Quantum Molecular Dynamics:
O(N) Tight-Binding on the T3D

A. Canning Cray Research, Switzerland, PSE, EPFL,@neall,
F. Mauri, A. De Vita andR. Car, IRRMA (Institut Romand de
Recherche Numérique en Physique des Matériaux, EPFL, Lausanne,

Switzerland

Abstract

We discuss the implementation of an O(N) tight-binding
molecular dynamics code on the Cray T3D parallel com-
puter. The localisation introduces a sparse nature to the
orbital data and Hamiltonian matrix, greatly changing the
coding on parallel machines compared to non-localised sys-
tems. The data distribution, communication routines and
dynamic load-balancing scheme of the program are pre-
sented in detail together with the speed and scaling of the
code on various homogeneous and inhomogeneous physical
systems. Performance results will be presented for systems
of 2048 to 32768 atoms on 32 to 512 processors. We discuss
the relevance to quantum molecular dynamics simulations
with localised orbitals, of techniques used for programming
short-range classical molecular dynamics simulations on
parallel machines. The absence of global communications
and the localised nature of the orbitals makes these algo-
rithms extremely scalable in terms of memory and speed

on parallel systems with fast communications.

1 Introduction

The evaluation of the Energy in Density Functional The-
ory (DFT) calculations using the Local Density Approxi-
mation (LDA), such as those used in Car-Parrinello type
Molecular Dynamics (MD) simulations [1], requires of or-
der N3 operations where N is the number of atoms in the
system. This limits the size of systems that can be treated

with these first-principles approaches to a few hundred,

even with the most powerful modern computers [2]. Tight-
Binding (TB) models, while still presenting a quantum
mechanical approach to molecular dynamics, have a much
simpler Hamiltonian and smaller basis set, greatly reducing
the computational cost of an MD step. However, the scal-
ing of the computational cost is still of O(N?) even though
the prefactor is much smaller than for first-principles cal-
culations. This limits the number of atoms that can be
studied in TB MD simulations to about a thousand, on
the most powerful modern supercomputers. In order to
extend the application of quantum MD to larger systems,
many new (so-called O(N)) techniques have been intro-
duced in recent years, O(N) meaning that their computa-
tional cost grows only linearly with the system size. Some
of these approaches are based on an orbital formulation
of the electronic properties [3, 4, 5, 6, 7] while others are
based on the direct calculation of either the one-electron
Green’s function [8, 9] or the density matrix [10, 11]. The
basic ingredients of the orbital based O(N) approaches are
the spatial localisation of the orbitals and a novel energy
functional which does not involve explicit orthogonalisa-
tion of the orbitals (¢7), or inversion of the overlap matrix
(S17 =< ¢1|$s >). Most methods for finding the ground
state, without explicit orthogonalisation of the orbitals, re-
quire the inversion of the overlap matrix in order to ensure
orthogonality of the wavefunctions at the minimum of the
energy functional.

In this paper we will discuss our approach to the parallel

programming of the O(N) energy functional proposed in-

CUG 1996 SpringProceedings 37

dependently in references [4, 12] and [7] and extended to a
non-orthogonal representation of the orbitals in reference
[13]. A lot of the techniques presented in this paper are
applicable to other O(N) algorithms in the context of a TB
model and to LDA implementations of O(N) methods. In
particular the density matrix approach to O(N) TB [10, 11]
could be programmed on parallel machines in the same way
as our orbital approach. We will not describe in detail the
calculation of all the different terms for our MD simula-
tion but will rather present an overview illustrated with a
few typical examples such as the calculation of the overlap
matrix. We adopt the TB Hamiltonian of Xu et al. [15] in
the context of an MD simulation. This TB O(N) scheme
has already been used with a serial code to study fullerene
impacts on a semiconducting surface [16] and one of the
target problems for our parallel code is an ithomogeneous
system of fullerenes deposited on a diamond surface.

In the next section of this paper we will discuss the im-
plementation of the O(N) TB MD in a serial code. In
particular we will discuss how the energy functional and
its derivative are calculated in the context of sparse ma-
trices. In the third section we will look at techniques used
in programming classical MD simulations on parallel ma-
chines that are relevant to our quantum simulations. In
the fourth section we will present the data distribution and
communication routines used in the parallel code. In sec-
tion five some optimisation techniques which are relevant
to this code and applicable to RISC processors of the type
found in the Cray T3D will be presented. In section six
we will discuss dynamic load-balancing and its application
to inhomogeneous systems such as fullerenes arriving on a
diamond surface. In the last section we will give results for

the speed and scaling of the code on various systems.

2 O(N) Tight-Binding MD Code

Our code uses the conjugate gradient (CG) method to
minimise the energy functional for the electronic degrees

of freedom and the Verlet algorithm [18] to update the

38 CUG 1996 SpringProceedings

atomic positions in an MD simulation. The basic struc-
ture of the code is two large nested loops with the inner
loop performing the minimisation to the ground state of
the wavefunctions and the outer loop the atomic dynam-
ics. The minimisation of the energy functional in O(N)
calculations typically takes more CG steps than in non-
localised methods where the CG steps already take the
largest percentage of the calculation time in an MD run.
Therefore, in this paper, we will devote most of the discus-
sion of parallelisation and optimisation to the CG part of
the code rather than the atomic update. However, most of
the calculations for the atomic update are very similar in
nature to the CG step so that most of the discussion of the
programming techniques for the CG step is also relevant
to the atomic update.

