PVP Optimization for a Finite Element Tidal Model

S. Chumbe, M. Gonzalez, M. Espino, M. Garcia, F. Hermosilla
andA. S-Arcilla Laboratori d’Enginyeria Maritima, Universitat
Politecnica de Catalunya, 08034 Barcelona, Spain

ABSTRACT: This paper reports a vector/parallel implementation of a numerical algorithm to
simulate the propagation of tides using a spectral model. The Finite Element Method (FEM) is
employed in the discretization of the differential equations. The preconditioned Conjugate
Gradient Squared (CGS) method is applied to the solution of the discretized equations. Since the
efficiency of the CGS iterative method is determined primarily by the performance of the
matrix-vector product, the preconditioner solver and the storage scheme, a Compressed Row
Storage (CRS) format is used to store the sparse matrices. The storage scheme, the precondi-
tioner and the CGS method are implemented with an emphasis on their potential for parallelism.
The code is parallelized with the help of Fortran Compiler Directives. A Cray YMP/232 has
been used, but the implementation is suitable for all MIMD shared-memory systems.

1. Introduction

The Laboratori d’Enginyeria Maritima of the
Catalonia University of Technology (LIM/UPC) deals
with hydrodynamic research in the sea. This research
is carried out by :

a. fields campaign,
b. physical modelling,
¢. numerical modelling.

Over the last ten years the LIM/UPC’s research
team has been collecting information about ocean
dynamics. These data fields are very important to know
the hydrodynamic behaviour within this area. They are
also useful for comparing the output of physical and
numerical models with real data.

52 CUG 1996 SpringProceedings

The CIEM Flume is one of the most important
physical models at the LIM/UPC. In this canal ~ (100
m. long, 3 m. wide and 5 m. deep) it is possible to simu-
late different kinds of wave propagation. It is also use-
ful to study the breaker zone at a reduced scale.

However, not all the marine phenomena can be stu-
died by experimental campaign at the sea or by models
at a reduced scale in the laboratory. Because of that,
numerical models have been developed to simulate
complex marine phenomena. They have become
powerful tools thanks to recent mathematical and com-
putational advances. These models are available to
simulate the real hydrodynamic by solving partial di-
fferential equations (PDE) which include the variables
and physical parameters of the marine system.

When considering numerical modelling of marine
hydrodynamics, one must consider large data volumes
and millions and millions of intensive calculations. All
of this leads us to the need for improved numerical
efficiency of our models by using optimization techni-
ques and high-performance computers.

In this work, the optimization process carried out
to port the sequential code of the numerical MAREAS
model from a scalar machine to the Cray YMP/232
vectorcomputer is presented. The model MAREAS has
been developed to simulate the tide induced current in
marine domains where the shallow water hypothesis
can be applied.

2. Outline of the numerical model

The model solves the transient shallow water equa-
tions using a harmonic decomposition technique in
time. This technique leads to one non-linear steady pro-
blem per each frequency, which is linearized with a
standard Picard method and is solved by a precondi-
tioned iterative solver.

In this report, the physical hypotheses and the
mathematical formulation of the model are assumed as
a starting-point. More information can be found in
reference [7]. However, it is important to mention that
the model uses the Finite Element Method (FEM) to
discretize the differencial equations in order to obtain
the correspondent nonlinear system equations. For
details on the discretization we will refer to [7].

In very abstract terms, the matrix form of the non-
linear system equation can be represented by:

I !
EI[Agg.x[gw] =i§z(§i) @1

The superindex (i) represents the values of each
element and 2 is the assembler operator. A, X and Z are
the coefficient matrix, the vector of unknowns and the
vector of independent terms respectively (for each ele-
ment). o and [are the indexes of the elemental matrix.

