its parallel vector machines is based on MPICH, a public
domain implementation developed jointly by Argonne National
Laboratory and Mississippi State University. MPI included in
the first release of the Message Passing Toolkit, includes internal
performance enhancements similar to those applied to MPT
PVM. These initial optimizations are the first phase of enhance-
ments to MPI on Cray PVP systems, adding improved perfor-
mance over the public domain implementation.

340

CUG 1996 Spring

 Proceedings

Architecture-specific optimizations which will greatly increase
bandwidth and reduce latency, will be provided in the MPT 1.1
release.

In addition to standard MPI library functionality, MPT also
includes the Multiprocessing Environment (MPE). MPE, origi-
nally created by developers of MPICH, contains a set of exten-
sions to MPI including profiling and tracing interfaces designed
to aid in the development and debugging of MPI applications.

3.3 SHMEM data passing support

The MPT software package also includes the libsma library
for Cray PVP machines. This library contains a subset of the
SHMEM functions that are available today on the Cray T3D
system. The library offers extremely fast communication
between processors that exist on a single PVP system, and offers
increased portability across CRI platforms for programs that use
SHMEM data passing capability on the Cray T3D. The
following libsma functions are supported on PVP systems:

• shmem_put()

• shmem_get()

• shmem_my_pe()

• shmem_n_pes()

• shmem cache routines

• shmem single word put routines

The SHMEM library functions can be used alone in a
program on PVP systems, or as an optimization on “hot spots”
in PVM or MPI programs to greatly reduce communication costs
since the advantage of SHMEM data passing support on PVP
systems is its extremely low latency.

3.4 Miscellaneous MPP compatibility functions

The following additional routines are supported in MPT to
increase portability between Cray PVP and Cray T3D systems,
helping to provide a consistent programming model between the
PVP and T3D systems. They can be used with shared memory
PVM or SHMEM data passing functions in MPT 1.0, and may
be useful with shared memory MPI when it is available. These
additional functions minimize the number of source code
changes required when moving applications that use the
message passing or data passing programming models on both
CRI’s MPP and PVP machines.

• my_pe()

• num_pes()

• barrier()

• start_pes()

These functions are available in both Fortran and C. The

start_pes()

 function is used to start shared memory tasks
since there is no

mppexec

 or

-X

 load-time option as on the
Cray T3D.

4 MPT 1.0 performance

The goal of the first release of the Message Passing Toolkit
was to address both functionality and performance on Cray PVP
systems. This section describes performance results for the
various MPT components.

4.1 PVM / SHMEM performance

Both inter-node and intra-node communication overhead are
addressed with the enhancements to PVM and the introduction
of SHMEM for PVP systems. Performance measurements have
been gathered comparing Network PVM-3, version 2.1 (essen-
tially the public domain implementation of PVM), the new MPT
PVM in standard mode (run with the PVM daemon) and the new
MPT PVM run in shared memory mode (T3D style with no
PVM daemon.)

Various styles of pingpong tests have been run to measure
latency and bandwidth improvements. Measuring bandwidth, it
was found that using shared memory PVM can yield up to a

45
times

 improvement in bandwidth over the public domain or Cray

network

 version of PVM. Bandwidth achieved when running
with shared memory PVM is now mostly limited by the memory
bandwidth of the machine. Communication latency was reduced
up to

4 times

 with the shared memory PVM. Using the SHMEM
library can reduce this latency another

order of magnitude

.
(Bandwidth is the same for SHMEM or shared memory PVM.)

Inter-node communications were also greatly improved as
can been seen when comparing network PVM to the new MPT
PVM. Using MPT PVM between 2 J90 systems over a HIPPI
connection can yield at least a

2 times

 improvement in band-
width over network PVM.

4.2 MPI performance

Similar pingpong tests were run to compare the performance
between the public domain implementation of MPI (MPICH)
and CRI’s MPT implementation of MPI (MPICH plus optimiza-
tions) on a single J90 system, and between 2 J90 systems. Even
though heterogeneous MPI is not addressed as a part of the MPI
standard, implementations such as MPICH have provided added
capability to run MPI applications across multiple machines.
The implementation of MPI found in the Message Passing
Toolkit supports the running of jobs across Cray PVP systems.
Support for this inter-operability is based on MPICH’s P4 layer.
Performance results showed that MPT MPI can yield more than
a two-fold increase in bandwidth over the public domain imple-
mentation both within a machine and across two machines. The
higher bandwidth and lower latency measured on PVM
programs is achieved with the shared memory version of PVM,
and since a shared memory MPI does not exist in MPT 1.0,
performance improvements for MPI applications are not yet as
great. Much larger bandwidth and latency improvements are
expected for MPI in the 1.1 release of the Message Passing
Toolkit with the introduction of shared memory MPI.

CUG 1996 Spring

 Proceedings

341

4.3 MPT performance numbers

The following tables show MPT message passing and data
passing performance results measured within a single J90 and
between two J90 systems. Performance was measured using a
round-trip pingpong test with a fragment size of 600,000 bytes
and the direct routing option available in PVM. The bandwidth
listed below is in Mbytes per second, and the round-trip latency
is given in microseconds.

Table 1.

PVM / SHMEM (single J90)

PVM Bandwidth Latency

Cray Network PVM-3 11.0 3880.0

MPT PVM 32.1 2717.0

Shared memory PVM 715.5 284.0

SHMEM 715.6 4.6

Table 2.

PVM (between 2 J90s)

PVM Bandwidth Latency

Network PVM-3 (FDDI) 3.5 6531.0

Network PVM-3 (HIPPI) 8.5 4343.0

MPT PVM (TCP default) 5.4 6238.0

MPT PVM (FDDI) 5.4 5598.0

MPT PVM (HIPPI) 20.4 3485.0

5 Summary

The initial release of the Message Passing Toolkit targets
Cray PVP systems and offers improved performance for
message passing programs, and increased portability for PVM
message passing and SHMEM data passing programs between
Cray PVP and MPP systems. The toolkit includes extensive opti-
mizations to PVM over CRI’s existing Network PVM-3 soft-
ware, and introduces new MPI and SHMEM data passing
support for Cray PVP systems. The intent of the toolkit is to
provide architecture specific, highly optimized implementations
of both message passing and data passing software, while
increasing programming model portability between Cray MPP
and PVP platforms. The increase in portability allows users to
work with a single version of their source code which runs on
multiple Cray platforms.

Table 3.

MPI (single J90)

MPI Bandwidth Latency

MPICH 7.6 3862.0

MPT MPI 14.5 3974.0

Table 4.

MPI (between 2 J90s)

MPI Bandwidth Latency

MPICH (FDDI) 3.8 7506.0

MPICH (HIPPI) 5.8 4930.0

MPT MPI (FDDI) 3.9 7138.0

MPT MPI (HIPPI) 13.2 4656.0