In the TB model the wavefunctions are expanded on the
basis set of atomic orbitals at all the atomic sites. In the
context of the TB O(N) algorithm a localisation region
(LR) for the orbital representation of the wavefunctions
can then be identified with a set of atomic sites centered
around a given atom. In our code we define the localisation
region as including up to the Njth nearest neighbour of
the center atom where a cut-off distance defines, whether
or not, an atom is a nearest neighbour. In this way, by
varying the value of N}, we vary the size of the localisation
region of the orbital. The localised orbitals can then be

represented by a set of coefficients c_f,’; such that

g7 >= Y > ek >, (1)

FELR; k

where 7 is the atomic site on which the orbital is localised
and m is the index for the orbitals localised at site z; j
is summed over the atomic sites j = 1,..., N, but c;’:;
is only non-zero in the localisation region LR; of site ¢
i.e. § € LR;; k is summed over the set of basis functions
(k = 1,4 the s,p;,py and p, atomic orbitals in our case
where |®% > is the k’th basis function at site j). In the
program the orbitals are stored as sparse coded matrices

in the sense that we only store the non-zero values of CZ;

The complete set of orbitals for the system is stored
as a four dimensional sparse coded matrix of the form
C(k,m, js,1) and a two dimensional matrix NEIG(j,,1)
lists the true site numbers for each C value. We use the
notation j, to denote that this is the sparse coded di-
mension in the matrix. Thus C(k,m, j,;, 1) is the value
of C at site j = NFEIG(j,,%) in the localisation region
centered on atom i. A further vector NNEIG(i), con-
tains the number of sites in each localisation region (i.e.
js = 1,..., NNEIG(3) since there are NN EIG(i) sites in
the localisation region LR;). With these definitions equa-

tion 1 now becomes,

NNEIG(i)

|¢:n >= Z Zc(k,m)jsii)‘q)?vElG(j”i) > - (2)

Je=1 k

It would be prohibitive, in terms of memory, and compu-
tationally inefficient to work with the full C' matrix con-
taining all the zero values of the C’s outside the localisa-
tion regions. It should also be noted that while for non-
localised problems the overlap matrix, Hamiltonian etc.
are usually calculated with Basic Linear Algebra Subpro-
grams (BLAS), typically written in assembly language and
highly machine-optimised, we now have to hand code the
sparse matrix multiplications. This leads to codes which
typically have a MFLOP speed lower than non-localised
codes. This will be discussed later in more detail in the

section on optimisation.

In this paper we will discuss results for a code using the
energy functional for non-orthogonal localised orbitals pre-
sented in reference {13]. This is essentially the same as the
energy functional for localised orbitals presented in [4, 12]
except that the number of orbitals is chosen to be larger
than the number of occupied electronic states. All the cod-
ing techniques we will discuss apply to both functionals.
For more discussion on the physics behind these energy
functionals the reader should consult these papers and the

references therein. The energy functional used in our pro-

gram is given by

E{¢7}m) =2) QF" <¢7IH —nl¢f > +nN, (3)

i,j,m,n

where N is the number of electrons in the system. The
number of orbitals is chosen to be larger than A/2, the
number of occupied states which is half the number of elec-
trons N, due to spin degeneracy. In all our calculations we
choose the number of orbitals to be % corresponding to
three orbitals for each of the N localisation regions. Thus
in equation 3 the sum over orbitals is split into a sum over
the sites ¢ = 1,..., N and a sum m = 1,2, 3 over the or-
bitals centered on the same site. The number of sites is
N = %’ since we are using the TB Hamiltonian of Xu et
al. [15] for carbon based systems and the number of va-
lence electrons for carbon is four. 7 is a scalar parameter
(playing the role of the chemical potential) which is ad-

justed to give the correct number of electrons and @ is the

first order expansion of the inverse of the overlap matrix
S lrQ=2I-5, (4)

where S is the overlap matrix (S7" =< ¢[*|¢} >) and
I is the identity matrix. It was pointed out in reference
[15] that in order to control unphysical charge transfer for
certain systems studied with TB models e.g. systems with
dangling bonds, it is often useful to add a Hubbard like
term to the energy functional. This term is present in our
program and can be switched on and off depending on what
type of system is under study. It is given by ;U(g; — 4)?
where g; is the total charge at atomic site 2 and U is a
scalar parameter typically chosen to be from 4 to 8¢V for
carbon systems [15, 16].

The TB Hamiltonian of Xu et al. [15] is an empirical
TB model where the Hamiltonian matrix elements are
parametrised as a function of distance between the atomic
sites and atomic orbital type. Thus the different terms
in the Hamiltonian can be calculated, knowing only the
inter-atomic distances and direction cosines of the vectors

between the atoms connected by hopping terms. The or-

bital products on the same site are trivial to calculate. The

CUG 1996 SpringProceedings 39

hopping terms lead to products of orbitals on neighbouring
sites so to keep track of these terms we must have an en-
larged neighbourhood list NEIGH (j,,1) which contains
all the sites in a given localisation region plus the ones
connected to it via the hopping terms. If the Hamiltonian
operates on an orbital localised at site 2 it will produce a
new orbital which is localised in the larger region defined
by the sites NEIGH(j,,1). We define this new orbital to
be

W >=Hlgr >=)) bkjek>, (5)

JELRH; k
where LRH; is the localisation region defined by the neigh-

bourhood list N EIGH(j,,4) in which ¥ is non-zero. In
the program we precalculate |¢* >, then terms of the form
< ¢ H|$T >=< ¢T*|¢y] > can be calculated in the same
way as 57" is calculated.

A third site index matrix N EIGS(j,, %) is required for the
sparse coding of S and lists the pairs of orbitals having non-
zero overlap i.e. the element S(m, n, j,, t) is the overlap be-
tween an orbital centered at site i and an orbital centered

at site NEIGS(j,,1).
ces NEIG(j,,i),NEIGH(j,,z’) and NEIGS(js,%) which

Thus we have three index matri-

define the structure of all the sparse data matrices in the
program.

The minimisation of the energy functional of equation 3
was performed using the conjugate gradient method. In
this method at each step t, the gradient, at the current

position Ci, is calculated from
§E n
= 4 - 0)le} > o - ST
M in
—|¢7 >< ¢7|H — nl¢]" >] (6)

and is used to construct the minimisation direction Dy,
which is conjugate to all the former directions of search
[17]. The energy is then minimised along the line C =
C: + AD;. The energy is a fourth order polynomial in A
(8th order if the Hubbard term is included) whose coeffi-
cients can be calculated explicitly by evaluating the energy
functional in equation 3 at C; + AD;. Once A, the value

of A at the minimum, has been determined the next point

40 CUG 1996 SpringProceedings

in the conjugate gradient process can then be calculated
(Ci41 = C + j\Dt). This whole process can be repeated
until the required tolerance on the energy is reached.