The model solves a matrix equation similar to
(2.1) for each tide frequency w,

3. Algorithm of the MAREAS Model

Begin
1
1

(I)l Compute the equation’s terms for each element I

(H)l Generate the elemental matrices I

(HI)I Assemble the global matrix I
 J
N
(1)] = f[Z]] + Jzzleh-l —>u| nj
= 1
e 1
N’
= I
E oIt S il
‘g oy =f[Z] +j.§1 wlt +J§1 ol —> u
T i
: i
=
N-1 N
oN = f[%\!] + E] (Djh +J§1 (Djn'] —>UnN NN
7 Convergence criterion < € 7

Fig. 3.1 Flowchart of the MAREAS model

For each frequency o, (k = 1,2, ... \N) the equation
(2.1) is solved by a preconditioned CGS iterative me-
thod. This process consumes around 40 % of the total
CPU time and executes the largest number of floating
point operations. Therefore, it has a considerable
influence on the model performance. Also, the proces-

CUG 1996 SpringProceedings 53

ses (I), (II) and (IIT) (see fig. 3.1) associated with the
generation of the elemental matrices and the assembly
of the global matrix have an important effect on perfor-
mance. The optimization strategy has been applied to
these three processes and the solver.

4. Computer architecture

The computer architecture available to the
LIM/UPC is characterized as follows:

Cray Y-MP/232

2 vector-processors

256 Mb of RAM

333 MFLOPS by processor
6 ns. by clock cycle
MIMD shared-memory

64 bits of word length

A powerful advantage of the Cray YMP/232 is its
vectorial architecture. The compiler of this computer is
available to produce a high vectorial ratio with a little
help. The programmer only needs to avoid the data
dependences and some classical statements which inhi-
bit the vectorization. It must also be remembered that
the compiler only vectorizes the most internal nested
loop [4]. Moreover, there are tools such as Flowtrace,
hpm and atexpert, which make the optimization work
more easily [10].

5. Optimization strategy

For a FEM hydrodynamic simulation, we have
observed that an effective tmplementation of a vec-
tor/parallel algorithm for numerical models requires:

- the independent generation of elemental matrices,
- an optimum storage of sparse matrices,

- iterative solvers for the linear systems,

- algorithms focused to parallelism.

Before attempting vector/parallel optimization our
first step was to implement the most appropiate mathe-
matical algorithm for solving the MAREAS model on
the Cray platform while keeping its portability on sca-
lar/sequential machines. This means, for example, that
we do not use domain decomposition and do not deve-
lop special routines to perform the load-work balancing
between processors. Therefore, our first issue was to
develop an advantageous scheme for storing sparse
matrices used in solving the preconditioned CGS sol-
ver on parallel platforms.

54 CUG 1996 SpringProceedings

The parallelization strategy reported in this work
has two baselines:

5.1.- To exploit a favorouble characteristic of the
FEM (each element contains its own information
without any data dependence between elements). which
allows us to operate on the element contributions to the
global matrix independently and simultaneously (as a
pseudo coarse granularity parallelization).

5.2- To make use of sparse matrix storage schemes
adapted to the vectorial/parallel algorithms which
involve iterative solvers.

Finally, it is important to remark that using vec-
tor-processors in conjunction with an algorithm spe-
cially for such computers, computation speed increa-
ses up to a factor of 10 have been reported [5]. As a
consequence of that, theoretically, a speed-up of 20
could be reached on the Cray YMP/232 vector-compu-
ter.

6. Vector/parallel implementation

During all of this work we keep in mind the follo-
wing idea: It is important to consider the vectorial and
parallel characteristics of the code at the same time in
order to consider both the good and bad effects of each
optimization on one another. Also, the whole program
has to be considered as a set of coupled parts because
modifying one aspect of the program may lead to sig-
nificant changes in the whole code.

According to the optimization strategy established
in (5), the routines which perform the generation of the
elemental matrices and the assembly of the global
matrix are first analysed to find the inherently scalar
and sequential parts. Next, we determine suitable vec-
tor/parallel algorithms for these parts and. finally, the
most appropriate alternative is implemented. Therefore,
the vectorization consisted (for each one of these rou-
tines) in putting the largest loop as the innermost loop
and avoiding the data dependences and statements
which inhibit vectorization of this loop. These routines
are then parallelized by dividing the computation of the
whole mesh among the two available processors
equally (see Fig. 6.1). FORTRAN compiler directives
are used to force the parallelization where 1t was nece-
ssary.