The majority of calculations to evaluate the quartic poly-
nomial and the derivative of the energy functional involve
sparse matrix products. We will take as a typical example
the calculation of S. As previously noted S is stored as
a four dimensional array where the first two indices corre-
spond to the orbitals centered on the same sites so that, if

there was no sparse coding, S would be given by,
S(m,n,5,9) =YY C(k,m,1,5)x C(k,n,1,5) (7)
Tk

where m = 1,3 and n = 1,3 are the indices for the 3
orbitals on each site; k = 1,4 is the index for the basis
set of four orbitals and I, and j are site indices. The
sum over ! is only non-zero on the sites where the two
orbitals overlap. C(k,m,l,1) is sparse coded only on the
{ index while S(m,n,j,1) is sparse coded only on the j
index. Thus in the calculation of S the indices m,n,k
and i are direct indices in the sense that they run over
all their possible values while 7 and [are indirect in-
dices running over only the non-zero values of the matri-
ces. This makes our calculation different from standard
sparse matrix multiplications which are typically of the
form Zj; = Y, X;iYs: where only 4 is a direct indez. In our
calculation we are essentially pulling in two 3 x 4 matrices
(C(k,m,l,7);k = 1,4;m = 1,3) from indirectly indexed
memory locations and multiplying them together to give a
3 x 3 matrix (S(m, n, j,1);m = 1,3;n = 1, 3). Therefore in
sparse notation S is given by,
S(m,n,js, 1) =
a,5;NEIG(a,j)=NEIG(bi) k
C(k,m,a, NEIGS(js,4)) * C(k, n, b,1), (8)

where j = NEIGS(js,i). At each MD step we pre-
calculate index lists giving the couples of values, a and
b, for which NEIG(a,j) = NEIG(b,1) required for the
outermost summation. Since we pull in small matrices

rather than single values for each indirect memory ref-

erence these calculations run much faster on RISC type
architectures with cache (such as the Cray T3D) than a
standard sparse matrix multiplication. We will discuss
this in more detail in the section on optimisation. The
calculation of < ¢;"|H|¢:‘ > once we have constructed
H|¢? > is of the same form as the calculation of S given
in equation 8. The calculation of the quartic polyno-
mial for the line minimisation requires the further calcu-
lation of < ¢I*|D} >,< DD} >,< ¢*|H|D} > and
< DU*|H|D} > where D is the conjugate gradient direc-
tion. All these calculations are of the same form as equa-
tion 8, the calculation of the overlap matrix. In total, for a
typical run, about 65 % of the time in the CG step is taken
up by sparse matrix multiplications while the remaining
35 % is mainly vector matrix products (to calculate the
derivative) which are also sparse coded. To perform the
MD step we must calculate the derivative with respect to

ionic positions, of the total energy E (including the ionic

potential and kinetic energy). E is given by

B{4rY ARiY) = 5 32 M - Bra({7) - wra({R1}),

I Q
where Erp is the band structure energy which takes the
form ZZi,j‘mln QT < ¢§"\Hl¢;‘ >; pwrp is the interatomic
potential of the TB model [15] and R; is the atomic po-
sition of atom I. The forces on the ions are then given

by

M By = _dE({RI});

dRI E= mi'n.{,;:n}E({(ﬁ:n}, {RI}),

(10)
and the ionic positions are updated using the Verlet algo-
rithm [18]. Calculating the contribution from the elec-
tronic band structure term Erp takes the largest per-
centage of the time and, as in the CG step, this calcu-
lation mainly involves sparse matrix multiplications. As
part of the MD step we must also update the index lists
NFEIG(js,%),NEIGH(j,,%) and NEIGS(j,,%) since the
sites within the different localisation regions change. The

direction cosines which occur in the matrix elements of the

Hamiltonian must also be updated [15]. In a typical MD
run where 15 CG steps were performed for each MD step
the CG steps took 85% to 90% of the total run time.

3 Molecular Dynamics on Parallel
Computers

It may be thought that the localisation of the orbitals in
our Quantum MD calculation would lead to a system which
is more similar in nature, from a programming point of
view, to short-range classical MD than standard Quan-
tum MD simulations. In this section we will discuss some
of the techniques used in programming classical MD with
short-range interactions which are relevant to our localised
quantum MD calculations and we will also point out some
of the major differences between these two types of simu-
lations.

In short-ranged classical MD simulations on parallel ma-
chines there are two main ways to distribute the data
among the processors, often referred to as particle and
spatial distribution. In the case of a spatial distribution
the cell in which we carry out the simulation is divided
spatially into blocks which are then allocated to different
processors. Each processor then stores all the data associ-
ated with the particles within its block (which may change
during the simulation) and calculates the trajectories for
these particles. In the case of a particle type distribution
all the particles are divided among the processors (typi-
cally each processor dealing with the same number of par-
ticles) and throughout the simulation each processor will
store the data associated with its set of particles (which
do not change) and calculate the trajectories for its set
of particles. With this type of distribution, if the parti-
cles are moving rapidly during the simulation (e.g. in the
case of a liquid or gas), there is no spatial correlation
between the particles on the processors and their physi-
cal positions in the simulation. This means that when the
data of a physically neighbouring particle is required there

is a high probability it will not be on the same processor

CUG 1996 SpringProceedings 41

and not even on a processor which is physically close in the
sense of the communication topology of the parallel com-
puter. The particle data distribution can therefore lead to
a high cost in communication between processors although
it has the advantage that it is easy to load-balance. On
the other hand the spatial decomposition method can lead
to large load imbalances in the calculations on each pro-
cessor if the relative number of particles in each spatial
region varies greatly. However, due to the spatial correla-
tion between the particles on the processors and the true
physical positions of the particles in the simulation it is
highly probable that the data of neighbouring particles
required to update a given particle will be on the same
processor or at worst a physically close neighbouring pro-
cessor. Thus a spatial distribution of the particles tends to
be very efficient from a communications point of view but
bad from a load-balancing point of view. The best algo-
rithms typically perform a combination of these two types
of distribution giving roughly equal numbers of particles to
each processor which have spatial locality and redistribut-
ing the particles to the processors, every few MD steps, if
the particles move too much and lose there spatial local-
ity. In this way both the constraints of load-balancing and
minimising communication can be partially satisfied. It is
an approach similar to this that we have followed for our

Quantum MD program.