Cm+1 | €ma2| Cme3 €n2 [Cn-t Cn
Ck+1] €xyn | Ck43 Cm-2 €1 €m
Civ1 | G2 | G+3 €2 | k1| Sk

Cw+1| Cwa2| Cw4p €2 | Cir | G
Cha1| Che2| Cns3 Cw-2 Pw-1 | Cw
Cor1| €oyn | Co43 Ch-2 [Bhi h
Civ1 | Cr+2 | Cra3 €2 | Cgu1 Sy
€ | € €3 €2 | €1 | ©f

Fig. 6.1. The generation of the elemental and global matrices has been parallelized by an even distribution of
the computation of the mesh elements among the two processors.

In order to implement the second part of the opti-
mization strategy (5.2) we carried out with restruc-
turing of the data-storage, the development of a vecto-
rial preconditioned CGS solver and parallel program-
ming (by using microtasking and autotasking features).

6.1. Restructuring the data-storage

As is well-known , the efficiency of any iterative
solver and its vector/parallel implementation is deter-
mined primarily by the performance of the preconditio-
ner solver and the matrix-vector products. Both of them
are highly dependent on the storage scheme used for
the global matrix. Therefore, we have implemented a
storage scheme more appropiate for our specific appli-
cation.

On the other hand, large-scale linear systems of
the form Ax = b can be most efficiently solved if the
zero elements of A are not stored. For instance, the glo-
bal matrix of MAREAS model has less than 95 nonze-
ro elements by row (in practical problems the matrix
order can be more than 5000).

There are many schemes for storing sparse matri-
ces (see for instance Saad [11] and Eijkhout [6]). We
have implemented the Compressed Row Storage (CRS)
scheme because our original matrix is not banded

(actually its bandwidth varies strongly if it is not
renumbered previously) and this scheme does not store
any unnecessary elements.

The CRS format puts the subsequent nonzeros of
the matrix row in contiguous locations. We have crea-
ted 3 vectors: one for floating-point numbers (val), and
the other two for integers (col_ind, row_ind). The val
vector stores the values of the nonzero elements of A,
as they are traversed in a row-wise fashion. The col_ind
vector stores the column indexes of the elements in the
val vector (that is, if val(k):ai_j then col_ind(k)=j). The
row_ind vector stores the locations in the val vector that
start a row (that is, if val(k):ai‘j then row_ind(i) £ k <
row_ind(i+1)). The storage savings for this approach is
significant. Instead of storing n? elements, we need
only 2nz + n + 1 storage locations, where nz is the num-
ber of nonzeros in A and # is the order of A.

The matrix-vector product v = Ax using a CRS
scheme can be expresed in the usual way:

row_ind{(i+1) -1

Y, = Z val(j) * x(col_ind(j))

j = row_ind(i)

Since this scheme only multiplies nonzero matrix

CUG 1996 SpringProceedings 55

entries, the operation count is 2 times the number of
nonzero elements in A, which is a significant savings
over the dense operation requirement of 2n2. Moreover,
it avoids any kind of data dependences in the nested
loop.

Next, we implemented a storage scheme for the
preconditioner. There are many sophisticated precondi-
tioners for iterative methods (see, for example
[2,3,13]). In this work, we have chosen an incomplete
factorization of the global matrix A stored in the CRS
format as a first approach. A variant of the CRS format
focused to the parallelization has been used to store and
to perform the incomplete factorization. It is recalled
Modified Row Storage (MRS) format.

For the factorization we need to store the precon-
ditioner matrix, M, the diagonal elements and their res-
pective column and row pointers. To do that we require
3 vectors.

M

I
-
c
]

Fig. 6.2. M is the preconditioner matrix for CGS solver.

The val_lu vector has (nz + n + 1) elements, the
col_lu vector also has (nz + n + 1) elements, and the
row_u vector stores nz elements. The val_lu vector
stores the inverses of the diagonal elements and the
values of the nonzero elements of the matrix M, row by
row (see Fig. 6.3). The col_lu vector stores the loca-
tions in the val_[u vector that start a row, that is, its n+1
first elements stores the column where the L part of M
starts. Its following elements contain the column inde-
xes of the elements in the val_lu vector. The row_u vec-
tor stores the locations in the val_[u vector where the U
part of M starts, row by row.

6.2. Vectorial preconditioned CGS solver

The coefficent matrix (A) of the MAREAS model
is a nonsymmetric definite nonpositive and large spar-
se matrix. Because of this we have chosen the
Conjugate Gradient Squared (CGS) iterative solver
which does not involve computations with AT and rea-
ches successful convergence with nonsymmetric matri-
ces if the initial guess is not close to the solution [2].
The pseudocode for the preconditioned CGS method is
given in the next figure.

Compute #0 = b - Ax® for some initial guess A0
Choose ® = £O

fori=12, ..
Pl = @Trt-1)
if pi-l =0 then method fails
if i=1
ulit = f®
P = uh
else
Bi=pt/p
ul = {i-h 4 B, ql-h
p = u® + B, (qi-D + B pt-D)
end if
solve My = pt)
v = Ay

o5 = p-l /Ty

qi = u - oy

solve My = uti’ + q®

x0) = x(-D 4 oy

v =Ay

= AiD - o

check convergence: continue if necessary

Fig. 6.4. Pseudo-code of the preconditioned CGS solver.

The basic time-consuming kernels of CGS solver
are: inner products, matrix-vector products and prima-
rily preconditioner solvers. These critical parts have
been emphasised by bold characters in the pseudo-code
(Fig. 6.4).

\J

-«—— 1+ | elements -t

nz elements

WAV R VAV O | ... 1/u,,l O L, U,

LI U [Ln Un

i

Fig. 6.3 The MRS format for the matrix M = LU needs three vectors. Here it is a scheme of the val_lu vector
which uses (n+1+nz) elements.

56 CUG 1996 SpringProceedings

The computation of an inner product of two vec-
tors can be easily vectorized and parallelized. In gene-
ral, for shared-memory machines, the accumulation of
local inner products can be implemented as a critical
section where all the processors add their local result in
turn to the global result. However, because of the Cray
YMP/232 architecturet), it was more efficient to vec-
torize the inner product routine rather than parallelize.

In order to reach a high ratio of vectorization, for
the matrix-vector product, we have implemented a
variant of its usual way. The pseudo-code to perform
the product Ax, using the CRS storage scheme, is:

Choose i=0and iv= col_ind(1)
For j=1,.... , 2

v(i) = v(i) + val(j) . x(col_ind(}))
iv = col_ind(j)
end

Here, the loop has a large number (nz) of iterations
and it has not any data dependence.

Although preconditioning is often the most proble-
matic part of optimization of a CGS solver, we have
improved the performance of the solver by vectoriza-
tion of the incomplete factorization preconditioner
using the MRS storage scheme. By taking in advantage
the Cray YMP/232 vectorial architecture, we have
implemented a pseudo code to perform the
forward/backward solver for Mx = LUx = b. The for-

ward part is represented as :

Choose w(1)=b(1),i=1and iv=k=pivor=0
forj=n+1,..,n7+n
it col_lu(i) + k < row_u(i) then
pivot = pivot + val_lu(j)*o(col_lu(j))

end if

it col_lu(j+1) < iv then
=1+ 1
set k= pivot=0

end if

(i) = b(i) - pivot
iv = col_lu(j+1)
end

As is apparent, only one large loop is necessary to

perform the forward process. The backward part may
be similarly performed by changing the direction of the
recursive process.

6.3. Multitasking

For the parallel implementation, we have focused
on Multitasking, which allows parallel execution on
multiple CPUs of the Cray systems [4]. Specifically.
the microtasking and the autotasking teatures have
been combined in this work to accomplish mulritasking
in FORTRAN language. Thus, parallelism is exploited
at the loop or block level in the MAREAS code.

We insert directives in the code to indicate sections
that can be executed on the two CPUs simultaneously
when the compiler is unable to detect parallelism or to
solve inhibition problems automatically. The idea is
that if it is possible, innermost loops are vectorized and
outermost loops are multitasked. Therefore, we repro-
grammed the sections of code which are well-suited for
parallel processing by using inlining or unrolling tech-
niques [4]. In order to do that, we have used directives
but any kind of swirches.

As we have related previously in (3), there are two
principal tasks to be done for FEM hydrodynamic
modelling : (a) the generation of the elemental matrices
and the assembly of the global matrix (process II and
III), and (b) the linearization process which involves
the solution of the Ax=b system.

For the first task, we developed a small and simple
algorithm to carry out the even distribution of the work
load among processors. The delay-time is minimized
when we assign a similar number of mesh elements to
each processor (see Fig. 6.1). Because of the absence
of data dependence between elements, the exchange of
information between CPUs is lower.