While in classical MD simulations particles are point like,
in quantum MD simulations the wavefunctions or orbitals
describing the electrons have a spatial extent. This means
we can have a second approach to a spatial distribution of
the data. In this case the system would be divided spatially
but now each processor would deal with the calculations
for the parts of the orbitals which lie in its spatial region.
In the case of plane-wave codes the Fourier components of
the plane-waves are also distributed over the processors.
This is the most adaptable and commonly used approach
for quantum systems where there is no localisation, and the

orbitals are extended over the whole cell [19, 20]. It allows

42 CUG 1996 SpringProceedings

good load-balancing and minimises communication in the
orthogonalisation step compared to a particle type distri-
bution where complete orbitals are given to each processing
element (PE). The localisation of the orbitals introduces
the concept of closeness and spatial locality between the
orbitals closer to classical systems where the particle data

is, in a sense, localised at a point.

While we have drawn some analogies between classical
short-range MD and quantum MD with localised orbitals
there are several major differences which make our paral-
lel implementation rather different from techniques used in
classical MD. In particular, due to the optimisation of the
electronic degrees of freedom, the amount of calculation
required to update an atom at each MD step in quan-
tum simulations is very much larger than the update of
an atomic position for classical MD. This has implications
for the load-balancing and also for the techniques used to

calculate the neighbourhood lists.

In short-range classical MD the time taken to construct the
neighbourhood lists; the particles within the cut-off radius
of the interaction for each site, can become a significant
percentage of the program time if not done efficiently. The
simplest way to construct these lists is to calculate, for each
particle, its distances from all the other particles and then
compare them against the cut-off distance. This approach
requires the calculation of distances between all possible
pairs of particles and leads to an algorithm which scales as
O(N?) which can quickly dominate in classical algorithms
whose numerical calculations scale as O(N). To obtain an
O(N) approach it is necessary to first bin the atoms into
three dimensional cells of side r. where r. is the cut-off
radius for the interaction. To find an atom’s neighbours
we then only have to search through 27 bins: the bin the
atom is in and the 26 surrounding ones. Both the steps of
binning and then searching the local areas for the neigh-
bours are O(N). This approach is often called the link-cell
method [22, 23]. Another approach is to calculate an over-

sized neighbourhood list with cut-off r. + ér for each atom

such that even after a given number of MD steps this list
will still contain all the true neighbours (r < r.), since
there is a maximum distance an atom can move at each
MD step [22, 23]. In this way we only have to search this
oversized list for the true neighbours, at each MD step,
and update the oversized list after a given number of MD
steps. The most sophisticated algorithms are a combina-
tion of these approaches, using the link-cell binning every
few MD steps to construct the oversized neighbourhood
lists which are searched every MD step for the true neigh-
bours [22, 23]. However, the optimal algorithm depends
not only on the physical system under study but also on
the architecture of the computer used as well as available

memory.

In localised quantum MD, since the computational cost
for each MD step is very large, we can only work with
a relatively small number of atoms compared to classical
short-range MD where simulations are performed on mil-
lions of atoms [23]. We have found that in our typical TB
simulations, where we have 3000 to 4000 atoms, we can use
the simple exhaustive search, O(N?) algorithm to calculate
the neighbourhood lists. This approach only takes a few
percent of the total computation time. Once we have more
than 5000 atoms the O(N?) scaling can become important
and for this size of system we used a link-cell method of
the simplest kind where we performed the binning at each
MD step. Again this was found to take a few percent
of the program time and scaled in the same way as the
calculations i.e. O(N). Both of these algorithms were pro-
grammed in parallel with each processor having a complete
list of all the atomic positions from which it calculated the
neighbourhood lists for the sites it was allocated (see next
section) and performed the binning procedure on all the
sites. Since we are dealing with a relatively small num-
ber of sites we can store and communicate all the atomic
positions to all processors but with classical MD simula-
tions, which sometimes deal with millions of particles, this

approach would be prohibitive in terms of memory and

communication time. In a general sense the sophisticated
techniques for calculating the neighbourhood lists used in
classical MD are not necessary in Quantum MD with lo-
calised orbitals due to the computational intensity of the
calculations at each MD step which dominates even inefhi-

cient methods for constructing the neighbourhood lists.

4 Parallel Tight-binding Code

In our program we used a particle/orbital distribution of
the data among the processors so that each processor has
complete orbitals. In the section on load-balancing we will
discuss how we implemented spatial locality in the con-
text of a particle like distribution for an inhomogeneous
system. The reader may assume, in this section, that the
code is written for a solid with periodic boundary condi-
tions (such as bulk diamond) with the system being di-
vided up into identical blocks, each processor dealing with
the orbitals centered within this block and the atomic mo-
tion of the atoms in that block. We also assume the atoms
never cross the boundaries of any of these blocks. For this
system we have no load-balancing problems and a spatial
locality of the mapping of the orbitals onto the processors.
We chose a particle/orbital distribution (processors having
complete orbitals) rather than a spatial type distribution
(single orbitals being distributed between processors) for
the following reasons. (i) It is the simplest to program as the
parallel code loop structures remain essentially the same
as the serial code with most of the subroutines remaining
almost identical. (i1) It gives faster calculation speeds on
RISC type chips with cache than other methods {25]. (iii)
The communication cost of passing the orbital data be-
tween processors is modest due to the localised nature of
the orbitals.

In our localised TB formulation the center of the localisa-
tion region is an atomic site so we can associate orbitals, as
well as the atoms, to atomic sites. Therefore, each proces-
sor has a subset of atomic sites allocated to it and it will

have stored in its memory all the data for the complete or-

CUG 1996 SpringProceedings 43

bitals centered on that site plus all the atomic data for its
sites. At each conjugate gradient step we require the values
of the orbitals on other processors which are overlapping
with the orbitals on our processor. We used a technique
similar to ghost cells used in solving differential equations
on parallel machines in that at each CG step each processor
copies into a dummy array all the off-PE orbital elements
that are required to update its own orbitals. Since dur-
ing the CG steps the particles are not moving we can, at
the start of each MD step, make a list of the processor
numbers and memory locations of all the required off-PE
orbitals. This list can then be used at each CG step to
copy in the required data. It should be noted that during
the conjugate gradient step, H|¢[* > plus the conjugate
gradient directions | D™ > must also be communicated be-
tween the processors. Our program is written in a message
passing format using Fortran77 and PVM while the com-
munication routines for the orbitals were written using the
faster SHared MEMory (SHMEM) library routines which
are native to the Cray T3D.

In addition to carrying all the local information for its set
of particles and orbitals, each processor has global lists
running over all the particles in the system which tell it
which processor deals with a given particle and what is the
local address of that particle. Using these global lists and
its local neighbourhood lists each processor can determine
the location of all its neighbouring orbitals. In addition
each processor has a complete list of all the atomic sites
so that the new neighbourhood lists can be calculated in

parallel when the particles move.

Many of the matrices calculated in this program, such as
the overlap matrix, are symmetric so we only need to cal-
culate half the elements. This leads to a load imbalance
problem if standard techniques are used. To overcome this
problem we use a checkerboard type mask to distribute
out the elements to the processors. This technique is very
similar to the one used in classical MD calculations, for

load-balancing the calculation of the anti-symmetric force

44 CUG 1996 SpringProceedings

matrix [22]. In general using a checkerboard mask to calcu-
late non-sparse symmetric matrices on a parallel machine
is very bad from the point of view of memory access since
we are continually skipping through memory rather than
going through with stride one. This greatly effects the
MFLOP speed for RISC type chips with cache. Since our
matrices are in fact sparse this is not an issue as we are al-
ready skipping through memory in a more or less random

way so that to add another memory skip in the calculation

makes very little difference to the MFLOP speed.

5 Optimisation

Sparse matrix multiplications can run extremely slowly on
certain types of machine due to bad memory access so in
this section we will briefly discuss how to program these
types of calculations on machines such as the Cray T3D to
get the best performance. Most modern parallel machines,
such as the Cray T3D, are constructed using RISC type
processors with a small, local fast memory (cache) and a
slower, larger DRAM memory. RISC processors typically
have very fast clock speeds and correspondingly high peak
performance. The DEC (Digital Equipment Corporation)
Alpha chip used in the Cray T3D has a clock frequency
of 150 MHz and a peak speed of 150 MFLOPs but speeds
close to this can only be achieved if the data can be read
from memory quickly enough to feed the processor. If most
data is being read directly from the cache rather than
the slower DRAM memory it is possible to achieve high
MFLOP speeds. A matrix multiply, such as the BLAS-3
routines, can run at over 100 MFLOPs since for N x N
matrices each value is reused N times and therefore, it is
typically in cache when required. Most calculations that
do not significantly reuse the same values will run much
slower. When we require a number from the DRAM mem-
ory a whole cache line (4 x 8 bytes for the Alpha chip, i.e.
4 double precision numbers) is loaded from the DRAM into
the cache. It is then very important to use all or most of

these values in the cache to obtain high MFLOP speeds.

Typically this means memory strides should be one, corre-
sponding in a Fortran code to having the first index of the
arrays striding by one in the innermost loops. It should be
noted that this is very different from vector type machines
(e.g. Cray YMP and C90) which do not have any cache
and for which the MFLOP speed is much less sensitive to
the size of the stride in loops.

In the case of sparse matrix multiplications we are typi-
cally reading each value from a random memory location
so that we may have to read from DRAM each time we
need a value and the 3 neighbouring values loaded into
the cache are not used. What gives us reasonably high
MFLOP speeds for our sparse matrix multiplications in the
TB code is that each atomic orbital has 4 elements and we
have typically 3 orbitals per site. Thus for each indirect
memory address we will perform 3 DRAM memory reads
each pulling in 4 values to the cache which are all used. It is
therefore extremely important to have the correct order of
the indices for the orbitals i.e. C(k,m,1l,i) where k = 1,4
for the basis set and m = 1,3 for the number of orbitals
centered on each site. Any nested do loops should then
be constructed so that the innermost loop strides through
the k index then the m index so that one of the outer
loops contains the indirectly addressed ! index. In calcu-
lating the overlap matrix S we are therefore pulling in two
4 x 3 matrices into the cache and each of these values is
reused 3 times in the matrix multiply so that for the 2nd
and 3rd usage it will be read from cache rather than the
DRAM memory. Using this data layout the calculation of
S achieved about 30-33 MFLOPs! per processor depend-
ing on the physical system under study and the size of the
localisation region. The other sparse matrix multiplica-
tions in the code such as the calculation of < ¢>;”!H o} >
ran at similar speeds. Other calculations in the code such
as vector matrix products ran a little slower at around 25
MFLOPs.

Another feature of our code, which exploits the fact that

! version 6.2.0.9 of the Cray Fortran?77 compiler (cf77) was used

with the options; aggress and readahead

the data layout does not change during the CG steps, is
the precalculation, at each MD step, of index lists for the
memory location of the atomic orbital values required for
calculating each element of S (see section 2). This avoids
searching through the indirect indices of overlapping or-
bitals, at each CG step, to find the values corresponding
to the atomic orbitals on the same site. This searching
procedure can be quite costly since it involves many mem-
ory reads through indirect indices. Similar index lists can
be calculated for the Hamiltonian and other orbital multi-
plications required in the CG step. A disadvantage of this
approach is that if the localisation regions are very large
these index lists can become very long and take up a signif-
icant percentage of the memory on each processor. These
index lists were found to speed-up the calculation in our

applications by about 20% to 30%.