The routines involved in the calculation of the
terms associated with each elemental matrix have been
parallelized by forcing the simultaneous processing of
the loops, which perform the numerical integration.
Because we use four Gauss-points for the integration,
the work load is balanced.

The linearization process and the preconditioner
solver are typical sequential processes and we have
seen that the vectorization has a good influence over the

(" An important advantage of a Cray vectorprocessor is that it does not use cache memory, which is good for the locabiliry and the synchronization

between CPUs and RAM memory.

CUG 1996 SpringProceedings 57

model performance in these cases.
7. Test cases

In order to evaluate the performance and the sca-
lability of the optimized MAREAS model we have
defined five test cases on a rectangular domain of 1353
km. by 600 km. Two of the four boundaries are assu-
med to be closed, while at the third and fourth
boundary a periodic tidal movement is imposed. The
characteristics of the FEM meshes are shown in the
Table 1. The FEM mesh has 512 elements (NELEM)
and 561 nodes (NNODE). NEQU is the number of

Case NVDF Sp NEQU
| 1 1.6 % 1634
2 2 1.1 % 2756
3 3 0.7 % 3878
4 4 05 % 5000
5 5 03 % 6122

Table I. Test cases. Here NEQU = 2*NNODE*NVDF
+ NELEM, NVDF is the number of vertical
degrees of freedom and SP measures the per-
centage of nonzeros of the sparse matrix.

equations (order of the global matrix).

For these tests, the analytical problem of the dou-
ble Kelvin wave has been simulated . An angular velo-
city (w) equal 1.45441E-4 rad/s., a frequency of 10E-4
1/s. and a depth of 100 m. have been imposed as phy-
sical conditions. The 2DH problem is simulated for one
vertical degree of freedom . For NVDF > 1 the MARE-
AS model is able to simulate quasi-3D problems. Five
vertical degrees of freedom is enough for hydrodyna-
mic real cases [7].

8. Benchmark

8.1. Scalar/sequential performance

We did not test the scalar/sequential performance
of the MAREAS code on the Cray because it is well-
known that if the pipelining and the chaining features
are not used on a vectorprocessor the processing time
will be exaggerated [5,9]. In any case, for reference, the
CPU times spent for the test cases (running sequen-
tially) on a Digital Alpha 7000/630 scalarprocessor is
shown in Table 2. The Alpha computer has a theoreti-
cal peak performance of 300 MFLOPS per processor

58 CUG 1996 SpringProceedings

CPU time and Speedup obtained by
applying a Sparse-matrix technique for
inner products, matrix-vector products and
the ILU(O) preconditioner

Case Original | Optimized| Speedup
1 95 s. 28 s. 3.39
2 384 s. 65 s. 592
3 933 s. 123 s. 7.57
4 1858 s. 217 s. 8.56
5 3422 s. 366 s. 9.35

Table 2. Performance profile of the original and the opti-
mized codes on the Alpha computer

and RISC architecture.

It is very important to note the improvement of the
MAREAS model performance produced by using only
a sparse matrix technique. We can compare (see Table
2) how the speedup increases as well as the SP decrea-
ses (see Table 1) proportionality.

8.2. Parallel/Vector Performance

We are interested in benchmarking the perfor-
mance produced for the optimization strategy applied
on the code of MAREAS model. Therefore, this per-
formance profiling involves three optimization phases:

- Original means performance produced by the code
before applying any sparse matrix storage scheme. For
this, we have used the -Zv and -Wf -0 aggress”™ com-
piler options in order to allow full vectorial optimiza-
tion (automatically){4]. The CGS solver is used.

- ManVector means vectorization obtained by avoid-
ing conditions that inhibit vectorization manually. The
principal techniques applied are: inlining, unrolling and
splirting innermost loops, elimination of any reference
to external code that cannot be vectorized, removal of
obsolete and extra conditional statements, prevention of
memory conflicts and avoiding data dependencies. We
do not use vectorial directives. In this case. the
CRS/MRS storage scheme and the CGS solver are used

- ParaVector means optimization of the MAREAS
model by parallelizing its ManVector version using
multitasking techniques. To do this, we have applied

parallel directives beginning with CMIC$, CDIRS$,
CMIC@ and CDIR@. The code was compiled by using
the -Zp option.