6 Dynamic Load-Balancing

There are now many articles on different load-balancing
schemes in short-range classical molecular dynamics ap-
plied to a range of different physical problems [22, 23, 24].
Load-balancing becomes an issue for systems where the
amount of time required to calculate the new atomic posi-
tions varies from particle to particle. Giving out the same
number of particles to each processor would then cause
processors to idle while waiting for the processor with the
most work to finish. As discussed in previous sections the
main problem in developing a load-balancing algorithm to
divide the calculations among the processors is to satisfy
the, often conflicting, constraints of spatial locality of the
data on the processors and load-balancing of the calcula-
tions between processors. If particles/orbitals are rapidly
moving during the MD simulation any load-balancing al-
gorithm which does not take into account spatial locality
will lead to increased communications during the run. The
most sophisticated load-balancing algorithms for classical
MD simulations typically involve division of the system

into a number of different sized regions equal to the num-

CUG 1996 SpringProceedings 45

ber of processors such that the calculations, for all the
particles in each region, take roughly the same time [21].
These regions should then have a surface area to volume
ratio as low as possible in order to minimise the amount
of communications. Algorithms to perform this type of
load-balancing are often difficult to implement in three di-
mensions and can have numerical instabilities and bad con-
vergence. In our load-balancing algorithm we will weakly
relax the constraint of spatial locality while strongly sat-
isfying the load-balancing constraint on the calculations.
In our typical simulations the communications only take
about 10% of the time so that even if the spatial locality
was strongly satisfied we would only expect a few percent
difference in the program run time between our solution
and the optimal solution. On the other hand the calcula-
tions take about 90% of the run time therefore good load-

balancing is extremely important.

The first step in our load-balancing algorithm is to spa-
tially divide the system into three dimensional blocks.
Typically the number of blocks is chosen to be equal to
the number of processors although this is not a necessary
condition and some systems may give better performance
with other forms of spatial division. In our program we
read in three parameters which correspond to the number
of blocks in the x,y and z directions. We then construct
a one dimensional list of all the sites by (i) ordering the
blocks as a one dimensional list with x,y,z ordering and
(ii) writing the sites in each block as a one dimensional list
with z,y,x ordering. It is important that the ordering of the
sites for each block is the reverse of the block ordering to
give good spatial locality. In this way we construct a one
dimensional list that has three dimensional spatial locality.
The choice of the x coordinate in the physical system is, of
course, arbitrary and can be chosen to given the best spa-
tial mapping of the system onto the processors. We now
wish to load-balance the list distributing sites to processors
such that each processor does the same amount of work.

In essentially all the subroutines in the program the outer-

46 CUG 1996 SpringProceedings

most loop 1s over the sites allocated to each processor. It
should be noted that in all our calculations we are only us-
ing two neighbourhood lists i.e. the one for the wavefunc-
tions and the one for the Hamiltonian, and the relative
amount of calculations between sites for the subroutines
associated with these lists is essentially the same. In the
program we time the calculation of S and < ¢7*|H |47 >
associated with each site by adding a subroutine timing
call within the loop over the sites. Averaging over these
times for each site this gives a time ¢; associated with the
calculations for each site where 7 = 1,2,..., N, the order
of sites being the one dimensional list we have constructed
with spatial locality. We now calculate the time each pro-
cessor would take to do the calculations if the system was
perfectly load-balanced i.e.

'

Tou)
Tprocs

(11)

where nprocs is the number of processors. We then hand
out contiguous strips of sites to each processor from our
one dimensional list such that the sum of the times on
each processor are as close as possible to Ty,. In this way
we achieve an essentially optimal load-balancing while still
having a high degree of spatial locality of the mapping of

the sites onto the processors. This means m sites, 7+ 1, j+

2,...,J + m are allocated to a given processor such that,
itm

>t~ T, (12)
i=j+1

An example of our load-balancing scheme applied to a two
dimensional system is shown in figure one. It should be
noted that sometimes in constructing the one dimensional
list the communication cost may be reduced by exploit-
ing the structure of the system. In a system of fullerenes
we found a slight reduction in the communication cost by
(1) ordering the complete fullerenes into a list with x,y,z
ordering and (ii) each fullerene is written as a one di-
mensional list with approximately z,y,x ordering. Since
the neighbourhood of each atom in the fullerene includes

other atoms in the same fullerene the communications are

I
T,
¢5 sl Ty
2 13
13 b
‘.6 °

1728394106 511141713161215

T

PE 1 PE 2 PE 3 PE 4

Figure 1: An example of a possible load-balancing scheme,
for 4 processors. The two dimensional system of 17 atoms
is divided up into 4 two dimensional blocks B1, B2, B3, B4.
These blocks are then arranged in a one dimensional man-
ner with the x coordinate of the block varying most rapidly.
This means that if we associated coordinates with each
block such that Bl is (1,1); B2 is (2,1); B3 is (1,2) and B4
is (2,2) then we order the blocks as (1,1),(2,1),(2,2),(1,2)
i.e. B1,B2,B4,B3. In this example we have reversed
the order for the second row i.e. B1,B2,B4,B3 and not
B1,B2,B3,B4. This gives better spatial locality for non-
periodic systems where blocks B2 and B3 are not spatially
close but for periodic systems 1t is less necessary to do this.
The atomic sites within each block are then written as a
one dimensional list with the y index varying the most
rapidly. In this way we construct a one dimensional list
for the whole system (shown in the lower part of the di-
agram) which has two dimensional spatial locality. We
then perform our load-balancing on this one dimensional
list such that each processor has the same amount of work
to do i.e. processor 1 works on sites 1,7,2,8,3,9 etc. We
are assuming here that the amount of work to update each
atom varies from atom to atom (see text for more details).

reduced slightly if our one dimensional list contains con-
tiguous fullerenes rather than cutting them up with three
dimensional blocks.