Tables 3 and 4 show the performance profile of the
PVP optimization. Table 3 shows the reduction of Real
and CPU times profiled by each test case. Table 4

Case Original | ManVector | Para/Vector
1 73/ 61 15/13 11/17
2 241 /219 36/34 26/45
3 5927524 65/61 51773
4 1130/1020 110/103 94 /124
5 1897/1760 165/155 147/ 186

Table 3. Performance profile. Real time/ CPU time.
(in seconds)

Case Original | ManVector| Vectorial
MFLOPS MFLOPS Speedup
1 4.1 48 4.7
2 34 43 6.4
3 3.1 39 8.6
4 2.6 35 9.9
5 2.4 34 11.3

Table 4. Efficiency and vectorial speedup produced
by CRS/MRS scheme.

A
200 -
Originaly.,) ime
Sp =

16.0 F ParaVectorge, time
S 120
2
)

8.0

4.0

1000 2000 3000 4000 5000 6000

Problem size

Fig. 8.1. PVP Speedup (Sp) vs. Problem size

shows the increase in MFLOPS in the vectorial PVP
optimization phase. Finally, the comparative study of
the total PVP optimization speedup versus the problem

9. Applications

Two real applications taken from the sea-shore of
the Basque Country in the north of Spain have been
chosen to ilustrate the capability of the PVP optimi-
zed MAREAS model.

a. Zumaia outlet

FEM mesh 480 elements
542 nodes
Problem size 19264 equations

Tide frequencies : 4
Vertical degrees of freedom : 4

b. Orio river mouth

FEM mesh 608 elements
693 nodes
Problem size 36912 equations
Tide frequencies : 6

Vertical degrees of freedom : 4

The following Table shows the Real and CPU
times (in minutes), the Total Speedup (CRS/MRS -
CGS+P/V) and the Parallel Speedup reached for these
two real applications on the Cray YMP/232.

L Real/CPU | Total PVP Parallel
Application time Speedup Speedup
Zumaia 15/11 36 1.18
Orio 22/19 54 .15

Table 5. Applications benchmarking.

As is proved, it now takes only minutes to simulate real
cases, such as the Zumaia outlet and the Orio River
mouth, whereas these simulations previously took
hours to complete. The increased capability of the vec-
torized/parallelized version of the MAREAS code
makes it possible to simulate large and complex
domains, such as the Bizcaya Gulf (located in Northern
Spain), which would not have been possible with the
original code. On the other hand, because only two
processors were available and we did not use a comple-
te mesh decomposition, the parallel speedup is not sig-
nificant.

CUG 1996 SpringProceedings 59

size (global matrix order) is summarized in Figure 8.1.
10. Concluding remarks

- This work proves that although experience has
revealed that the use of vector/parallel techniques may
reduce the computation time considerably, many suc-
cesses may be obtained after developing new algo-
rithms that are particularly designed and tuned for
Parallel Vector Processing (PVP). In our case such an
algorithm consists of the CRS/MRS Sparse Matrix
Scheme for improving the efficiency of the precondi-
tioned Krylov methods such as the CGS method
applied in this work.

- For the routines which perform the generation of
the elemental matrices and the assembling of the global
matrix, a size mesh multiple of two is desirable to reach
more efficiency in the load-balancing when is targeted
a Cray YMP/232. However, for large meshes in real
applications, this aspect is less important and the delay
time or the time overhead is not as significant.

- The MAREAS Model PVP code is highly porta-
ble because it does not use any external references
(libraries or commercial software), and only uses sha-
red-memory compatible compiler directives for paralle-
lization.

- Scalar and vector optimization are very useful on
the Cray-YMP/232. Also, these changes are not com-
plicated for marine researchers and engineers to per-
form. We have proved that the reformulation of the
matrix assembly process, the use of Sparse Matrix
Storage techniques and an efficient solver are more
important than the informatic aspect in PVP optimiza-
tion.

- The CRS/MRS storage scheme applied to a FEM
model using a CGS solver will reduce Real/CPU times
even on scalar/sequential machines. This is an additio-
nal advantage for users who work with PC’s or work-
stations. However the advantages are not as spectacu-
lar as on a vectorial machine.