Providing the the ratio of the number of atoms to the
number of processors is not too small we have found this
load-balancing scheme to work extremely well. In a typi-
cal simulation where we had ~ 40 sites per processor we
achieved load-balancing down to a few percent. We per-
form the load-balancing dynamically during our MD run
every 10 to 20 MD steps depending on how rapidly the
atoms are moving in our simulation. All the data for the
orbitals and the atoms is reorganised in memory to corre-
spond to the new mapping of sites to processors. Due to
the computationally intensive nature of quantum MD the
load-balancing typically takes less than one percent of the
run time if it is carried out every 20 MD steps. This should
be compared with classical MD where the load-balancing
can easily become a significant percentage of the run time.
It should be noted that our load-balancing algorithm is
very general in that the same program can run any geome-
try of system, even systems of different dimensionality, on

any configuration of processors.

7 Performance

In this section we will present performance results for an
idealised bulk diamond system and for the inhomogeneous
system of fullerenes deposited on a reconstructed diamond
surface. The bulk diamond system used in the tests has
periodic boundary conditions in the z,y and z directions.
As mentioned in the section on the parallel tight-binding
code each processor deals with a geometrically equivalent
sub-block of the diamond system. During the MD runs
on bulk diamond the neighbourhoods defining the locali-
sation regions remained unchanged. The calculation times
for constructing the index lists at each MD step are still
included in the performance figures to make them more
representative of an MD run on a real system in a research

environment. Due to the static and homogeneous nature of

CUG 1996 SpringProceedings 47

T T T 7 T v
2.0 L —— IDEAL SCALING
G—OCG MINIMISATION
G~ MD STEP /
s

© 80 .

fe)

4

[

(&) - 4
40 =
0.0 L i L 1 : | L

0 128 256 384 512
PROCESSORS

Figure 2: “Weak scaling” of the code for a bulk diamond
system of 2048 to 32768 atoms running on 32 to 512 proces-
sors where the localisation region for each orbital contains
45 sites. The curve of circles shows the code performance
for the conjugate gradient minimisation and the curve of
squares shows the code performance for a full molecular
dynamics run. The ideal scaling is shown for the CG curve.

this problem no load-balancing was required or performed
during these runs. The inhomogeneous system used for
these tests consisted of 52 fullerenes, each of 28 carbon
atoms, deposited on a diamond slab (3072 atoms) consist-
ing of 12 double layers with a reconstructed (111) surface
and periodic boundary conditions in the z and y directions.
The performance figures were taken for a typical dynami-
cal run, with dynamic load-balancing every 20 MD steps,

where 5 fullerenes were deposited on top of 47 fullerenes

already bonded to the diamond slab.

In figure two we show the results for the “weak scaling” of
our code where the size of the system is increased propor-
tionally to the number of processors. The results shown
are for a 2048 atom bulk diamond system on 32 proces-
sors up to a 32768 atom system on 512 processors. The
localisation region is taken up to the 3rd nearest neighbour
giving 45 atomic sites in each localisation region. This is a
localisation region which is sufficiently large to give good
convergence and very small errors (compared to a non-
localised algorithm) for carbon insulators. The results for

the MD runs are given with 15 CG steps per MD step

48 CUG 1996 SpringProceedings

which, in a former study, was found sufficient to achieve
convergence [12, 16] for this type of system. As can be seen
from the graph the speed-up is extremely linear and very
close to ideal. The full MD simulation MFLOP speed is
slightly lower than for the CG step due to the index lists
that are constructed at each MD step. Also, some of the
calculations for the atomic update run at a slightly lower
MFLOP speed than the CG step. We present the results in
GFLOPs rather than seconds per MD step as the smaller
systems have wraparound effects on the localisation regions
which means that proportionally less time is required for
the MD step than larger systems. It should be noted that
the algorithm used is strictly O(N) in terms of the number
of calculations per MD step, so that provided there are no
wraparound effects on the localisation regions the speed-up
in GFLOPs translates directly to an identical increase in
the number of atoms updated per second. All of these sim-
ulations spent about 14% of the time in communications
and 86% doing calculations. An MD step, including 15
CG minimisation steps of the orbitals, took about 50s for
the 32768 atom system on 512 processors running at above
11 GFLOPs. The weak scaling curves for other ratios of
particles to processors and different localisation regions are
also essentially linear with nearly ideal speedup. Due to
the localised nature of the problem the communications
remain local and the ratio of communications to calcula-
tions remains the same as we scale up the problem. The
GFLOP speed for the inhomogeneous system on 128 pro-
cessors is ~ 8% lower than for the bulk diamond system.
The lower GFLOP speed has different causes, the first of
which is the barrier wait time introduced into the problem
(even after load-balancing) by the inhomogeneous nature
of the system and the motion of the particles. The second
most important factor is the increase in communications
due to the less spatially structured nature of the problem
which makes the spatial mapping of the system to the pro-
cessors less direct than the bulk diamond system. A third

less important factor is the extra time required to run the

8.0 " 1 T ' T —
| —— IDEAL SCALING //f”
G—8 40396 ATOM DIAMOND p
60 | 92048 ATOM DIAMOND
- A—A €28 DEPOSITION
o
oD
040
w
[a 1
w
20 F
0.0 L { L |) i L
0 B4 128 192 256

PROCESSORS

Figure 3: “Strong scaling” of the code for two bulk dia-
mond systems of 2048 and 4096 atoms, and the inhomo-
geneous system of fullerenes deposited on a diamond slab.
All orbital localisation regions are taken up to the third
nearest neighbour.

load-balancing algorithm every 20 MD steps although this
is only about 1% of the program time. Without dynamic
load-balancing our test run is about twice as slow since
when the fullerenes arrive at the surface the number of
sites in the localisation regions of their atoms can increase
by factors of 2 to 3.

These results should be compared with our vector code
that runs at about 270 MFLOPs on one processor of a Cray
C90 for the bulk diamond system. The number of floating
point operations per MD step is, to within a few percent,
the same for the vector and serial code. It should be noted
that the structure of the loops in the vector code is very
different from that of the parallel code. The innermost
loop in the vector code must be over sites, since this is
the only loop long enough to efficiently exploit the vector
processing, while in the parallel code we parallelise over
the site loop which must therefore be the outermost loop.
Figure three shows the “strong scaling” performance for
the code where the size of the system is kept constant and
the number of processors is increased. Results are shown
for 32 to 256 processors for the 2048 and 4096 atom bulk
diamond system and also the inhomogeneous system. The

choices of system are meant to be typical of the size of

problem that would be run in a research environment on
a computer of 32 to 128 processors. The speed-up is very
linear and in the case of 4096 atoms of diamond there is
a 7.3 speed-up in going from 32 to 256 processors. The
speed-up is lower for the smaller 2048 atom system since,
when we are in the regime where the number of atoms
on each processor is very small (8 atoms per processor for
256 processors), the amount of time spent in communica-
tions becomes more important. This is because the fewer
atomic sites we have on each processor the more probable
it is that the orbitals, required to perform the calculation
of the overlap matrix elements etc. for these sites, will
not be on that processor and will have to be communi-
cated. Typically the data will also have to be transmitted
via more nodes of the communication network when there
are fewer atoms on each processor thus the communication
times will be larger. In order to reduce the communica-
tion cost of studying small systems on a large number of
processors it may be more efficient to use a different data
distribution where the data for each orbital is spatially dis-
tributed over the processors. However, it is not clear that
the overall speed would be faster as the MFLOP speed for
the calculations may decrease. This type of data distribu-
tion was implemented in reference {25} on a CM5 but the
single PE performance is much lower than we obtained for
our implementation. Load-balancing, while not discussed
in this reference, may also become more difficult as it is
not possible to simply load-balance over sites. This is be-
cause the calculations associated with the MD step for each
individual atom are distributed over processors. Our pro-
duction runs to date have never been in the regime where
there were a small number of sites on each processor. This
would only be useful for studying small systems over very

long timescales.

8 Conclusions

In this paper we have presented a particle type data distri-

bution scheme for the parallel implementation of an O(N)

CUG 1996 SpringProceedings 49

TB molecular dynamics scheme on the Cray T3D. We have
shown that the local nature of orbitals translates directly
into a parallel algorithm that has only local communica-
tions between processors. While the amount of interpro-
cessor communications in our program is significant the lo-
cality of these communications leads to an algorithm whose
ratio of communications to particle number remains con-
stant as we scale up the processor number and system size.
We have also presented a simple and robust load-balancing
scheme to handle inhomogeneous systems or systems with
rapidly moving atoms. Parallel machines with fast com-
munications, like the Cray T3D, are very cost-effective for
these types of simulation, as well as allowing the possi-
bility to scale to larger systems than could be studied on
conventional supercomputing platforms (e.g. vector ma-
chines). Our program has now been used to study many
different problems e.g. fullerene deposition, in a variety
of carbon based systems. The results of these simulations

will be published elsewhere [26].

9 Acknowledgements

This work was done as part of the PATP (Parallel Ap-
plications Technology Program) joint project between the
EPFL and Cray Research. Support is also acknowledged
from the Swiss National Science Foundation. In the course
of this work we have benefited from useful discussions with
other PATP collaborators; staff at Cray Research, Eagan,
USA and C.F. Baillie at the University of Colorado.

References
[1] R. Car and M. Parrinello, Phys. Rev. 55 (1985) 2471.

[2] A. De Vita, G. Galli, A. Canning and R. Car, Nature,
(to be published), (1996).

{3] G. Galliand M. Parrinello, Phys. Rev. Lett. 69 (1992)
3547.

50 CUG 1996 SpringProceedings

[4] F.Mauri, G. Galli, and R. Car, Phys. Rev. B 47 (1993)
9973.

(5] W. L. Wang and M. Teter, Phys. Rev. B 46 (1992)
12798.

(6] W. Kohn, Chem. Phys. Lett. 208 (1993) 167.

[7] P. Ordején, D. Drabold, M. Grunbach and R. Martin,
Phys. Rev. B 48 (1993) 14646.

[8] S. Baroni and P. Giannozzi, Europhys. Lett. 17 (1991)
547.

[9] M. Aoki, Phys. Rev. Lett. 71 (1993) 3842.

[10] X.-P. Li, R. Nunes, and D. Vanderbilt, Phys. Rev. B
47 (1993) 10891.

[11] M. S. Daw, Phys. Rev. B 47 (1993) 10895.
[12] F. Mauri and G. Galli, Phys. Rev. B 50 (1994) 4316.

[13] J. Kim, F. Mauri and G. Galli, Phys. Rev. B 52 (1995)
1640.

[14] E. 1. Blount, Solid State Physics, 13 (1962) 305.

[15] C. Xu, C. Wang, C. Chan and K. Ho, J. Phys.: Con-
dens. Matter 4 (1992) 6047.

[16] G. Galli and F. Mauri, Phys. Rev. Lett. 73 (1994)
3471.

[17] W. H. Press, B. P. Flannery, S. A. Teukolsky and W.
T. Vetterlin, Numerical Recipes: The Art of Scientific
Computing, (Cambridge University Press, Cambridge,
England), (1989) 301.

(18] L. Verlet, Phys. Rev. 159 (1967) 98.

[19] L. J. Clarke, I. Stich and M. C. Payne, Comp. Phys.
Commun. 72 (1992) 14.

[20] A. Canning, A. De Vita, G. Galli, F. Gygi, F. Mauri
and R. Car, Procs. of the 94 Fall, Cray User Group

Conf. (Fine Point Editorial Services, Sheppherdstown,
WV 25443), (1995) 18.

[21] Y. Deng, R. A. McCoy, R. B. Marr and R. F. Peierls,
Procs. of the Seventh SIAM Conf., (edited by D. H.
Bailey et al.), (1995) 605.

[22] S. J. Plimpton, J. Comp. Phys. 117 (1995) 1.

[23] D. C. Rapaport, Comp. Phys. Commun. 62 (1991)
198; D. C. Rapaport, Comp. Phys. Commun. 62
(1991) 217.

[24] W. Smith, Comp. Phys. Commun. 62 (1991) 229.

[25] S. Itoh, P. Ordején and R. M. Martin, Comp. Phys.
Commun. 88 (1995) 173.

[26] A. Canning, G. Galli, F. Mauri and R. Car, (In prepa-

ration).

CUG 1996 SpringProceedings 51