- Because the original algorithm of the MAREAS
model was not suitable for parallelization, the automa-
tic parallelization by the compiler was not useful on its
own, but it was useful to analyze the parallelism and for
detecting the bottle-necks in the sequential program.

- Vector-processors with a few very powerful pro-
cessors have their limitations in further increasing the
computing power for more complex applications.
Moreover, they are expensive because they rely on the
use of expensive advanced technology. Therefore, to
further increase the speed of computation, massive
parallel processing has to be applied. A computer such
as the Cray T3D would be useful for present hydrody-

60 CUG 1996 SpringProceedings

namic modelling using HPCN technology.
Acknowledgement

We are most grateful to Enric Torres of Cray Rescarch
Inc. (Spain) and Oleg Mercader of CESCA for their techni-
cal support and useful discussions. The suggestions and ad-
vice of José Maria Cela of CEPBA in numerical aspects is
very much appreciated. In particular, we would like to thank
the AZTI Company for providing us with its field data to per-
form the real applications of the MAREAS model. This re-
search is part of the EC TRIMODENA/PACOS Project.
carried out by the LIM-AZTI agreement and is partially sup-
ported by the ESPRIT European Programmec. The
parallel/vectorial optimization was done on the Cray
YMP/232 of CESCA in Barcelona, Spain.

References

[1] Axelsson Q. and V. Eijkhout, “Vectorizable preconditioners
for elliptic difference equations in three space dimensions™. J.
Comput. Appl. Math.. 27, 1989, pp. 299-321.

[2] Barrett R., M. Berry et. al., “Templates for the solution of line-
ar systems: Building blocks for iterative methods™. Tech
Report of the Office of Energy Research. U.S. (SIAM
Publications), 1993.

[3] Dongarra J., 1 Duff, D Sorensen and H. Van der Vorst.
“Solving Linear Systems on vector and Shared —Memory
Computers”, SIAM, Philadelphia, PA. 1991.

[41 “CF77 Optimization Guide™. SG-3773 6.0. Cray Software
Documentation. Cray Research Inc. MN 55120 USA. 1994,

[5] Dongarra J., “Performance of various computers using stan-
dard sparse linear equations solving technigues™.). Dongarra
and W. Gentzsch, eds., Elsevier Science Publishers B.V.. New
York, 1995.

[6] Eijkhout V., “LAPACK working note 50: Distributed sparse
data structures for linear algebra operations™. Tech. Report
CS 92-169, Computer Science Department. University of
Tennessee, Knoxville, TN, 1992.

[7]1 Gonzdlez M. “Un modelo numérico en elementos finitos para
la corriente inducida por la marea. Aplicaciones al estrecho
de Gibraltar”. Degree Thesis. ETSECCPB. UPC. Barcelona.
1994.

8] Lin X., H. Ten cade et. al., “Parallel simulation of 3-D flow
and transport models within the NOWESP project”. Int.
Journal of the Fed. of European Simulation Societies, Elsevier
eds., vol. 3, Nros. 4-5. 1995, pp. 257-272.

[9] Ortega 3., “Introduction to Parallel and Vector Solution of
Linear Systems”, Plenum Press. New York and London. 1988.

[10] “Performance Utilities Reference”. SR-2040. Cray Soltware
Documentation. Cray Research Inc. MN 55120 USA. 1994,

[11] Saad Y., “SPARSKIT: A basic tool kit for sparse matrix com-
putation”, Tech. Report CRSD TR 1029, CSRD, University of
Hlinois, Urbana, IL, 1990.

[12} Sonneveld P., “CGS, « fast Lanczos-type solver for nonsyim-
metric linear systems”, SIAM 1. Sci. Statist. Comp.. 10. 1989,
pp. 36-52.

[13] Tong C., “A comparative study of preconditioned Lanczos
methods for nonsvimmetric linear svstems”. Tech. Report
SAND91-8240, Sandia Nat. lab.. Livermore, CA. 1992.

[14] Van der Vorst H., “The convergence behavior of preconditio-
ned CG and CGS in the presence of rounding errors”™. O.
Axelsson and L. Kolotilina eds., vol. 1457 of Lecturc Notes in
mathematics, Berlin, New York. 1990.

